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In the context of a Uð1Þ gauge theory nonminimally coupled to scalar-tensor gravity, we find a
cosmological attractor solution that represents a de Sitter universe with a homogeneous magnetic field. The
solution fully takes into account backreaction of the magnetic field to the geometry and the scalar field.
Such a solution is made possible by scaling-type global symmetry and fine-tuning of two parameters of the
theory. If the fine-tuning is relaxed then the solution is deformed to an axisymmetric Bianchi type-I
universe with constant curvature invariants, a homogeneous magnetic field and a homogeneous electric
field. Implications to inflationary magnetogenesis are briefly discussed.
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I. INTRODUCTION

Multifrequency observations of γ rays from distant
blazars indicate the presence of magnetic fields in extra-
galactic void regions [1–8]. While astrophysical mecha-
nisms could be effective to address the origin of galactic
magnetic fields, there is a lack of explanation for extra-
galactic magnetic fields with correlation length of order of
megaparsecs via astrophysical mechanisms. For this reason,
it is probably natural to seek a possible explanation in
the early Universe. However, in the Maxwell theory of
electromagnetism, the conformal symmetry prevents mag-
netic fields from being generated by the expansion of the
Universe. The standard Maxwell theory thus needs to be
modified if one considers the expansion of the Universe as
the origin of the large-scale magnetic fields. While various
theoretical models have been proposed (see [9–12] for
reviews and [13–18] for more recent proposals), there is
no convincing scenario of magnetogenesis in the early
Universe yet. In this situation, it is important to explore
various approaches toward our understanding of the origin
of large-scale magnetic fields.
Typical problems that may arise in early Universe

scenarios of magnetogenesis are instability [19], back-
reaction and strong coupling [20,21]. It would thus be of
interest if there were a stable cosmological solution with
magnetic fields that fully takes into account backreaction.
In the present paper, we thus seek such a solution in a Uð1Þ
gauge theory nonminimally coupled to scalar-tensor grav-
ity. In an accompanying paper [22] it is shown that at
subhorizon scales all coefficients of (time) kinetic terms
and squared sound speeds of linear perturbations are
positive, meaning that there is no instability faster than
the cosmological scale, in a range of parameters.
The rest of the paper is organized as follows. In Sec. II we

describe the theory in which we seek a cosmological
solution with a magnetic field. In Sec. III we seek a fixed-
point solution of the system. Generically, the solution

represents an axisymmetric Bianchi type-I universe with
constant curvature invariants, a homogeneous magnetic
field and a homogeneous electric field. Upon fine-tuning
two parameters in the theory, one obtains a de Sitter universe
with a homogeneous magnetic field but without an electric
field. In Sec. IV we then seek the condition under which the
de Sitter fixed-point solution is an attractor of the system.
Section V is devoted to a summary of the paper and some
discussions. Throughout this paper (except in the discussion
about implications of the model to magnetogenesis in
Sec. V) we adopt the unit in which MPl ¼ 1.

II. MODEL DESCRIPTION

The model consists of a metric gμν, aUð1Þ gauge field Aμ
and a scalar field ϕ. We suppose that the action of the
system is invariant under the Uð1Þ gauge transformation

Aμ → Aμ þ ∂μλ; ð1Þ
as well as the scaling-type global symmetry transformation

ϕ → ϕþ ϕ0; Aμ → e−ϕ0Aμ: ð2Þ
Here, the mass dimension of ϕ is zero, λ is an arbitrary
function and ϕ0 is an arbitrary constant. For simplicity we
demand that the equations of motion for gμν, Aμ and ϕ are
up to second-order differential equations.
In order to construct the action of the system, it is

convenient to define the following tensors invariant under
both the Uð1Þ gauge transformation (1) and the global
symmetry transformation (2):

F μν ≡ eϕFμν; ~F μν ≡ eϕ ~Fμν; ð3Þ
where

Fμν ≡ ∂μAν − ∂νAμ; ~Fμν ≡ 1

2
ϵμνρσFρσ ð4Þ

are the field strength and its Hodge dual, and the Levi-Civita
tensor is normalized as ϵ0123 ¼ −1= ffiffiffiffiffiffi−gp

. The building
blocks of the action are then
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gμν; gμν;∇μ; R
μ
νρσ;F μν; ~F

