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An intriguing result presented by two of the present authors is that an anti–de Sitter space can be derived
from a conformal field theory by considering a flow equation. A natural expectation is that given a certain
data on the boundary system, the associated geometry would be able to emerge from a flow, even beyond
the conformal case. As a step along this line, we examine this scenario for nonrelativistic systems with
anisotropic scaling symmetries, such as Lifshitz field theories and Schrödinger invariant theories. In
consequence we obtain a new hybrid geometry of Lifshitz and Schrödinger spacetimes as a general
holographic geometry in this framework. We confirm that this geometry reduces to each of them by
considering special nonrelativistic models.
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I. INTRODUCTION

One of the fascinating subjects in string theory is a
conjectured duality between a string (or gravity) theory on
an anti–de Sitter (AdS) space in dþ 1 dimensions and a
conformal field theory (CFT) in d dimensions. This is
called the AdS=CFT correspondence [1–3] and it is
recognized as a realization of the holographic principle
[4,5]. This correspondence has not been proven completely
yet, but it is supported by a huge amount of circumstantial
evidences and there is no contradiction so far.
The validity of the AdS=CFT correspondence has been

well recognized nowadays, and it has opened up a new
arena to consider applications of AdS=CFT to realistic
systems in condensed matter physics (CMP) (often
referred to as AdS/CMP). By following this approach,
one can study the nonperturbative physics of gauge
theories in a strongly coupled region by using a weakly
coupled (semi-)classical gravity. Indeed, a lot of works
have been carried out (For nice reviews, for example,
see [6–11]).
One of the issues in the context ofAdS/CMP is to consider

how to realize nonrelativistic (NR) systems beyond the

usual, relativistic CFT. A key ingredient is an anisotropic
scaling like

t → ΛZt; xi → Λxi ði ¼ 1;…; d − 1Þ;
Λ∶ a real const:; ð1:1Þ

where t and xi are time and spatial coordinates, respec-
tively. Here Z is called the dynamical critical exponent,
which measures anisotropy of the system. In particular,
the Z ¼ 1 case corresponds to the relativistic dilatation.
There are two famous examples of symmetry algebra
including the anisotropic scaling (1.1), Schrödinger alge-
bra [12] and Lifshitz algebra.1 The geometries that
preserve these symmetries as isometries have been con-
structed in [18–20], respectively. These geometries have
been proposed from the symmetry argument. Then, with
the standard dictionary (with some extension), the boun-
dary theory is argued. One of the subtle points is that the
boundary behavior of these geometries are not so well
defined. Namely, a part of the geometry shrinks as we
approach the boundary. Then, the supergravity approxi-
mation may not be valid any more and the notion of the
boundary would be subtle.
Based on this observation, our motivation here is to

consider the inverse direction to the preceding works. That
is, we would like to demonstrate that a gravity dual may
emerge starting from a nonrelativistic system with a scaling
invariance. For this purpose, we shall follow the method
based on flow equations proposed by two of the present
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authors [21,22].2 In fact, they have derived an anti–de Sitter
space from a CFT data by considering a flow equation. A
natural expectation is that given a certain data on the
boundary system, the associated geometry would be able to
emerge from a flow, even beyond the conformal case. This
possibility would open up an intriguing research arena to be
studied in relation to the holographic principle.
In this paper, we examine this expectation for nonrela-

tivistic systems with an anisotropic scaling symmetry, such
as Lifshitz field theories and Schrödinger invariant theories.
As a result we obtain a hybrid geometry of Schrödinger and
Lifshitz spacetimes as a general holographic space by
employing the associated two-point functions as the boun-
dary data and generalizing the flow equation itself. This
geometry contains both of them as special examples of
nonrelativisticmodels.Our results are summarized inTable I.
The rest of this paper is organized as follows. Section II

provides a brief review of gravity duals for nonrelativistic
systems, Schrödinger spacetimes, and Lifshitz spacetimes. In
Sec. III, we review how an AdS geometry emerges from a
CFTdata given at the boundarybyemploying a flowequation.
In Secs. IVand V, we apply the formulation to nonrelativistic
CFTs, a Lifshitz-type scale invariant theory, respectively.
Section VI is devoted to conclusion and discussion. The
Schrödinger algebra and the Lifshitz algebra are summarized
in Appendix A, while a different flow equation is considered
for the Lorentzian CFT in Appendix B. Transformation
properties of the flowed field are given in Appendix C.

II. GRAVITY DUALS FOR
NONRELATIVISTIC SYSTEMS

In this section, we shall give a brief review of gravity
duals for nonrelativistic systems, Schrödinger spacetimes
and Lifshitz spacetimes.

A. Schrödinger spacetimes

In 2008, Son proposed a geometry [18] preserving the
Schrödinger symmetry as the maximal symmetry3 as a

holographic dual of a nonrelativistic system realized in a
cold atom experiment. The metric is given by4

ds2¼�2dxþdx−þP
d−1
i¼1 ðdxiÞ2þdτ2

τ2
−σ2

ðdxþÞ2
τ4

; ð2:1Þ

where σ is a real constant parameter. This geometry can be
considered as a one-parameter deformation of a (dþ 2)-
dimensional AdS space, which is regarded as a gravity dual
of a d-dimensional Schrödinger invariant system.
The Schrödinger algebra [12] is composed of a time

translation, spatial translations, spatial rotations, Galilean
boosts, a mass operator, a special conformal transformation
and an anisotropic scaling as

t → ΛZt; xi → Λxi ði ¼ 1;…; d − 1Þ;
Λ∶ a real const:; ð2:2Þ

where t and xi are time and spatial coordinates, respec-
tively, and Z is the dynamical critical exponent. In the
original Schrödinger algebra, the Z ¼ 2 case is considered.
In more general, one may consider an arbitrary value of Z,
though the special conformal symmetry is broken except
for Z ¼ 2 or 1.
It is easy to see the invariance of the metric (2.1) under

the Schrödinger symmetry (For the detail, see [18]). In
particular, the metric (2.1) is invariant under the scaling

xþ → Λ2xþ; x− → x−;

xi → Λxi ði ¼ 1;…; d − 1Þ: τ → Λτ: ð2:3Þ

B. Lifshitz spacetimes

The Lifshitz spacetime was proposed in [20] as a gravity
dual for the Lifshitz fixed point realized in condensed
matter systems. (For a comprehensive review of the Lifshitz

TABLE I. Summary of the results in this paper. “LS,” “R,” “NR,” “(C)PS” stand for “light-cone reversal symmetry,” “relativistic,”
“nonrelativistic,” “(conformal) primary scalar,” respectively. Z denotes the dynamical critical exponent.

Section Theory type Operator type Flow equation type Geometry type

III CFT CPS R AdS
IVA NRCFT NRCPS NR NR Hybrid
IV B CFT CPS NR Lifshitz with Z ¼ 2
IV C NRCFT with LS NRCPS R Schrödinger
IV D CFT NRCPS R Schrödinger
IV E NRCFT NRCPS NR Lifshitz with Z ¼ 2
V Lifshitz Lifshitz PS Lifshitz Lifshitz with general Z

2The flow equation method to construct a holographic theory
was originally introduced in Ref. [23] and was further developed
in Refs. [24,25].

3The Schrödinger algebra can be embedded into a relativistic
conformal algebra as a subalgebra. Hence the usual AdS metric is
Schrödinger invariant, but this symmetry is not the maximal one.
For the detail of the embedding, see Appendix A.

4The τ coordinate describes a radial direction, not the
Euclidean time.
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holography, see [26].) The metric of the gravity dual is
given by

ds2 ¼ −dt2

τ2Z
þ
P

d−1
i¼1 ðdxiÞ2 þ dτ2

τ2
; ð2:4Þ

which is invariant under the rescaling

t→ΛZt; xi→Λxi ði¼ 1;…;d−1Þ; τ→Λτ: ð2:5Þ
This is a bulk realization of the scaling symmetry included
in the Lifshitz algebra. As described in Appendix A in
detail, the Lifshitz algebra is composed of a time trans-
lation, spatial translations, spatial rotations and the aniso-
tropic scaling (2.2) .
The metric (2.4) describes a dþ 1-dimensional bulk

geometry and the boundary theory has d − 1 spatial
directions and a time direction.

III. HOLOGRAPHIC GEOMETRY FROM A
FLOWED CONFORMAL PRIMARY

In Refs. [21,23], we proposed a mechanism for a
holographic geometry to emerge from a boundary QFT
coarse-grained by a flow equation. In this section, as a
warm-up, we demonstrate this mechanism concretely by
using conformal field theories.

