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Abstract: This paper deals with the partitioning problem of power networks by applying the
so-called Koopman Mode Analysis (KMA) to sampled voltage-angle data. KMA is based on the
so-called Koopman operator defined for arbitrary nonlinear dynamical system and provides an
infinite dimensional but linear description of the evolving nonlinear dynamics. By computing a
set of dynamically relevant modes using the KMA, a new partitioning method for power networks
is introduced, and multiple partitions are derived for a benchmark system. The obtained result
is compared with two conventional methods previously applied to the partitioning problem;

spectral graph theory and slow coherency.
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1. INTRODUCTION

A controlled islanding strategy aims to intentionally split a
network into disjoint parts to prevent fault propagation in
an emerging blackout scenario. The network partitioning
problem is the key part of such a strategy. Partitioning a
power network by means of coherent areas is also relevant
for PMU placement and for deriving a simplified dynamic
equivalence for a large network. Previously, numerous
methods have been suggested to identify appropriate par-
titions. These methods are mainly based on one of two
different approaches or a combination of them. The first
approach is based on the notion of generator coherency
which can be determined by a linearization of system
equations. The second one is based on an analysis of the
network structure (represented by a graph) to determine
separation points by identifying clusters and weak con-
nections between them. In this paper, as an alternative
method, we aim to introduce a power network partitioning
method based only on sampled data following a fault.

A popular analysis method for identification of coherent
generators and areas is Slow-Coherency (SC) in Chow
et al. (1995). In You et al. (2004) the SC method used in
combination with a search algorithm to identify partitions
intended for controlled islanding. An extended version
of the classical SC method is derived in Yusof et al.
(1993) to include all buses directly without restricting
to generators’ internal buses. Sun et al. (2003) outlines
a method based on the so-called ordered binary decision
diagram and evaluates it in a simulation study in Sun
et al. (2005) and proposes a real-time strategy in Sun
et al. (2006). Spectral graph theory is used in Ding et al.
(2013) together with power flow and generator stability
constraints and in Sanchez-Garcia et al. (2014) where they
utilize a new dendrogram-based technique and evaluate
different weights on edges (representing transmission lines)

to construct the so-called graph Laplacian, from which
partitions are derived through its eigenanalysis.

In this paper, we outline a power network partitioning
method based on the Koopman Mode Analysis (KMA)
applied to data on dynamics of voltage bus-angles sampled
following a fault in a benchmark system. KMA was first
introduced to power system analysis in Susuki and Mezié
(2011) for coherency identification of generators and later
used as a precursor to instability in Susuki and Mezié
(2012). An overview of various applications of KMA and
a comprehensive theoretical description is given in Budisié
et al. (2012). Previously, KM A-based partitioning has been
investigated by the current authors in Raak et al. (2014)
and Raak et al. (2015). The contribution of this paper is to
propose a new procedure for multi-way partitioning. The
procedure is demonstrated by time-domain simulations
with comparisons of partitioning using spectral graph
theory and a slow coherency based method.

The remainder of this paper is organized as follows.
Section 2 explains the fundamental concepts of KMA
and gives a short description of spectral graph theory.
Section 3 outlines the partitioning method applied in this
paper. Section 4 presents simulation results of the method
applied to a benchmark system. Finally, a summary and
concluding remarks are given in Section 5.

Notation: The i-th component of a vector v is denoted
[v];. Likewise, the (i,7)-th entry of a matrix M is given
by [M];;. The euclidean norm of v is given by |lv|. A
complex number z can be written as z = AZ«, where
A is the modulus and « the argument. A set of integers
with cardinality N is defined as N' = {1,...,N}.



2. THEORETICAL BACKGROUNDS
2.1 Koopman Mode Analysis

The following theory is based on Budi§i¢ et al. (2012);
Mezié¢ (2005, 2013); Rowley et al. (2009); Susuki and Mezié
(2011, 2012). Let us consider a continuous-time dynamical
system evolving on a smooth manifold M (x € M):

dx

= = F(a), 1)
where & contains the state variables of the system (such
as generator angles and speeds in power system modeling)
and F' a function that governs the evolution. Since in this
paper sampled dynamics are considered, the evolution (1)
is rewritten as follows:

LTr+1 — {)h(mk), h = tk+1 — tk, (2)

where ®" is a mapping defined with solutions of (1) and
h is the time-step between two consecutive samples. Now
we introduce the so-called Koopman operator U and its
fundamental characteristics. Consider a scalar observable
g: M — R, such as a bus angle or voltage acquired via a
measurement device in a power network. Applying U to g
yields:

Ug)(@) := (g0 ")(2) = 9(®"(2)), 3)

which is a composition of g with ®". Since U is linear
though infinite dimensional, its spectrum is expressed as

Z/{(piz)\i(pi, i:1,2,... (4)
where ¢; is the eigenfunction associated with the eigen-
value \;. Now, consider a vector observable g : M — R™.