μν; ∂μϕ;…; ð5Þ
where gμν and Rμ

νρσ are the inverse and the Riemann
curvature of gμν, and ∇μ is the covariant derivative com-
patible with gμν. It is easy to show by the same logic as [23]
that any scalar function made of gμν, gμν, ∂μϕ, F μν, ~F μν

without derivatives acted on them can be written as a
function of the following four scalar combinations:

X ≡ −
1

2
gμν∂μϕ∂νϕ; W ≡ −

1

4
F μνF μν;

Y ≡ F μν
~F μν; Z≡ F ρμF ρ

ν∂μϕ∂νϕ: ð6Þ
It is also easy tomodify theHorndeski nonminimal coupling
of aUð1Þ gauge field to theRiemann tensor [24] in away that
renders it consistent with the global symmetry (2). The
resulting invariant nonminimal coupling is

LH ¼ ξ ~F μν ~F ρσRμνρσ; ð7Þ
where ξ is an arbitrary constant. We can also add shift-
symmetricHorndeski terms [25,26] for the scalar fieldϕ.We
thus end up with the following action:

I ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½Lþ L3 þ L4 þ L5 þ LH�; ð8Þ

where L ¼ LðX;W; Y; ZÞ is an arbitrary function of
ðX;W; Y; ZÞ, and
L3 ¼ −G3ðXÞ□ϕ;

L4 ¼ G4ðXÞRþ G4XðXÞ½ð□ϕÞ2 − ð∇μ∇νϕÞð∇ν∇μϕÞ�;

L5 ¼ G5ðXÞGμν∇μ∇νϕ −
1

6
G5XðXÞ½ð□ϕÞ3

− 3ð□ϕÞð∇μ∇νϕÞð∇ν∇μϕÞ
þ 2ð∇μ∇νϕÞð∇ν∇ρϕÞð∇ρ∇μϕÞ� ð9Þ

are general shift-symmetric Horndeski terms for ϕ. Here,
G3ðXÞ, G4ðXÞ and G5ðXÞ are arbitrary functions of X and
the subscript X denotes the derivative with respect to X.

III. FIXED-POINT SOLUTION

A. Ansatz

We consider a homogeneous scalar field, ϕ ¼ ϕðtÞ, in an
axisymmetric Bianchi type-I spacetime,

gμνdxμdxν ¼ ηabeaeb ¼ −NðtÞ2dt2 þ aðtÞ2
�
e4σðtÞdx2

þ e−2σðtÞðdy2 þ dz2Þ
�
; ð10Þ

where ηab ¼ diagð−1; 1; 1; 1Þ and

e0 ¼ NðtÞdt; e1 ¼ aðtÞe2σðtÞdx;
e2 ¼ aðtÞe−σðtÞdy; e3 ¼ aðtÞe−σðtÞdz: ð11Þ

As for theUð1Þ gauge field,we consider the following ansatz:

At ¼ 0; Ax ¼
Z

t Nðt0Þe4σðt0Þ
aðt0Þ Eðt0Þdt0;

Ay ¼
1

2
Bz; Az ¼ −

1

2
By; ð12Þ

where EðtÞ is a function of t and B is a constant, so that

1

2
F μνdxμ∧dxν ¼ Eχe0∧e1 − Bχe2∧e3; ð13Þ

and that

X ¼
_ϕ2

2N2
; W ¼ 1

2
ðE2 − B2Þχ2;

Y ¼ 4EBχ2; Z ¼ 2E2χ2X: ð14Þ

Here, an overdot represents the derivative with respect
to t and

χ ≡ eϕe2σ

a2
: ð15Þ

It is straightforward to calculate the four independent equa-
tions of motion for gμν, Aμ and ϕ. We define

H ≡ _a
Na

; Σ≡ _σ

N
: ð16Þ

B. Anisotropic fixed-point solution

We would like to find solutions for which the scalar
invariants (X, W, Y, Z) shown in (14) are constant. [We
have already assumed that B is constant in (12).] We further
demand that scalar invariants made of the metric and its
curvature are also constant. These demands are fulfilled if
and only if _ϕ=N, E (¼ E0), χ, H (¼ H0) and Σ (¼ Σ0) are
constant, where χ, H and Σ are defined in (15) and (16).
Hereafter, by overall rescaling of spatial coordinates, we set
χ ¼ 1. Under these requirements and the overall normali-
zation of the spatial coordinates, the solution is characterized
by the four parameters (H0, Σ0, E0, B). [For example, the
constancy of χ implies that X ¼ 2ðH0 − Σ0Þ2.] Since the
number of independent equations of motion is also four, a
generic choice of LðX;W; Y; ZÞ, G3;4;5ðXÞ and ξ in the
action allows for such a solution.
Since we are interested in an expanding universe, we