A. Euclidean case

In this subsection, we review the emergence of an AdS
geometry from a generic Euclidean CFT via the flow
equation approach [21].
Consider a D-dimensional Euclidean CFT with a real

scalar primary field O0ðxÞ with conformal dimension ΔO.
By using the conformal symmetry of correlation functions,
the 2-point function of the primary operator can be
expressed as

hO0ðxÞO0ð0Þi¼f0ðx2Þ; f0ðΛx2Þ¼Λ−ΔOf0ðx2Þ; ð3:1Þ
where x2 ≔ δμνxμxν and f0ðuÞ ∝ u−ΔO .
Let us define a flowed field ϕ0ðx; ηÞ by a free flow

equation as

∂ϕ0ðx;ηÞ
∂η ¼∂2ϕ0ðx;ηÞ; ϕ0ðx;0Þ¼O0ðxÞ; ∂2¼δμν∂μ∂ν;

ð3:2Þ
where η is a positive number called a flow parameter, and
the original field is recovered at the limit η → 0.5 The
formal solution of the flow equation is given by

ϕ0ðx; ηÞ ¼ eη∂2O0ðxÞ: ð3:3Þ

This is a well-defined operator, since this can be
rewritten as

ϕ0ðx; ηÞ ¼
Z

dDyK0ðx − y; ηÞO0ðyÞ; ð3:4Þ

where

K0ðx; ηÞ ≔
1

ð4πηÞD=2 exp
�
−
x2

4η

�
; ð3:5Þ

is the Green function of the flow equation:

∂K0ðx; ηÞ
∂η ¼ ∂2K0ðx; ηÞ; K0ðx; 0Þ ¼ δDðxÞ: ð3:6Þ

A virtue to coarse-grain operators by a flow equation is
that the 2-point function of the flowed operator has no
contact singularity. To see this, we compute the 2-point
function of the flowed field ϕ0 as

hϕ0ðx1;η1Þϕ0ðx2;η2Þi¼ eη1∂2þη2∂ 02hO0ðx1ÞO0ðx2Þi; ð3:7Þ

where we used (3.4) and ∂; ∂ 0 act on x1, x2, respectively:
∂μ ≔ ∂

∂xμ
1

, ∂ 0
μ ≔ ∂

∂xμ
2

. By using (3.1), we can rewrite this as

hϕ0ðx1; η1Þϕ0ðx2; η2Þi ¼ eηþ∂2f0ðx212Þ; ð3:8Þ

where ηþ ≔ η1 þ η2, x12 ≔ x1 − x2. This quantity is a
smooth function of x212 and ηþ since this can be rewritten
by using the Green function (3.5), which implies the
absence of the contact singularity, as was claimed.6 Let
us denote this smooth function by F0ðx212; ηþÞ. Then by
using the scaling relation in (3.1) the function F0 satisfies

F0ðΛ2x212;Λ2ηþÞ ¼ Λ−2ΔOF0ðx212; ηþÞ: ð3:9Þ

Choosing Λ ¼ 1=η
1
2þ we find

hϕ0ðx1; η1Þϕ0ðx2; η2Þi ¼
1

ηΔOþ
F0

�
x212
ηþ

; 1

�
: ð3:10Þ

We introduce a normalized field denoted by σ0 as

σ0ðx; ηÞ ≔
ϕ0ðx; ηÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hϕ0ðx; ηÞ2i

p ; ð3:11Þ

so that hσ0ðx; ηÞ2i ¼ 1. The average is taken in the original
D dimensional theory. This is well defined due to the fact
that the contact singularity is resolved. Using the normalized
field we define

5Note here that we naively take ∂2 for the flow equation so as
to realize a diffusion equation. This is the original choice
employed in [21,23–25]. Only for this purpose, however, there
may be some possibilities to generalize this choice, as we shall
see later. 6The explicit form was given in [21].
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ĝABðx; ηÞ≡ R2 lim
ðx0;η0Þ→ðx;ηÞ

∂
∂zA σ0ðx; ηÞ

∂
∂z0B σ0ðx

0; η0Þ;

ð3:12Þ

gABðzÞ≡ hĝABðx; ηÞi; ð3:13Þ

where R is a certain length scale, ðzAÞ ¼ ðxμ; τ) with τ ≔ffiffiffiffiffiffiffiffi
η=α

p
and α is fixed later. Thanks to this normalization,

gABðzÞ becomes the informationmetric [21], and thus can be
regarded as a metric in the Dþ 1 dimensional holographic
space, called the induced metric. For simplicity, we take
R ¼ 1 hereafter.
The 2-point function of the normalized filed σ0 becomes

hσ0ðx1; η1Þσ0ðx2; η2Þi ¼
�
2

ffiffiffiffiffiffiffiffiffi
η1η2

p
ηþ

�
ΔO

G0

�
x212
ηþ

�
; ð3:14Þ

where G0ðuÞ ≔ F0ðu; 1Þ=F0ð0; 1Þ, and thus G0ð0Þ ¼ 1.
Therefore the induced metric is evaluated as

gμνðzÞ ¼ − δμν
1

ατ2
G0

0ð0Þ; gττðzÞ ¼
ΔO

τ2
; ð3:15Þ

and the other components vanish.
We can determine G0ð0Þ by using the flow equation for

the 2-point function of the normalized operator

∂η1hσ0ðx1; η1Þσ0ðx2; η2Þi ¼ ∂2
x1hσ0ðx1; η1Þσ0ðx2; η2Þi;

ð3:16Þ

which leads to

−
ΔO

ηΔOþ1
þ

G0

�
x212
ηþ

�
−

x212
ηΔOþ2
þ

G0
0

�
x212
ηþ

�

¼ 2D

ηΔOþ1
þ

G0
0

�
x212
ηþ

�
þ 4x212
ηΔOþ2
þ

G00
0

�
x212
ηþ

�
: ð3:17Þ

From this we find

G0
0ð0Þ ¼ −

ΔO

2D
: ð3:18Þ

Therefore, taking α ¼ 1=ð2DÞ, we obtain the Euclidean
AdS metric as

ds2 ¼ ΔO
dx2 þ dτ2

τ2
: ð3:19Þ

Thus, the flow approach generates an AdS space from a
Euclidean CFT.
This result can be confirmed from symmetry argument.

To see this let us consider the D dimensional conformal
transformation of the normalized field:

δconfσ0ðx;ηÞ ¼ −fηð∂2δxμÞ þ 2η2ð∂ν∂ρδxμÞ∂ν∂ρ

þ 2ηð∂νδxμÞ∂ν þ δxμg∂μσ0ðx;ηÞ

−
ΔO

D
f2ηð∂ν∂μδxμÞ∂ν þ ð∂μδxμÞgσ0ðx;ηÞ:

ð3:20Þ

Following [21], we decompose this into isometries of the
Dþ 1 dimensional AdS and the rest as

δconfσ0ðx; ηÞ ¼ δdiffσ0ðx; ηÞ þ δextraσ0ðx; ηÞ; ð3:21Þ

where

δdiffσ0ðx; ηÞ ¼ −ðδ̄η∂η þ δ̄xμ∂μÞσ0ðx; ηÞ;

δextraσ0ðx; ηÞ ¼ 4η2bν∂ν

�
∂η þ

ΔO þ 2

2η

�
σ0ðx; ηÞ; ð3:22Þ

with

δ̄xμ ¼ δxμ þ 2Dηbμ; δ̄η ¼ ð2λ − 4ðbμxμÞÞη: ð3:23Þ

Then the conformal transformation of the induced metric is
computed as

δconfgABðzÞ ¼ δdiffgABðzÞ

þ lim
ðx0;η0Þ→ðx;ηÞ

∂
∂zA

∂
∂z0B hδ

extraσ0ðx; ηÞσ0ðx0; η0Þ

þ σ0ðx; ηÞδextraσ0ðx0; η0Þi; ð3:24Þ

where

δconfgABðzÞ ≔ hδconf ĝABðx; ηÞi;
δdiffgABðzÞ ≔ hδdiff ĝABðx; ηÞi: ð3:25Þ

Since the 2-point correlation function is invariant under an
arbitrary conformal transformation, δconfgABðzÞ ¼ 0. On
the other hand, by using (3.14) and (3.22) we find

hδextraσ0ðx1;η1Þσ0ðx2;η2Þþσ0ðx;ηÞδextraσ0ðx2;η2Þi

¼−8
ð ffiffiffiffiffiffiffiffiffiffiffi

4η1η2
p ÞΔO

ηΔOþ2
þ

ðη1−η2Þðb ·x12Þx212G00
0

�
x212
ηþ

�
; ð3:26Þ

where we set α · β ≔ αμβμ. This implies that the 2nd term in
(3.24) vanishes. Therefore

δdiffgABðzÞ ¼ 0: ð3:27Þ

Since this result means that the metric is invariant under the
isometry of AdS (δdiff , δ̄), which is a maximally symmetric
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space, the induced metric has to be an AdS one up to an
overall constant. This is the desired result.