If all components of g lies within the span of ¢;, g can be
decomposed in terms of an infinite sum:

g(x) = Z pi(z)v;, (5)

where v; is a vector coefficient associated with the pair
(M\i, i) and called the Koopman Mode (KM). J; is called
the Koopman Eigenvalue (KE). Applying U to (5) allows
the evolution from g(x¢) to g(xx) to be written as:

g(xzy) = Z%‘(a?k)vi = Z/\fwi(ﬁﬂo)vi- (6)

In Rowley et al. (2009), it is shown that an algorithm
similar to the well known Arnoldi iteration produces the
following decomposition of the same type as (6):

N
gp =Y M, k=0,...,N—1,
i=1

(7)

N
gy =Y Ao+,

i=1
where 7 is a residual term containing an approximation
error. For N + 1 vectors of measurements equally spaced
in time, (7) approximates (6) in terms of a finite sum of N
KMs and KEs. From now, when treating KMs and KEs,

we will refer to pairs of Ritz vectors and values (D;, \;).
For a KM pair, the Growth Rate (GR) |)A;| is defined
together with the norm ||9;]|, which are used to identify
dominant KMs exhibiting sustained oscillations and large
contributions to the sum (7).

N + 1 samples

Bus-Angle
N
Y

Time -1
(a) Window of sampled data on (b) Initial phases in a single
bus-angles. KM plotted on the unit circle.

Fig. 1. Tllustration of data acquisition in (a) and coherency
of initial phase in (b).

Coherency identification for power network dynamics us-
ing KMs was originally proposed by Susuki and Mezié
(2011). Suppose a set of KMs {v1,...,vy} identified from
a finite-time window of bus angle dynamics for a power
network comprising m buses, see Fig. 1(a). First, con-
sider the j-th element of the i-th KM, [v;]; = A;;Zcy;,
ieN, je{l,...,m}, where A;; is called the amplitude
factor and oy; the initial phase. Naturally, in a coherent
group of buses for a given KM wv;, all buses are oscillating
with a small phase difference between them. More rig-
orously, according to Budisi¢ et al. (2012) by taking a
positive constant €,, which we call the phase tolerance,
and choosing two measurement points g; and g¢; from g,
we define the following condition for phase coherency:

llai]r — [ai]i] < €as (8)
where «; is the initial phase vector for wv,;. If (8) is
fulfilled, then g; and g; are called €,-coherent for the i-
th KM, see Fig. 1(b). When coherency for a collection of
dominant KMs {v1,...,v4} with associated initial phases
Ay = [, ..., ay] is concerned, then (8) has to hold for
all a; simultaneously which can be expressed as

|[Aa]ki — [Aa]li‘ < €q, Vi € {1, . ,d} (9)

The coherency condition for multiple KMs given in (9) is
exploited in the proposed multi-way partitioning.

2.2 Spectral Graph Theory

Spectral graph theory is the analysis of graphs (networks)
by means of eigenvalues and eigenvectors of matrices as-
sociated with it, primarily the so-called Laplacian matrix.
For a power network, buses are represented by vertices and
transmission lines (and transformers) by edges. Connec-
tions of the network consisting of m buses are described
by the adjacency matrix A where [A];; = [A];; = wy; if
vertices {7,j} are connected by an edge and [A];; = 0
otherwise. Here, for edge weights, w;; = w;; holds if unidi-
rectional networks are considered. A network is concisely
represented by the graph tuple G = (V, &, w), where V
and & are the sets of vertices and edges. The degree of
a vertex is defined as d; = Y°7" | [A;j, i.e. the number of
edges connected to each vertex. The graph Laplacian can
then be defined as:

L = diag(d;, . ..,dm) — A. (10)
For connected networks, eigenvalues of (10) are listed

based on increasing magnitude: \; =0 < Ay < -++ < Apy,.
On the other hand, a multiplicity of zeros implies that



Algorithm 1 Proposed partitioning via KMA

Require: {0y,...,0x}: data set of bus-angle dynamics;
G = (V,&,w): graph of the target power network

Ensure: Cutset

1: {()\Z, ’Z}i);’i S N} — RU.DKMA(@)

2: Ng €N « DominantKMs(\, v)

3: {a;;i € Ny} + IntialPhaseVector(o, Ny)

4: Cg = [Cl, ceey CNCG] — DetermineNCG(ai;i S Nd)