suppose that H0 is positive. For later convenience, we
introduce three dimensionless quantities, s≡Σ0=H0; e≡
E0=H0; b≡B=H0; and consider (H0, s, e, b) as four
independent parameters characterizing the solution. While
the expansion rate H0 sets the overall energy scale of the
system, s, e andb correspond to the dimensionless sizes of the
anisotropy, the electric field and the magnetic field,
respectively.
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Upon setting

N ¼ 1; a ¼ eH0t; σ ¼ sH0t;

ϕ ¼ 2ð1 − sÞH0t; E ¼ eH0; B ¼ bH0; ð17Þ

where H0, s, e and b are constants, the scalar invariants
(X, W, Y, Z) are expressed as X¼2ð1−sÞ2H2

0; W¼
ðe2−b2ÞH2

0=2; Y¼4ebH2
0; Z¼4ð1−sÞ2e2H4

0. As a result,
the equations of motion greatly simplify as

0 ¼ 8ð1 − sÞ2ðLZ þ ξÞeH2
0 þ eLW þ 4bLY;

0 ¼ 16ð1 − sÞ6H6
0G5X þ 4½ð2LZ þ ξÞe2 þ 4ξb2 þ 6ð1 − sÞ2G4X�ð1 − sÞ2H4

0

þ ½LWe2 þ 4LYeb − 6G4ð1 − sÞ2�H2
0 − L;

0 ¼ 8G5XXð1þ 2sÞð1 − sÞ6H6
0 þ 6ð1 − sÞ4 × ½4ð1þ sÞG4XX þ ð1þ 4sÞG5X�H4

0

þ 2fð1 − sÞðLZ þ ξÞe2 − ð1 − 4sÞξb2 þ 3ð1 − sÞ2 × ½G3X þ ð1þ 3sÞG4X�gH2
0 − 3sG4 þ ð1 − sÞLX;

0 ¼ 72G5Xð1 − sÞ4sH4
0 þ 4fð1 − sÞ½ð1þ 2sÞξ − 2ð1 − sÞLZ�e2

− ξð5 − 4sþ 8s2Þb2 þ 18sð1 − sÞ2G4XgH2
0 − ðe2 þ b2ÞLW − 18sG4; ð18Þ

where the subscripts X, W, Y and Z represent derivatives
with respect to them. These four equations are algebraic
equations for four unknown constants (H0, s, e, b). Once
the functions LðX;W; Y; ZÞ, G3ðXÞ, G4ðXÞ, G5ðXÞ and a
constant ξ are specified, one can in principle solve these
four algebraic equations for four constants (H0, s, e, b).

C. de Sitter fixed-point solution

If we fine-tune the action of the system so that s → 0,
then we obtain a de Sitter solution. By setting s ¼ 0, the
equations of motion (18) reduce to

0 ¼ 8ðLZ þ ξÞeH2
0 þ eLW þ 4bLY;

0 ¼ 16H6
0G5X þ 4½ð2LZ þ ξÞe2 þ 4ξb2 þ 6G4X�H4

0

þ ðLWe2 þ 4LYeb − 6G4ÞH2
0 − L;

0 ¼ 8G5XXH6
0 þ 6ð4G4XX þG5XÞH4

0

þ 2½ðLZ þ ξÞe2 − ξb2 þ 3ðG3X þ G4XÞ�H2
0 þ LX;

0 ¼ 4½ðξ − 2LZÞe2 − 5ξb2�H2
0 − ðe2 þ b2ÞLW: ð19Þ

D. de Sitter fixed-point solution without electric field

If we further fine-tune the action of the system so that
s → 0 and e → 0 simultaneously, then we obtain a de Sitter
solution without an electric field. By setting s ¼ e ¼ 0 and
assuming that b ≠ 0, the equations of motion (18) reduce to

0 ¼ LY;

0 ¼ 16G5XH6
0 þ 8ð2ξb2 þ 3G4XÞH4

0 − 6G4H2
0 − L;

0 ¼ 8G5XXH6
0 þ 6ð4G4XX þG5XÞH4

0

þ 2½−ξb2 þ 3ðG3X þG4XÞ�H2
0 þ LX;

0 ¼ 20ξH2
0 þ LW: ð20Þ

The ansatz under consideration is parametrized by two
constants (H0, b). We thus need to fine-tune two parameters
in the action to make this set of four algebraic equations
to be solvable with respect to (H0, b). One of the two

fine-tunings can be easily achieved if we demand that the
function L is even with respect to Y. Actually, in this case
the first equation, LY ¼ 0, is automatically satisfied.