B. Lorentzian case

In this subsection we comment on the construction of a
Lorentzian AdS geometry by a flow equation approach. To
this end the first thing to do is to smear operators by a flow
equation in the Lorentzian space. This should be done so as
to preserve the causal structure at least in a certain amount.
Although it is unclear whether such a smearing is possible
by a diffusion-type differential equation, a natural candi-
date of a Lorentzian free flow equation may be given by

∂ϕ0ðx; ηÞ
∂η ¼ ∂2ϕ0ðx; ηÞ; ∂2 ¼ gμν∂μ∂ν; ð3:28Þ

with gμν ¼ diagð−1; 1;…; 1Þ. However it is soon realized
that the formal solution of this flow equation becomes
divergent.
To avoid this problem, in what follows, we simply use the

Wick rotation for a time coordinate. Then the Lorentzian
flow equation (3.28) is mapped in the Euclidean one (3.2),
which can be solved without any problems.7 Then we rotate
the result back to the Lorentzian space.8

Let us start the flow equation in the Euclidean space
(3.2). For later purposes we introduce a complex coordinate
that x ¼ ðx⃗; xþ; x−Þ with x� ¼ ðxD−1 � ixDÞ= ffiffiffi

2
p

and
rewrite the flow equation as

∂ϕ0ðx; ηÞ
∂η ¼ ∂2ϕ0ðx; ηÞ; ∂2 ¼ ∂⃗2 þ 2∂þ∂−: ð3:29Þ

The flowed field is expressed as

ϕ0ðx; ηÞ ¼
Z

dDyK0ðx − y; ηÞO0ðyÞ;

K0ðx; ηÞ ¼
1

ð4πηÞD=2 exp

�
−
x⃗2 þ 2xþx−

4η

�
: ð3:30Þ

The 2-point function of the normalized field is given by

hσ0ðt1; x⃗1; η1Þσ0ðt2; x⃗2; η2Þi

¼
�
2

ffiffiffiffiffiffiffiffiffi
η1η2

p
ηþ

�
ΔO

G0

�
x⃗2 þ 2xþx−

ηþ

�
; ð3:31Þ

which leads to

gij¼−δij
G0

0ð0Þ
ατ2

; gþ−¼g−þ¼−
G0

0ð0Þ
ατ2

; gττ¼
ΔO

τ2
;

ð3:32Þ

and the others vanish. By using (3.18) and α ¼ 1=ð2DÞ,
this gives the Euclidean AdS metric containing a complex
coordinate

ds2 ¼ ΔO
dx⃗2 þ 2dxþdx− þ dτ2

τ2
: ð3:33Þ

By the analytic continuation xD ¼ −ix0, the coordinates
xþ, x− become the light-cone ones x� ¼ ðxD−1 � x0Þ= ffiffiffi

2
p

,
which converts the Euclidean AdS metric to the Lorentzian
one with the formally same expression.

IV. HOLOGRAPHIC GEOMETRY FROM FLOWED
NONRELATIVISTIC CONFORMAL PRIMARIES

In this section we shall apply the flow equation approach
(presented in Sec. III) to a nonrelativistic conformal
primary operator, and investigate induced geometry by a
nonrelativistic flow equation.

A. General induced geometry

In this subsection we investigate a general holographic
geometry for a generic nonrelativistic CFT with a non-
relativistic flow equation. To this end we start with a d-
dimensional nonrelativistic CFTwith a primary scalar field
Oðx⃗; tÞ with a general dimension ΔO. The nonrelativistic
conformal symmetry constrains the 2-point function of this
operator as

hOðx⃗1; t1ÞO†ðx⃗2; t2Þi ¼
1

tΔO
12

f

�
x⃗212
2t12

�
; ð4:1Þ

where x⃗2 ¼ xixi.
For our argument, let us introduce an extra direction

denoted by x−, in order to embed the d-dimensional
nonrelativistic symmetry into the D ¼ dþ 1 dimensional
relativistic conformal symmetry, generated with

δxμ ¼ aμ þ ωμ
νxν þ λxμ þ bμx2 − 2xμðb · xÞ; ð4:2Þ

where aμ, ωμν, λ and bμ are parameters of translation,
rotation, dilatation and special conformal transformation,
respectively, and the D dimensional light-cone coordinate
is given by x ≔ ðxμÞ ¼ ðx⃗; xþ; x−Þ with xþ ¼ t. The trans-
formation law under the Schrödinger symmetry can be
derived from the conformal transformation (4.2) for a scalar
primary operator with dimension ΔO,

δconfO0ðxÞ ¼ −δxμ∂μO0ðxÞ −
ΔO

D
ð∂μδxμÞO0ðxÞ; ð4:3Þ

7The AdS=CFT correspondence in the Lorentzian space has a
different aspect from the Euclidean case [27–29]. For example,
see [30] for a careful study on the analytic continuation in this
context.

8This approach has a virtue that Lorentz invariance is manifest,
but assumes a sufficient fall-off of a flowed operator at infinity,
which is nontrivial for any operators in CFT. We instead present a
different approach to this problem in Appendix B.
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by keeping only the following components of the
parameters,

ai; aþ; a−≡μ; ωi
j; ω−i≡vi; ωþ−≡λ; b−≡b;

ð4:4Þ

and the other parameters are set to zero. Then the trans-
formation law (4.2) reduces to

δsxi ¼ ai þ ωi
jxj − vixþ þ λxi − 2bxixþ;

δsxþ ¼ aþ þ 2λxþ − 2bðxþÞ2;
δsx− ¼ μþ vixi þ bx⃗2: ð4:5Þ

Here vi, μ, λ and b correspond to parameters of the Galilei
transformation, mass operator, scale transformation and
special conformal transformation, respectively. Note here
that the x− coordinate does not appear on the right-hand
sides. This means that the translation for the x− direction
commutes with the other transformations, so that the
associated generator i∂− is identifiedwith themass operator.
Notably, xþ corresponds to the time direction in the non-
relativistic system.
Thus a scalar primary operator OðxÞ with dimension ΔO

transforms as

δSOðxÞ¼ ½−ai∂i−aþ∂þ−μ∂− −ωijxj∂i

−viðxi∂− −xþ∂iÞ−λðΔOþxi∂iþ2xþ∂þÞ
þbf−ðxiÞ2∂−þ2xþðΔOþxi∂iþxþ∂þÞg�OðxÞ;

ð4:6Þ

and its 2-point function is given by

hOðx⃗1;xþ1 ;x−1 ÞO†ðx⃗2;xþ2 ;x−2 Þi¼
1

ðxþ12ÞΔO
f

�
x−12þ

x⃗212
2xþ12

�
:

ð4:7Þ

It is easy to see that (4.7) reduces to (4.1) when x−12 → 0.
We smear this nonrelativistic conformal primary oper-

ator by a nonrelativistic flow equation. A general non-
relativistic free flow equation is

∂
∂ηϕðx; ηÞ ¼ ð2im̄∂þ þ 2∂−∂þ þ ∂⃗2Þϕðx; ηÞ;

ϕðx; 0Þ ¼ OðxÞ; ð4:8Þ

where m̄ is a real parameter of mass dimension one. This
can be solved as

ϕðx; ηÞ ¼ eηð2im̄∂þþ2∂−∂þþ∂⃗2ÞOðxÞ

¼
Z

dDx0Kðx − x0; ηÞOðx0Þ ð4:9Þ

where

Kðx; ηÞ ¼ exp½−im̄x−� e
−2xþx−−x⃗2

4ηffiffiffiffiffiffiffiffi
4πη

p D : ð4:10Þ

Let us study the transformation of the flowed operator
under the nonrelativistic conformal transformation.

δSm̄ϕðx; ηÞ ¼ eηð2im̄∂þþ2∂−∂þþ∂⃗2ÞδSOðxÞ
¼ δSϕðx; ηÞ þ δm̄

0Sϕðx; ηÞ ð4:11Þ

where δS is given by (4.6) and

δ0Sm̄ϕðx; ηÞ ¼ ½2im̄ηvi∂i − λ2η∂η

þ bfð−2ηðd − 1Þ þ 4ηΔO þ 4η2∂ηÞ∂−

þ 4im̄ηðΔO þ xi∂i þ η∂⃗2 þ η∂ηÞ
þ 4xþη∂ηg�ϕðx; ηÞ: ð4:12Þ

Note that the flowed operator ϕðx; ηÞ transforms differently
from OðxÞ under the Galilei transformation unless m̄
vanishes.
We move on to the 2-point function of the flowed

operator, which is written as

hϕðx1;η1Þϕ†ðx2;η2Þi
¼eη1ð2im̄∂þþ2∂−∂þþ∂⃗2Þþη2ð−2im̄∂ 0þþ2∂ 0−∂ 0þþ∂⃗ 02ÞhOðx1ÞO†ðx2Þi

¼exp½ηþð2im̄∂þþ2∂−∂þþ ∂⃗2Þ�
�fðx−12þ x⃗2

12

2xþ
12

Þ
ðxþ12ÞΔO

�
ð4:13Þ

where we used the same notation in the previous section.
This function can be written as F1ððx⃗12Þ2; xþ12; x−12; ηþÞ.
From the Galilean invariance we find

viðxi∂−−ðxþþ2im̄ηÞ2xi∂ x⃗2ÞF1ðx⃗2;xþ;x−;ηÞ¼0: ð4:14Þ

This can be generally solved by

F1ðx⃗2;xþ;x−;ηÞ¼Fð2ðxþþ2im̄ηÞx−þ x⃗2;xþ;ηÞ; ð4:15Þ

where F is an unknown function. The nonrelativistic scale
invariance requires

F1ðλ2x⃗2;λ2xþ;x−;λ2ηþÞ¼ λ−2ΔOF1ðx⃗2;xþ;x−;ηþÞ; ð4:16Þ

which constrains the function in such a way that

Fð2ðxþ þ 2im̄ηþÞx− þ x⃗2; xþ; ηþÞ

¼ 1

ηΔOþ
F

�
2ðxþ þ 2im̄ηþÞx− þ x⃗2

ηþ
;
xþ

ηþ
; 1

�
: ð4:17Þ
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As a result the 2-point function is written as

hϕðx1;η1Þϕ†ðx2;η2Þi

¼ 1

ηΔOþ
F

�
2ðxþ12þ2im̄ηþÞx−12þðx⃗12Þ2

ηþ
;
xþ12
ηþ

;1

�
: ð4:18Þ

Note that the contact singularity is resolved with a general
parametrization.
By using this result the 2-point function of the normal-

ized field becomes

hσðx1;η1Þσ†ðx2;η2Þi

¼
�
4η1η2
η2þ

�
ΔO=2

G

�
2ðxþ12þ2im̄ηþÞx−12þðx⃗12Þ2

ηþ
;
xþ12
ηþ

�
;

ð4:19Þ

where Gðu; vÞ ¼ Fðu; v; 1Þ=Fð0; 0; 1Þ.
Since the normalized flowed field σ is complex-valued

for nonrelativistic theories in general, the definition of the
metric operator, for example, should be modified like

ĝABðx; ηÞ ¼
∂Aσðx; ηÞ∂Bσ

†ðx; ηÞ þ ∂Bσðx; ηÞ∂Aσ
†ðx; ηÞ

2
;

ð4:20Þ

so that the induced metric, which is given by gABðzÞ ¼
hĝABðx; ηÞi, becomes real and symmetric.9 Then the
induced metric is computed as

gηηðzÞ ¼
ΔO

4η2
; gþηðzÞ ¼ g−ηðzÞ ¼ 0; ð4:21Þ

gþþðzÞ ¼
−1
4η2

Gð0;2Þð0⃗Þ;

gþ−ðzÞ ¼
−Gð1;0Þð0⃗Þ − 2im̄Gð1;1Þð0⃗Þ

η
;

g−−ðzÞ ¼ −ð4im̄Þ2Gð2;0Þð0⃗Þ; gijðzÞ ¼
−δij
η

Gð1;0Þð0⃗Þ;

ð4:22Þ

where Gðn;mÞðu; vÞ ≔ ∂n
u∂m

v Gðu; vÞ. The undetermined
constants are not independent from each other, since the
flow equation implies

∂ηhϕðx; ηÞϕ†ðx0; η0Þi
¼ ð2ðim̄þ ∂−Þ∂þ þ ∂2

i Þhϕðx; ηÞϕ†ðx0; η0Þi: ð4:23Þ

From this we obtain

−ΔO ¼ ð2dþ 2ÞGð1;0Þð0⃗Þ þ 8im̄Gð1;1Þð0⃗Þ þ 2im̄Gð0;1Þð0⃗Þ;
ð4:24Þ

ð−ΔO − 1ÞGð1;0Þð0⃗Þ ¼ ð2dþ 6ÞGð2;0Þð0⃗Þ þ 8im̄Gð2;1Þð0⃗Þ
þ 2im̄Gð1;1Þð0⃗Þ: ð4:25Þ

The induced line element is thus written as

ds2 ¼ ΔO

4η2
dη2 þ −Gð0;2Þð0⃗Þ

4η2
ðdxþÞ2

þ 2
−Gð1;0Þð0⃗Þ − 2im̄Gð1;1Þð0⃗Þ

η
dxþdx−

þ ð4m̄Þ2Gð2;0Þð0⃗Þðdx−Þ2 þ −δijGð1;0Þð0⃗Þ
η

dxidxj:

ð4:26Þ

We refer to this geometry as the nonrelativistic (NR) hybrid
geometry. In what follows, we apply this result to specific
examples.

B. Nonrelativistic flow of a conformal primary

A first application is to nonrelativistic smearing of a
conformal primary scalar operator in a general CFT
considered in Sec. III. In this case the induced geometry
is more simplified than (4.26).
To see this let us smear the conformal primary scalar

field O0ðxÞ by the nonrelativistic flow equation (4.8) and
denote the smeared operator by ϕm̄ðx; ηÞ. The relation
between the relativistic flowed operator and the nonrela-
tivistic one is

ϕm̄ðx; ηÞ ¼ e2iηm̄∂þϕ0ðx; ηÞ: ð4:27Þ

Therefore the 2-point function of the flowed operator is

hϕm̄ðx1; η1Þϕ†
m̄ðx2; η2Þi

¼ e2iη1m̄∂þe−2iη2m̄∂ 0þhϕ0ðx1; η1Þϕ0ðx2; η2Þi

¼ 1

ηΔOþ
F0

�
2ðxþ12 þ 2iηþm̄Þx−12 þ ðx⃗12Þ2

ηþ
; 1

�
; ð4:28Þ

and that of the normalized field is

9If one wants to relate the induced metric to an information
metric for a complex-valued vector model as in [21], an extra
term 1

2
ðhσ†∂Aσihσ†∂Bσi þ h∂Aσ

†σih∂Bσ
†σiÞ is necessary to add

to the definition of the induced metric. However, this termmay not
be written as an expectation value of a specific operator. Hence we
shall avoid using this definition here, probably though the relevance
to an information metric would be significant for the bulk
description as shown in [21]. We shall leave this issue as a future
work. We appreciate Janos Balog for discussion on this point.
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hσm̄ðx1; η1Þσ†m̄ðx2; η2Þi

¼
�
2

ffiffiffiffiffiffiffiffiffi
η1η2

p
ηþ

�
ΔO

G0

�
2ðxþ12 þ 2iηþm̄Þx−12 þ ðx⃗12Þ2

ηþ

�
:

ð4:29Þ

Gðu; vÞ in Sec. IVA now reduces to G0ðuÞ so that

Gðn;0Þð0⃗Þ ¼ GðnÞ
0 ð0Þ; Gðn;kÞð0⃗Þ ¼ 0; ð4:30Þ

for n ∈ Z≥0, k ∈ Z≥1. Then (4.25) reduces to

Gð2;0Þð0⃗Þ ¼ −
ΔO þ 1

2ðDþ 2ÞG
0ð0Þ ¼ ΔOðΔO þ 1Þ

4DðDþ 2Þ ð4:31Þ

where D ¼ dþ 1. As a result the induced line element
given by (4.26) reduces to

ds2 ¼ ΔO

�
γðdx−Þ2 þ dτ2 þ 2dxþdx− þ dx⃗2

τ2

�
ð4:32Þ

where we set

τ≡ ffiffiffiffiffiffiffiffiffi
2Dη

p
; γ ≡ 4m̄2

ΔO þ 1

DðDþ 2Þ ; ð4:33Þ

both of which are positive. Note that the limit m̄ → 0
reduces this geometry to the AdS one given in the previous
section.
The metric (4.32) is a Schrödinger spacetime with Z ¼ 0

and the wrong sign. It is well known that this geometry can
be regarded as a Lifshitz geometry with Z ¼ 2 after an
appropriate compactification [31,32]. This can be easily
seen by performing the completing square with respect to
dx−. The resulting metric is given by

ds2 ¼ ΔO

�
−
ðdxþÞ2
γτ4

þ dτ2 þ dx⃗2

τ2
þ γ

�
dx− þ dxþ

γτ2

�
2
�
:

ð4:34Þ

By taking a compactification along the x−-direction, this
metric describes a Lifshitz spacetime [31,32].

C. Light-cone reversal symmetry
with the relativistic flow

As another simple example, we consider a holographic
geometry emerging from the nonrelativistic theory with the
light-cone reversal symmetry (x� → −x�) generated by the
relativistic flow (m̄ ¼ 0). This implies that the 2-point
function of the normalized field given by (4.19) is invariant
under x�12 → −x�12, so that we can write Gðu; vÞ ¼ Ĝðu; v2Þ
with an unknown function Ĝ. Therefore, we have

Gðn;1Þð0⃗Þ ¼ 0; Gð0;2Þð0⃗Þ ¼ 2Ĝð0;1Þð0⃗Þ;

Gð1;0Þð0⃗Þ ¼ −
ΔO

2D
: ð4:35Þ

Setting η ¼ τ2

2D, we obtain

ds2¼ΔO

�
−
2D2Ĝð0;1Þð0⃗Þ

ΔO

ðdxþÞ2
τ4

þdτ2þ2dxþdx−þdx⃗2

τ2

�
:

ð4:36Þ

This metric describes nothing but a Schrödinger spacetime

with σ2 ≔ 2D2Ĝð0;1Þð0⃗Þ
ΔO

studied in Ref. [18].