IV. ATTRACTOR BEHAVIOR

In this section we seek the condition under which the de
Sitter fixed-point solution without an electric field (and thus
with Y ¼ 0) introduced in Sec. III D is a local attractor of
the system. For simplicity, we assume that the function L is
even with respect to Y so that odd-order derivatives of L
with respect to Y vanish on any backgrounds with Y ¼ 0. In
this case the first equation in (20) is trivial. Furthermore, we
fine-tune one parameter in the action so that the set of the
second, third and forth algebraic equations in (20) is
solvable with respect to the two constants (H0, b).
We set

N ¼ 1; HðtÞ ¼ H0ð1þ ϵh1ðtÞÞ;
ΣðtÞ ¼ ϵH0s1ðtÞ; χðtÞ ¼ 1þ ϵχ1ðtÞ;
EðtÞ ¼ ϵe1ðtÞH0; B ¼ bH0; ð21Þ

and expand the four equations of motion with respect to ϵ.
At the order Oðϵ0Þ, we obtain the second, third and forth
equations in (20). The first equation in (20) is trivially
satisfied under the above mentioned assumption that L be
even with respect to Y. At the order OðϵÞ, we obtain

1

H0

d
dt

ð χ1 h1 s1 e1 ÞT ¼ Rð χ1 h1 s1 e1 ÞT; ð22Þ

where R is a 4 × 4 matrix whose components are inde-
pendent of the perturbations (χ1, h1, s1, e1). The four
eigenvalues ofR are solutions of the following fourth-order
algebraic equation for λ:

0¼ det ½λ14−R� ¼ ðλþ4Þðλþ3Þ
�
λ2þ3λþA

N

�
; ð23Þ
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where 14 is the 4 × 4 identity matrix, and

N ¼ 2ζ3ghðζ3−8ζ1Þb2þζ1ðζ1ζ2þ3ζ23Þ;
A¼ 56b6g3h−4ð9ζ1þζ2þ15ζ3Þg2hb4−2ghζ4ðζ1−ζ3Þb3

þ½6ð−ζ21þζ1ζ2þ2ζ1ζ3þ2ζ23Þgh
þζ5ðζ1−ζ3Þ2�b2þ

3

2
ζ1ζ4ðζ1−ζ3Þb: ð24Þ

Here, ζi (i ¼ 1; � � � 5) and gh are constants defined by

ζ1 ¼ 2b2gh þ g4 − 4g4x − 4g5x; gh ¼ ξ
H2

0

M2
Pl

;

ζ2 ¼ 2b2gh þ 6g3x þ 24g3xx þ 72g4xx þ 96g4xxx

þ 6g5x þ 48g5xx þ 32g5xxx þ 4lxx;

ζ3 ¼ 4b2gh þ 2g3x þ 4g4x þ 16g4xx þ 6g5x þ 8g5xx;

ζ4 ¼ −4ðgh þ lxwÞb;
ζ5 ¼ −b2lww − 12gh; ð25Þ
and

LXX ¼ lxx
M2

Pl

H2
0

; LXW ¼ lxw
M2

Pl

H2
0

; LWW ¼ lww
M2

Pl

H2
0

;

G3X ¼ g3x
M2

Pl

H2
0

; G3XX ¼ g3xx
M2

Pl

H4
0

; G4 ¼ g4M2
Pl;

G4X ¼ g4x
M2

Pl

H2
0

; G4XX ¼ g4xx
M2

Pl

H4
0

; G4XXX ¼ g4xxx
M2

Pl

H6
0

;

G5X ¼ g5x
M2

Pl

H4
0

; G5XX ¼ g5xx
M2

Pl

H6
0

; G5XXX ¼ g5xxx
M2

Pl

H8
0

:

ð26Þ

It is understood that the left-hand sides of (26) are evaluated
at the fixed-point solution under consideration and thus are
constant.
The necessary and sufficient condition for the de Sitter

fixed-point solution without an electric field to be an
attractor of the system is that the real parts of the four
eigenvalues of R be negative. On the other hand, by
analyzing inhomogeneous [i.e. (x, y, z)-dependent] linear
perturbations around the solution, one can show that the
absence of ghost requires N > 0 [22]. Under this con-
dition, the attractor condition is A > 0.