D. Nonrelativistic deformation of a conformal primary

As a more nontrivial example, we consider a non-
relativistic deformation of a conformal primary scalar
operator in a relativistic CFT which preserve the property
of the nonrelativistic conformal primary condition.
Let us consider a general CFT in Sec. III and deform the

conformal primary scalar field O0ðxÞ as

OϵðxÞ ≔ eϵ∂2−O0ðxÞ; ð4:37Þ

where ϵ is a real deformation parameter. In order for the
deformed operator to be well behaved, the parameter ϵ
needs to be positive. This will turn out to be important to
obtain a Schrödinger space-time with the correct sign.
Let us show that the deformed operator OϵðxÞ is a

conformal primary operator in the nonrelativistic conformal
algebra. The conformal transformation ofOϵðxÞ is given by

δconfϵ OϵðxÞ¼ eϵ∂2−δconfO0ðxÞ¼ δconfOϵðxÞþδ0ϵOϵðxÞ;
ð4:38Þ

where δconf is given by (4.3) with (4.2), and

δ0ϵOϵðxÞ ¼ 2ϵ½ð2b · x − λ − ω−þÞ∂2
− − ωiþ∂i∂−

þ 2ðx · ∂ þ ΔO þ 1Þbþ∂−

− 2xþb · ∂∂− þ 4ϵbþ∂3
−�OϵðxÞ: ð4:39Þ

δ0ϵOϵ vanishes if and only if

ωþ− ¼ λ; ωiþ ¼ bi ¼ bþ ¼ 0: ð4:40Þ

The subalgebra with this parameter constraint is nothing
but the Schrödinger algebra given in (4.5). In other words,
the subalgebra commuting with the operator eϵ∂2− becomes
the Schrödinger algebra. Therefore the deformed operator
OϵðxÞ is a nonrelativistic conformal primary operator.
Hence we can apply the result in Sec. IVA to this

deformed operator. The induced geometry obtained from
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the flowed operator of Oϵ by the nonrelativistic flow
equation (4.8) is given by (4.26), where the metric
components are determined as a function of ϵ.
An interesting situation happens when m̄ ¼ 0, where the

flow equation becomes relativistic. In this case bothCFTand
the flow equation enjoy the light-cone reversal symmetry, so
that the situation reduces to Sec. IV C, and the induced
metric reduces to a Schrödinger one given by (4.36):

ds2¼ΔO

�
−
2D2Ĝð0;1Þ

ϵ ð0⃗Þ
ΔO

ðdxþÞ2
τ4

þdτ2þ2dxþdx−þdx⃗2

τ2

�
;

ð4:41Þ

where Ĝð0;1Þ
ϵ describes the 2-point function of the normalized

flowed field:

hσϵðx1;η1Þσϵðx2;η2Þi

¼
�
2

ffiffiffiffiffiffiffiffiffi
η1η2

p
ηþ

�
ΔO

Ĝϵ

�
2xþ12x

−
12þðx⃗12Þ2
ηþ

;

�
xþ12
ηþ

�
2
�
: ð4:42Þ

In the current case, we can evaluate Ĝð0;1Þ
ϵ ð0⃗Þ. To this end

let us investigate the transformation rule of the flowed field
ϕϵðx; ηÞ under the conformal transformation:

δconfϵ ϕϵðx; ηÞ ¼ eηð∂⃗
2þ2∂þ∂−Þþϵ∂2−δconfOðxÞ

¼ δconfϕϵðx; ηÞ þ δ0ϵϕϵðx; ηÞ ð4:43Þ

where

δ0ϵϕϵðx;ηÞ≔ ½2ηfð2b ·x−λÞ∂η−ðd−1−2ΔOÞb ·∂g
þ2ϵfð2b ·x−λ−ω−þÞ∂2

−

þ2ðx ·∂þΔOþ1Þbþ∂−−ωiþ∂i∂−−2xþ∂−b ·∂g
þ4η2b ·∂∂ηþ8ϵηbþ∂−∂ηþ8ϵ2bþ∂3

−�ϕϵðx;ηÞ:
ð4:44Þ

If we restrict the conformal transformation to the
Schrödinger one, (4.40), then the terms dependent on ϵ
drop out and we have (4.11) with m̄ ¼ 0. Since the 2-point
function is invariant under the rotation parametrized by
ωiþ, which is outside the Schrödinger algebra, we find

ðx−∂i − xi∂þ þ 4ϵ∂−∂iÞĜϵ

�
x⃗2 þ 2xþx−

η
;
ðxþÞ2
η2

�
¼ 0;

ð4:45Þ

which leads to

Ĝð0;1Þ
ϵ ðu; vÞ ¼ 8ϵĜð2;0Þ

ϵ ðu; vÞ: ð4:46Þ

On the other hand, (4.25) gives

Ĝð2;0Þ
ϵ ð0⃗Þ ¼ −

ΔO þ 1

2ðDþ 2Þ Ĝ
ð1;0Þ
ϵ ð0⃗Þ ¼ ΔOðΔO þ 1Þ

4DðDþ 2Þ : ð4:47Þ

Therefore we obtain

Ĝð0;1Þ
ϵ ð0⃗Þ ¼ 2ϵ

ΔOðΔO þ 1Þ
DðDþ 2Þ : ð4:48Þ

Finally the induced line element is obtained as

ds2 ¼ ΔO

�
−ϵ

4ðΔO þ 1ÞD
Dþ 2

ðdxþÞ2
τ4

þ dτ2 þ 2dxþdx− þ dx⃗2

τ2

�
: ð4:49Þ

Since the parameter ϵ is positive, this is a Schrödinger
space-time with the correct sign.
This result is in fact guaranteed by the symmetry. Let us

restrict the argument of conformal symmetry in the previous
section to that of the nonrelativistic one. Then the normal-
ized field σϵðx; ηÞ transforms under the Schrödinger trans-
formation as

δSϵ σϵðx; ηÞ ¼ δdiffS σϵðx; ηÞ þ δextraσϵðx; ηÞ; ð4:50Þ

where δdiffS generates isometries of the Schrödinger space-
time as

δdiffs σϵðx;ηÞ¼−δ̄sxA∂Aσϵðx;ηÞ;
δ̄sxi¼ aiþωi

jxj−vixþþ λxi−2bxþxi;

δ̄sxþ ¼ aþþ2λxþ−2bðxþÞ2;
δ̄sx−¼ μþvixiþbðx⃗2þ τ2Þ; δ̄sτ¼ð2bxþ−λÞτ;

ð4:51Þ

while the extra contribution becomes

δextraσϵðx; ηÞ ¼ 4bη2∂−

�
∂η þ

ΔO þ 2

2η

�
σϵðx; ηÞ: ð4:52Þ

From this it follows that

δextrahσϵðx1;η1Þσϵðx2;η2Þi

¼−8bxþ12x212
ðη1−η2Þ

ηþ

�
2

ffiffiffiffiffiffiffiffiffi
η1η2

p
ηþ

�
ΔO

Ĝð2;0Þ
ϵ

�
x212
ηþ

;
ðxþ12Þ2
η2þ

�
:

ð4:53Þ

Therefore, we have δextragABðzÞ ¼ 0, which implies
δdiffS gABðzÞ ¼ 0. This shows that the resulting inducedmetric
is invariant under the transformations forming the
Schrödinger algebra, which requires the geometry to be a
Schrödinger spacetime.
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E. Mass eigenvector

Finally we consider the case where a conformal primary
scalar in a nonrelativistic CFT becomes a mass eigenvector
such that

½M;Om� ¼ mOm; M ¼ i∂− ð4:54Þ

with a mass parameter m, and the transformation of the
operator Om is given by (4.6). Then the 2-point function of
this primary operator given by (4.7) is now more con-
strained as [13,17]

hOmðx⃗1; xþ1 ; x−1 ÞOmðx⃗2; xþ2 ; x−2 Þ†i ¼
C exp ½imðx−12 þ x⃗2

12

2xþ
12

Þ�
ðxþ12ÞΔO

ð4:55Þ

with a constant C.
Smearing by the flow equation (4.8) does not break the

property of the operator as an eigenvector for the mass
operator, so the 2-point function of the flowed operator,
which we denote by ϕm, further reduces from (4.18) to

hϕmðx1; η1Þϕ†
mðx2; η2Þi

¼
exp

h
im

�
x−12 þ ðx⃗12Þ2

2ðxþ
12
þ2im̄ηþÞ

�i
ηΔOþ

Fm

�
xþ12
ηþ

; 1

�
: ð4:56Þ

It is important to note the introduction of nonzero m̄ in the
flow equation (4.8) is needed to resolve the contact
singularity in the time (xþ) direction. Therefore the
function G in Sec. IVA reduces to

G

�
2ðxþ þ 2im̄ηþÞx− þ x⃗2

ηþ
;
xþ

ηþ

�

¼ exp

�
im

�
x− þ x⃗2

2ðxþ þ 2im̄ηþÞ
��

Gm

�
xþ

ηþ

�
: ð4:57Þ

This suggests that the induced line element (4.26) becomes

ds2¼ΔO

4η2
dη2þ−G00

mð0Þ
4η2

ðdxþÞ2

þ−imG0
mð0Þ

η
dxþdx−þm2ðdx−Þ2þ −m

4m̄η
dx⃗2: ð4:58Þ

The coefficients G0
mð0Þ and G00

mð0Þ are determined from
(4.24) and (4.25) as follows.

G0
mð0Þ ¼ −

ΔO þ mðd−1Þ
2m̄

2iðmþ m̄Þ ;

G00
mð0Þ ¼

−ðΔO þ 1þ mðd−1Þ
2m̄ ÞG0

mð0Þ − imðd−1Þ
4m̄2

2iðmþ m̄Þ : ð4:59Þ

This geometry becomes a Lifshitz one with Z ¼ 2 after
an appropriate compactification in some parameter region.
To realize this, we tune a parameter in the nonrelativistic
flow as m̄ ¼ −cm with c > 0. Then, by setting

η ¼ −m
4ΔOm̄

τ2 ¼ 1

4cΔO
τ2; ð4:60Þ

the above metric becomes

ds2¼ΔO

�
c1
ðdxþÞ2
τ4

þdτ2þdx⃗2

τ2

�
þm2

�
dx−þc2

dxþ

τ2

�
2

;

ð4:61Þ

where c1 and c2 are given by

c1 ¼ ΔO
c2ð2ΔO − dþ 1Þ þ ðd − 1Þð1 − cÞ2

2ð1 − cÞ2 ;

c2 ¼
ΔOð2cΔO − dþ 1ÞÞ

2m2ð1 − cÞ : ð4:62Þ

Thus, c1 has to be negative so that the metric (4.58) may be
regarded as a Lifshitz spacetime with Z ¼ 2. This is
realized in a region specified by

ð0 <ÞΔO <

�
d − 1

2

�
2c − 1

c2
; ð4:63Þ

where the upper bound becomes maximum as
ΔO < ðd − 1Þ=2 at c ¼ 1.

V. HOLOGRAPHIC GEOMETRY FROM A
LIFSHITZ-TYPE SCALE-INVARIANT THEORY

In this section, we consider a Lifshitz-type scale-invariant
field theory, which is not necessarily conformally invariant.
There exists a primary scalar operator OZðt; x⃗Þ, which
transforms under the dilatation as10

OZðΛx⃗;ΛZtÞ ¼ Λ−ΔOOZðx⃗; tÞ ð5:1Þ

with a scaling factor Z. Using the invariance under the
translation and the special rotation, the 2-point function of
this scalar operator is constrained as

10The infinitesimal transformation is δλOZðx⃗; tÞ ¼ −λðΔOþ
xi∂i þZt∂tÞOZðx⃗; tÞ, where Λ ¼ eλ.
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hOZðx⃗1; t1ÞOZðx⃗2; t2Þi ¼
fZðt12

2=Z

x⃗2
12

Þ
ðx⃗212ÞΔO

; ð5:2Þ

where fZ is a function characterized by the original theory.
We assumed it to be smooth in terms of the time and invariant
under the time reversal.11

A flow equation in this case should be a diffusion type
and compatible with the scaling relation. We can easily find
out such a flow equation as

∂ϕZðx⃗; t;ηÞ
∂η ¼ð∂⃗2þaZηZ−1∂2

t ÞϕZðx⃗; t;ηÞ;

ϕZðx⃗; t;0Þ¼OZðx⃗; tÞ; ð5:3Þ

where we here introduced a positive parameter a. We call
this flow a Lifshitz flow. The formal solution is given by

ϕZðx⃗; t; ηÞ ¼ eη∂⃗
2þaηZ∂2t OZðx⃗; tÞ: ð5:4Þ

The 2-point function of the flowed field ϕZ can be
written as

hϕZðx⃗1; t1; η1ÞϕZðx⃗2; t2; η2Þi
¼ eη1∂⃗

2þaηZ
1
∂2
tþη2∂⃗ 02þaηZ

2
∂t 02hOZðx⃗1; t1ÞOZðx⃗2; t2Þi

¼ eηþ∂⃗
2þaηZþ∂2t hOZðx⃗12; t12ÞOZð0⃗; 0Þi ð5:5Þ

where we used (5.2) and set ηZþ ≔ ηZ1 þ ηZ2 . Taking
into account (5.2) we can denote this function by
FZðx⃗212; t212; 2Z−1ηZþ; ηþÞ. Here we used the assumption
that the function f in (5.2) is smooth with respect to
the time.
By using the scaling relation (5.1) the function FZ

satisfies

FZðΛ2x2;Λ2Zt2;Λ2Z2Z−1ηZþ;Λ2ηþÞ
¼ Λ−2ΔOFZðx2; t2; 2Z−1ηZþ; ηþÞ: ð5:6Þ

Choosing Λ ¼ 1=η
1
2þ we find

FZðx⃗2; t2;ηZþ;ηþÞ¼
1

ηΔOþ
FZ

�
x⃗2

ηþ
;
t2

ηZþ
;
2Z−1ηZþ

ηZþ
;1

�
; ð5:7Þ

from which the normalized flowed field is given by

σZðx⃗; t; ηÞ ¼
ð2ηÞΔO=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FZð0; 0; 1; 1Þ

p ϕZðx⃗; t; ηÞ; ð5:8Þ

so that

hσZðx⃗1; t1; η1ÞσZðx⃗2; t2; η2Þi

¼
�
2

ffiffiffiffiffiffiffiffiffi
η1η2

p
ηþ

�
ΔO

GZ

�
x⃗212
ηþ

;
t212
ηZþ

;
2Z−1ηZþ

ηZþ

�
; ð5:9Þ

where GZðx1;x2;x3Þ≔FZðx1;x2;x3;1Þ=FZð0;0;1;1Þ. This
function GZ is constrained by the flow equation:

∂η1hϕZðx⃗1; t1;η1ÞϕZðx⃗2; t2;η2Þi
¼ ð∂⃗2þaZηZ−11 ∂2

t ÞhϕZðx⃗1; t1;η1ÞϕZðx⃗2; t2;η2Þi ð5:10Þ

which leads to

−ΔO ¼ 2ðd−1ÞGð1;0;0Þ
Z ð0;0;1Þ

þaZ22−ZGð0;1;0Þ
Z ð0;0;1Þ;

Gð0;0;1Þ
Z ð0;0;1Þ¼ a

2Z−2
Gð0;1;0Þ

Z ð0;0;1Þ: ð5:11Þ

Nonzero components of the induced metric are calcu-
lated as

gηηðzÞ ¼
ΔO

4η2
−
ZðZ − 1Þ

4η2
Gð0;0;1Þ

Z ð0; 0; 1Þ; ð5:12Þ

gttðzÞ ¼
−2

ð2ηÞZ G
ð0;1;0Þ
Z ð0; 0; 1Þ; ð5:13Þ

gijðzÞ ¼
−δij
η

Gð1;0;0Þ
Z ð0; 0; 1Þ: ð5:14Þ

Therefore

ds2 ¼
�
ΔO

4η2
−
ZðZ − 1Þ

4η2
Gð0;0;1Þ

Z ð0; 0; 1Þ
�
dη2

þ −2
ð2ηÞZ G

ð0;1;0Þ
Z ð0; 0; 1ÞðdtÞ2

þ −δijG
ð1;0;0Þ
Z ð0; 0; 1Þ

η
dxidxj

¼ ðΔO − aZðZ − 1Þ22−ZGð0;1;0Þ
Z ð0; 0; 1ÞÞ

×
dτ2 þ dx⃗2

τ2
−
2Gð0;1;0Þ

Z ð0; 0; 1Þ
ð2αÞZ

ðdtÞ2
τ2Z

; ð5:15Þ

where we set η ≔ ατ2 with

α ¼ ΔO þ aZ22−ZGð0;1;0Þ
Z ð0; 0; 1Þ

2ðd − 1ÞðΔO − aZðZ − 1Þ22−ZGð0;1;0Þ
Z ð0; 0; 1ÞÞ

:

ð5:16Þ

This describes a Lifshitz geometry with a general dynami-
cal exponent Z.