V. SUMMARY AND DISCUSSION

In the context of a Uð1Þ gauge theory nonminimally
coupled to scalar-tensor gravity, we have found a cosmo-
logical attractor solution in which a de Sitter universe
supports a homogeneous magnetic field. The solution fully
takes into account backreaction of the magnetic field to the
geometry and the scalar field. Such a solution is made
possible by scaling-type global symmetry and fine-tuning

of two parameters of the theory. If the fine-tuning is relaxed
then the solution is deformed to an axisymmetric Bianchi
type-I universe with constant curvature invariants, a homo-
geneous magnetic field and a homogeneous electric field.
The system described by the action (8) respects the

diffeomorphism invariance and the Uð1Þ gauge symmetry,
and its equations of motion are up to second-order differ-
ential equations. Therefore the system contains five physi-
cal degrees of freedom: two from gμν, two from Aμ and one
from ϕ. It is straightforward (though complicated) to
analyze general inhomogeneous, i.e. ðx; y; zÞ-dependent,
linear perturbations around the de Sitter attractor solution
without an electric field. After fine-tuning two parameters
as prescribed in the present paper, one can still find a range
of parameters in which all coefficients of (time) kinetic
terms and squared sound speeds of the five degrees of
freedom are positive at subhorizon scales [22], meaning
that there is no instability faster than the cosmological
expansion. [On the other hand, one does not necessarily
need to require the positivity of coefficients of (time)
kinetic terms and squared sound speeds in the infrared,
i.e. at superhorizon scales [27].]
The deSitter attractor solutionwith a stealthmagnetic field

that we have found in the present paper may be useful to
address the origin of large-scale magnetic fields in the
Universe. For example, suppose that the scaling-type global
symmetry (2) is maintained for smallϕ’s (possibly including
the limit ϕ → −∞) but that for large values of ϕ the global
symmetry is broken and ϕ acquires a potential with a
minimum. By arranging the system so that the symmetry
breaking occurs after inflation, the homogeneous magnetic
field is maintained during inflation but the system behaves as
the standardEinstein-Maxwell system at late time. In order to
suppress the statistical anisotropy and non-Gaussianity of
curvature perturbations, one probably needs to introduce
another field (or other fields) as an inflaton or/and curvaton,
instead of consideringϕ itself as themain source of curvature
perturbations. In this case the exact attractor solution found in
the present paper provides a background (quasi–)de Sitter
expansion on which a field responsible for the generation of
curvature perturbations safely generates adiabatic and essen-
tially statistically isotropic, Gaussian fluctuations.
Here, for simplicity let us suppose that the symmetry

breaking and thus the stabilization of ϕ occur immediately
after inflation. Denoting the value of ϕ at (and after) the end
of inflation as ϕf and recoveringMPl (which we set to unity
for simplicity in the main body of the present paper), the
amplitude of the magnetic field at the end of inflation is
Bf ¼ e−ϕfMPlH0jbj. After inflation and the stabilization of
ϕ to ϕf, the magnetic field decays adiabatically. Its present
value is thusBtoday ¼ Bfðaf=atodayÞ2,whereaf andatoday are
the scale factor at the end of inflation and its present value,
respectively. Supposing that the Universe is dominated by
inflaton oscillation between the end of inflation (a ¼ af) and
the onset of the radiation dominated epoch (a ¼ aR), the
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scale factor today is estimated by the entropy conservation as
atoday≃afg1=12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MPlH0

p
=TtodayðaR=afÞ1=4f; where T today is

the photon temperature today and g is the number of
relativistic degrees of freedom that eventually inject entropy
to photons. With the instantaneous reheating approximation
(aR ¼ af) and supposing that g1=6 ¼ Oð1Þ, we obtain
Btoday ≃ e−ϕf jbjT2

today ≃ e−ϕf jbj × 10−6G. Intriguingly, this
is independent of the scale of inflation. The current upper
bound on the large-scale magnetic field is roughly 10−9G
[28]. On the other hand, the lower bound from the blazar
observations is roughly 10−15G [1–8]. Putting them together,
we obtain the observational constraint on the combination
e−ϕf jbj as