11If we do not assume this, then terms such as dηdxþ appear in
the induced metric.
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VI. CONCLUSION AND DISCUSSION

We have extended the construction of holographic
geometries by means of the flow equation approach to
nonrelativistic scale invariant theories. After reviewing the
construction of the AdS space by using a general CFT both
in the Euclidean and the Lorentzian space, we moved on to
the construction of holographic geometries of a nonrela-
tivistic CFT and a nonrelativistic flow equation. As a result
we have obtained a hybrid geometry of both Schrödinger
and Lifshitz geometries as a general holographic space-
time in this framework. Applying this result to specific
nonrelativistic models, we have reproduced a Schrödinger
geometry and a Lifshitz one with Z ¼ 2. We have also
reproduced a Lifshitz geometry with a general dynamical
exponent by smearing an operator of a Lifshitz theory with
a suitable modification of the flow equation.
It would be an interesting problem to realize the

seemingly new geometry we called the NR hybrid geom-
etry in Sec. IVA as a solution of a certain bulk theory. Such
a bulk theory may be realized as a usual gravitational theory
coupling to matter fields in a similar way with Lifshitz and
Schrödinger geometries (see [33] for a review and refer-
ences therein).
Although the flow field approach seems to provide

new perspective to investigate the holography, there are
still gaps to fill in between them. One of them is the
relationship between flowed operators in a CFT and bulk
operators appearing in the standard AdS=CFT correspon-
dence. It may be clear that they are conceptually differ-
ent, because the 2-point function of a flowed operator
does not have contact singularity, while that of a bulk
local field has. Indeed there is a standard construction of
bulk operators from a Lorentzian CFT known as the
Hamilton-Kabat-Lifshitz-Low construction [34], where
bulk operators are obtained by convoluting CFT oper-
ators with a certain smearing function. Their striking
result is that such a smearing is done over the causally
disconnected region to obtain a bulk operator in even
dimensional Poincaré AdS, while smearing is done all
over the region for odd dimensional one. In Sec. III B and
Appendix B we smeared a CFT primary operator in
Lorentzian flows. In both cases smearing region is
basically done all over the space. It is important to
understand how smearing encodes the causality in the
Lorentzian space in the flow equation approach.
In relation to the above, it is also important to investigate

the correspondence of excited states between the bulk and
boundary in the flow field approach. There are orthodox
ways to study bulk geometries corresponding to an excited
state (for example [35]), while there is a proposal how to
compute a back-reacted geometry by an excited state in the
flow field approach [36]. It is intriguing to see whether a
resulting induced geometry have desired properties and
match one constructed by a different approach.
We hope to come back to these issues in the near future.
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APPENDIX A: CONFORMAL, SCHRÖDINGER
AND LIFSHITZ ALGEBRAS

In this Appendix we shall describe how the Schrödinger
and Lifshitz algebras are embedded into the conformal
algebra soð2; DÞ, and present the transformation laws
under the Schrödinger and Lifshitz symmetries.

1. Conformal algebra soð2;DÞ
Let us begin with a conformal algebra soð2; DÞ in D

dimensional Minkowski spacetime, which is generated by
antisymmetric matrices MAB satisfying

½MAB;MCD�¼ igACMBD−igBCMAD−igADMBCþigBDMAC:

ðA1Þ

Here the indices are the metric components are given by

A;B;… ¼ −1; 0; 1;…; D;

−g−1−1 ¼ −g00 ¼ g11 ¼ � � � ¼ gDD ¼ 1:

In the following, it is helpful to introduce the light-cone
coordinates:

x�̃ ¼ 1ffiffiffi
2

p ðxD � x−1Þ: ðA2Þ

Then the components of MAB can be presented in terms of
the conformal basis Pμ (translation), Mμν (Lorentz rota-
tion), D (dilatation) and Kμ (special conformal) as follows:
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ðMABÞ ¼

ν þ̃ −̃

μ

þ̃
−̃

0
BB@

Mμν Pμ Kμ

−Pν 0 −D
−Kν D 0

1
CCA :

ðA3Þ

Now the commutation relation in (A1) can be decomposed
into the following standard form:

½Mμν;Mρδ� ¼ igμρMνδ − igνρMμδ − igμδMνρ þ igνδMμρ;

ðA4Þ
½Mμν; Pρ� ¼ igμρPν − igνρPμ;

½Mμν; Kρ� ¼ igμρKν − igνρKμ; ðA5Þ

½Kμ; Pν� ¼ igμνDþ iMμν; ðA6Þ

½D;Mμν� ¼ 0; ½D;Pν� ¼ iPν; ½D;Kν� ¼ −iKν:

ðA7Þ

2. Schrödinger algebra from soð2;DÞ
To see the Schrödinger algebra as a subalgebra of

soð2; DÞ, it is useful to introduce another couple of the
light-cone coordinates x� with x0 and xD−1:

x� ¼ 1ffiffiffi
2

p ðxD−1 � x0Þ: ðA8Þ

Then the generators of soð2; DÞ can be displayed as

ðMABÞ ¼

þ − j þ̃ −̃
þ
−
i

þ̃
−̃

0
BBBBBB@

0 Mþ− −Mjþ Pþ Kþ
M−þ 0 −Gj P− K−
Miþ Gi Mij Pi Ki

−Pþ −P− −Pj 0 −D
−Kþ −K− −Kj D 0

1
CCCCCCA

: ðA9Þ

It is significant to notice that one can find out a subalgebra
by dropping the generators Miþ, Ki and Kþ. By introduc-
ing the following notation

H≡Pþ; M≡P−; K≡K−; D¼DþM−þ; ðA10Þ

the subalgebra is given by

½Mij;Mkl� ¼ igikMjl− igjkMil− igilMjkþ igjlMik;

½Mij;Pk� ¼ igikPj− igjkPi; ½Mij;Gk� ¼ igikGj− igjkGi

½Gi;Pj� ¼ igijM; ½H;Gi� ¼ iPi; ½H;K� ¼−iD;

½D;Pj� ¼ iPj; ½D;Gj� ¼−iGj;

½D;H� ¼ 2iH; ½D;K� ¼−2iK; ðA11Þ

and the other commutation relations vanish. This is nothing
but the Schrödinger algebra.12 This algebra is composed of
H (time translation), Pi (spatial translation), Mij (spatial
rotation), Gi (Galilean boost), D (anisotropic dilatation) K
(special conformal) and M (mass operator).
As one can notice from the commutation relations in

(A11), the scale transformation associated with D is
anisotropic like

t→Λ2t; xi→Λxi ðΛ∶a real constant parameterÞ:
ðA12Þ

This is a characteristic of the Schrödinger algebra.

3. Lifshitz algebra from Schrödinger algebra

The Lifshitz algebra is embedded as a subalgebra of the
Schrödinger algebra when the dynamical exponent is two.
This embedding can be seen by dropping off the generators
Gi, K and M from the Schrödinger algebra (A11). The
resulting commutation relations are given by

½Mij;Mkl� ¼ igikMjl − igjkMil − igilMjk þ igjlMik;

½Mij; Pk� ¼ igikPj − igjkPi;

½D; Pj� ¼ iPj; ½D; H� ¼ 2iH: ðA13Þ

In total, this algebra is composed ofH (time translation), Pi
(spatial translation), Mij (spatial rotation) and D (aniso-
tropic dilatation). To recover the algebra with an arbitrary
value of the dynamical exponent Z, the commutation
relation involving the dilatation and Hamiltonian should
be modified as

½D; H� ¼ ZiH: ðA14Þ

APPENDIX B: LORENTZ NONINVARIANT
FLOW EQUATION

In this Appendix we present a different method to flow a
primary operator in Lorentzian CFT. Although this
approach breaks the manifest Lorentz invariance, it has a
virtue to obtain a well-defined flowed operator in the
Lorentzian space.
The method is to introduce another flow parameter ηt

specially for the time direction as follows.

∂
∂ηt ϕ0 ¼ −∂2

tϕ0;
∂
∂η ϕ0 ¼

X
i

∂2
iϕ0; ðB1Þ

12This is the Schrödinger algebra with the dynamical critical
exponent zc ¼ 2. One may consider an arbitrary value of zc. But
except zc ≠ 2 (and 1), the special conformal generator K must be
excluded so as to close the algebra.
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If the flow parameters are in the region that

ηt < 0; η > 0; ðB2Þ
then the flow equation has a well-defined solution

ϕ0ðx; ηt; ηÞ ¼ e−ηt∂2tþη∂2i O0ðxÞ

¼
Z

dDx0K0ðx; x0; ηt; ηÞO0ðx0Þ ðB3Þ

where

K0ðx; x0; ηt; ηÞ ¼
e
ðt−t0Þ2
4ηt

ð4πηtÞ12
e−

ðxi−x0iÞ2
4η

ð4πηÞD−1
2

: ðB4Þ

Then the two point correlation function of the flowed
operator is written as

hϕ0ðx1; ηt1; η1Þϕ0ðx2; ηt2; η2Þi
¼ e−ηt∂2tþη∂2i−η0t∂t 02þη0∂i 02f0ðx212Þ
¼ e−ηtþ∂2tþηþ∂2i f0ðx212Þ; ðB5Þ

where we used the notation in the main text. This is a
function of t212; x⃗

2
12; ηtþ; ηþ, which we denote by

F0ðt212; x⃗212; ηtþ; ηþÞ. By using the scaling relation we find

F0ðt2; x⃗2; ηt; ηÞ ¼
1

ηΔO
F0

�
t2

η
;
x⃗2

η
;
ηt
η
; 1

�
: ðB6Þ

In particular

hϕ0ðx; ηt; ηÞ2i ¼ F0ð0; 0; 2ηt; 2ηÞ

¼ 1

ð2ηÞΔO
F0

�
0; 0;

ηt
η
; 1

�
: ðB7Þ

Furthermore we have

Fð1;0;0;0Þ
0

�
t2

η
;
x⃗2

η
;
ηt
η
; 1

�

¼ ð−1Þ η
ΔO

η
e−ηt∂2tþη∂2

i f00ðx212Þ

¼ −Fð0;1;0;0Þ
0

�
t2

η
;
x⃗2

η
;
ηt
η
; 1

�
: ðB8Þ

Therefore the two point correlation function of the
normalized field is given by

hσ0ðx1; ηt1; η1Þσ0ðx2; ηt2; η2Þi

¼
� ffiffiffiffiffiffiffiffiffiffiffi

4η1η2
p
ηþ

�ΔO F0ðt
2
12

ηþ
; x⃗

2
12

ηþ
;
ηtþ
ηþ

; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ð0; 0; ηt1η1 ; 1ÞF0ð0; 0; ηt2η2 ; 1Þ

q : ðB9Þ

The right-hand side is convergent and smooth for ηt1,
ηt2 < 0, η1, η2 > 0. Therefore we perform the analytic
continuation in terms of ηt1, ηt2 from the negative region to
the positive value with ηt → η, ηt2 → η2. Then the right-

hand side yields a smooth function of t2
12

ηþ
and x⃗2

12

ηþ
, which we

denote as ð
ffiffiffiffiffiffiffiffi
4η1η2

p
ηþ

ÞΔOG0ðt
2
12

ηþ
; x⃗

2
12

ηþ
Þ with G0ð0⃗Þ ¼ 1. We thus

obtain

hσ0ðx1; η1Þσ0ðx2; η2Þi ¼
� ffiffiffiffiffiffiffiffiffiffiffi

4η1η2
p
ηþ

�ΔO

G0

�
t212
ηþ

;
x⃗212
ηþ

�

ðB10Þ

where we set

hσ0ðx1; η1Þσ0ðx2; η2Þi ≔ lim
ηt1→η1
ηt2→η2

hσ0ðx1; ηt1; η1Þσ0ðx2; ηt2; η2Þi:

ðB11Þ

By using this the induced metric is computed as

gηηðzÞ ¼
ΔO

4η2
; gijðzÞ ¼

−δij
η

Gð0;1Þ
0 ð0⃗Þ;

gttðzÞ ¼
−1
η
Gð1;0Þ

0 ð0⃗Þ: ðB12Þ

From the flow equation we find

−ΔOF0ð0; 0; 1; 1Þ −
1

η
Fð0;0;1;0Þ
0 ð0; 0; 1; 1Þ

¼ 2ðD − 1ÞFð0;1;0;0Þ
0 ð0; 0; 1; 1Þ;

1

η
Fð0;0;1;0Þ
0 ð0; 0; 1; 1Þ ¼ −2Fð1;0Þ

0 ð0; 0; 1; 1Þ; ðB13Þ

which leads to

−ΔO ¼ 2ðD − 1ÞGð0;1Þ
0 ð0⃗Þ − 2Gð1;0Þ

0 ð0⃗Þ: ðB14Þ

By using (B8) we find Gð0;1Þ
0 ð0⃗Þ ¼ −Gð1;0Þ

0 ð0⃗Þ, which gives

Gð0;1Þ
0 ð0⃗Þ ¼ −ΔO

2D . Using these relations we obtain the
induced line element as

ds2 ¼ ΔO
−dt2 þ dx⃗2 þ dτ2

τ2
; ðB15Þ

where we set τ2 ¼ 2Dη. This is the Lorentzian AdS metric.

APPENDIX C: TRANSFORMATION OF THE
FLOWED FIELD

1. Useful formulas

We here collect some useful formulas to calculate
transformation properties of the flowed field.

AOKI, YOKOYAMA, and YOSHIDA PHYS. REV. D 99, 126002 (2019)

126002-14



eη∂⃗
2

xi ¼ ðxi þ 2η∂iÞeη∂⃗2

;

eη∂⃗
2

xixj ¼ ðxi þ 2η∂iÞðxj þ 2η∂jÞeη∂⃗2 ¼ ðxixj þ 2ηðxi∂j þ xj∂i þ δijÞ þ 4η2∂i∂jÞeη∂⃗2 ;
eη∂⃗

2

x⃗2 ¼ ðx⃗2 þ 4ηx⃗ · ∂⃗ þ 2ðd − 1Þηþ 4η2∂⃗2Þeη∂⃗2 ;

e2η∂þ∂−xþ ¼ ðxþ þ 2η∂−Þe2η∂þ∂− ;
e2η∂þ∂−ðxþÞ2 ¼ ðxþ þ 2η∂−Þ2e2η∂þ∂− ¼ ððxþÞ2 þ 4ηxþ∂− þ 4η2∂2

−Þe2η∂þ∂− ;
e2η∂þ∂−x− ¼ ðx− þ 2η∂þÞe2η∂þ∂− ;

e2η∂þ∂−ðx−Þ2 ¼ ðx− þ 2η∂þÞ2e2η∂þ∂− ¼ ððx−Þ2 þ 4ηx−∂þ þ 4η2∂2þÞe2η∂þ∂− ;
e2η∂þ∂−xþx− ¼ ðxþ þ 2η∂−Þðx− þ 2η∂þÞe2η∂þ∂− ¼ ðxþx− þ 2ηðxþ∂þ þ x−∂− þ 1Þ þ 4η2∂þ∂−Þe2η∂þ∂− ;

eϵ∂2−x− ¼ ðx− þ 2ϵ∂−Þeϵ∂2− ;
eϵ∂2−ðx−Þ2 ¼ ðx− þ 2ϵ∂−Þ2eϵ∂2−ððx−Þ2 þ 2ϵð2x−∂− þ 1Þ þ 4ϵ2∂2

−Þeϵ∂2− ;
eϵ∂2−xþx− ¼ xþðx− þ 2ϵ∂−Þeϵ∂2− ;

e2η∂þ∂−þϵ∂2−x− ¼ ðx− þ 2η∂þ þ 2ϵ∂−Þe2η∂þ∂−þϵ∂2− ;

e2η∂þ∂−þϵ∂2−ðx−Þ2 ¼ ððx−Þ2 þ 4ηx−∂þ þ 4η2∂2þ þ 4ηϵ∂þ∂− þ 2ϵð2x−∂− þ 1Þ þ 4ϵ2∂2
−Þe2η∂þ∂−þϵ∂2− ;

e2η∂þ∂−þϵ∂2−xþx− ¼ ðxþx− þ 2ηðx−∂− þ xþ∂þ þ 1Þ þ 4η2∂þ∂− þ 4ηϵ∂2
− þ 2ϵxþ∂−Þe2η∂þ∂−þϵ∂2− ;

ea∂þðxþÞn ¼ ðxþ þ aÞnea∂þ :

2. General transformation properties

Under the conformal transformation, the general flowed field ϕϵ;mðx; ηÞ transforms as

δ0confϕϵ;mðx; ηÞ ≔ eηð∂⃗
2þ2∂þ∂−Þþϵ∂2−þiη2m̄∂þδconfOðxÞ ¼ δconfϕϵ;mðx; ηÞ þ Δconfϕϵ;mðx; ηÞ; ðC1Þ

Δconfϕϵ;mðx; ηÞ ≔ ðδϵ þ δη þ δη
2 þ δϵηÞϕϵ;mðx; ηÞ; ðC2Þ

where

δconf ≔ −½a · ∂ þ ωμ
νx̄ν∂μ þ λðx̄ · ∂ þ ΔOÞ þ x̄2b · ∂ − 2b · x̄ðx̄ · ∂ þ ΔOÞ�; ðC3Þ

δη ≔ 2ηð2b · x̄ − λÞð∂η − 2im̄∂þÞ − 2ηðd − 1 − 2ΔOÞb · ∂; ðC4Þ

δϵ ≔ 2ϵ½ð2b · x̄ − λ − ω−þÞ∂2
− þ 2ðx̄ · ∂ þ ΔO þ 1Þbþ∂− − ωiþ∂i∂− − 2x̄þ∂−b · ∂�; ðC5Þ

δη
2 ≔ 4η2b · ∂ð∂η − 2im̄∂þÞ; ðC6Þ

δϵη ≔ 8ϵηbþ∂−ð∂η − 2im̄∂þÞ; ðC7Þ

δϵ
2 ≔ 8ϵ2bþ∂3

−; ðC8Þ

and x̄ ¼ ðx⃗; xþ þ 2im̄η; x−Þ with a · ∂ ≔ ai∂i þ aþ∂þ þ a−∂−.
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