10−9 ≲ e−ϕf jbj ≲ 10−3: ð27Þ
It seems relatively easy to satisfy (27), thanks to the
exponential dependence on ϕf.
There have been a number of severe constraints on

inflationary magnetogenesis scenarios in the literature. As
far as the author knows, the model presented in this paper
can evade all of them, provided that (27) is fulfilled. For
example, Ref. [29] obtained a strong constraint from the
large energy-momentum tensor of the electromagnetic field
in the epoch between the horizon exit of the scale of interest
and the end of inflation. This constraint does not apply to
our model with s≃ 0 since the background energy-
momentum tensor is essentially proportional to the back-
ground metric and thus is indistinguishable from an
effective cosmological constant. Reference [30] obtained
two different constraints, one classical and the other
quantum. The classical constraint is again due to a large
energy-momentum tensor of an electromagnetic field dur-
ing inflation and thus does not apply to our model. The
quantum constraint does not apply either since our model
contains a magnetic field with a finite amplitude already at
the level of a classical background solution that fully takes
into account backreaction.
In our model the de Sitter expansion during inflation is

realized by means of fine-tuning of a parameter in the
action. If we detune it then the expansion in the attractor
solution becomes anisotropic during inflation while homo-
geneity is still maintained. One might thus worry about the
fact that the cosmic microwave background (CMB) obser-
vation disfavors Bianchi universes and the shear is severely
constrained by the Planck data [31]. However, those
observational constraints are written in terms of the present
value of the shear. Since the shear decays as ∝ 1=a3 and
thus the corresponding energy density rather quickly
decays as ∝ 1=a6 by the cosmic expansion, those appa-
rently strong constraints become rather weak if written in
terms of the value of the shear at the end of inflation.
Indeed, s ¼ Oð1Þ can easily satisfy those observational
constraints presented in [31]. For this reason the CMB
observation thus far does not put a strong constraint on the
model considered in the present paper, as far as the

geometric contribution to the statistical anisotropy is
concerned. On the other hand, the primordial stochastic
contribution to the statistical anisotropy is expected to be
induced by a nonvanishing s. It would be worthwhile to
analyze such a contribution in detail. The bottom line is that
the present model should be totally consistent with obser-
vational data as long as jsj is small enough.
As explained above, the homogeneous background mag-

netic field in our model may be the origin of the large-scale
magnetic field in the void region and seems consistent with
all observational data so far, provided that the condition (27)
holds. At smaller scales, the same homogeneous magnetic
field can act as the seed for the dynamo and compression
amplification mechanisms in galaxies and clusters of gal-
axies. In our model we thus do not need to introduce
inhomogeneities to the magnetic field during inflation to
explain the magnetic field in the Universe today at various
scales. It is nonetheless interesting to investigate what
happens if inhomogeneous fluctuations of the magnetic
field are superimposed on top of the homogeneous back-
groundmagnetic field.While the homogeneous background
magnetic field leads to a nonvanishing Alfvén velocity
vA ∼ 4 × 10−4ðBtoday=10−9GÞ, the power of the inhomo-
geneous perturbation of the magnetic field could be either
constrained by the CMB data or considered as a possible
explanation for the physical basis for some of the CMB
anomalies [32,33]. For example, the Planck data constrain
the power of vector perturbation Av at the pivot scale
0.05=Mpc as Avv2A ≲ 10−11 (see the Appendix of [33]).
This translates to a constraint on the combinationAve−2ϕfb2

asAve−2ϕfb2 ≲ 10−8. Considering the bound (27), this is not
a strong restriction on our model. It is nonetheless intriguing
to push forward these kinds of constraints/possibilities.
It is known that magnetohydrodynamic (MHD) turbu-

lence can be developed by coupling between a magnetic
field and the primordial plasma. In the case of a primordial
stochastic magnetic field, results of MHD simulations
indicate that the spectrum of the magnetic field remains
unchanged on large scales [34]. Thus the homogeneous
magnetic field is also expected to survive the MHD
turbulence in our Universe. It is desirable to confirm this
explicitly by MHD simulations. If confirmed, our scenario
has the potential to explain the magnetic field in our
Universe at all scales.
In summary the exact attractor solution found in the

present paper provides a basis for a new type of inflationary
magnetogenesis by which the origin of magnetic fields in
our Universe at all scales may be explained by a homo-
geneous magnetic field. It would be worthwhile to study
this scenario of magnetogenesis in more detail.
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