5: IdentifyCutset(Cg, G)

the network consists of a number of disjoint sub-networks
corresponding exactly to the number of zero eigenval-
ues. The eigenvector V5, associated with Ao, the second
smallest eigenvalue of a connected network, is of essential
importance in the partitioning of a network. A 2-way
partitioning, in other words the graph bisectioning, can
be determined by evaluating the sign of each component
in V5 as follows:

1€V if [VQ]Z >0, i€ Vy if [VQ]Z <0, (11)
where V; and V, are the two disjoint sets of vertices.
For a multilevel partitioning using eigenvectors, we can
consider two simple approaches. The first one is to apply
(11) iteratively on the increasingly smaller partitions until
a desired amount of partitions is obtained. The second one
described in Riolo and Newman (2012) is to consider a
matrix W := [Va, ..., Vo], where the rows of W can be
interpreted as points in a (k — 1)-dimensional space. One
can now apply a k-means clustering method, see Kanungo
et al. (2002), to obtain k partitions.

3. KMA-BASED PARTITIONING METHOD

In difference to conventional methods, the proposed par-
titioning method is solely based on information extracted
from a dataset of sampled dynamics and is intended to
capture the actual dynamic behavior of the system follow-
ing a fault. Consider bus-angle dynamics acquired under
uniform sampling:

{6¢,...,0N}, (12)
where 8 = [0;,...,0,,]" and the subscript in (12) corre-
sponds to an instance in time. Furthermore, the following
two assumptions are made:

(i) Bus-angle data for every bus is acquired.
(ii) Structure of the network is known.

Assumptions (i) and (ii) are reasonable since the method
is intended to the backbone high-voltage transmission
system which does not generally comprise more buses than
in the order hundreds: see Sun et al. (2005). Partitions are
identified from a single KM and combination of multiple
KMs by the following steps in Algorithm 1:

(1) Applying KMA to (12) gives N KMs (RunKMA).

(2) Sort and list all KMs based on decreasing GR and
select typically the 20-30 KMs with the largest GRs.
Among those KMs, limit the selection to KMs with
the largest norms (in this paper we have chosen 9
including 8 oscillatory pairs). In this manner, KMs
likely to represent the dynamical information in
the set of data have been identified. These are the
dominant KMs and identified as the set Ny C N
(DominantKMs).
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Fig. 2. Nlustrative examples of how the Number of Co-
herent Groups (NCG) varies as a function of phase
tolerance €,. The number of phase points (and max-
imal NCG) is 40, (a) shows uniformly distributed
angles with 9° phase difference between two consecu-
tive points, (b) uniformly distributed random angles
[0°,360°], and (c) three clear clusters of phase points.
Plots (d)-(f) show NCG when ¢, is varied from 0° to
120° for the phase distribution given directly above.

(3) Initial phase vectors are calculated (IntialPhaseVector).

(4) Through the use of (8), important information can
be gathered for how the Number of Coherent Groups
(NCG) varies with the chosen tolerance €, as il-
lustrated in Fig. 2. A large phase tolerance span
for for a certain NCG is indicative of a clear sep-
aration between clusters of buses. An appropriate
grouping in terms of multiple KMs can be de-
rived by means of (9). A grouping matrix Cq =
[e1,. .., enca] containing the coherent groups is iden-
tified (DetermineNCG).

(5) With Cg determined, the cutsets are simply identified
by finding the transmission lines connecting buses
belonging to different groups (IdentifyCutset).

Figure 2 shows an example of identification of coherent
groups based on the condition (8) as a function of the
phase tolerance €. If phase angles are distributed equally
with a fixed spacing (9° is used in Fig. 2(a)), then
obviously NCG decreases from the number of phase angles
to 1 when €, = 10°. Let €y, denote the minimum angle
difference between two points such that NCG(epq+€) = 1,
where € is a small, positive constant (e, = 9° for Fig.
2(a)). For the randomly distributed set of phase angles in
Fig. 2(b), NCG decreases from its maximal value until
NCG(éma) in a linear manner on the logarithmic plot,
which corresponds to an exponential decrease. On the
other hand, for a clustered phase angle distribution (Figs.
2(c) and (f)), alarge permissiveness to changes in €, visible
as constant plateaus is evident. Thus, the coherent groups
for KMs are identified by locating the plateaus.

4. DEMONSTRATION
4.1 Benchmark System and Simulation Setting

The IEEE 118-bus test system in Fig.3 is adopted as a
benchmark system with load-flow data acquired from the



Fig. 3. IEEE 118-bus test system. Dynamics of the system
are simulated with the classical model of 19 genera-
tors. Generator buses are indicated by hollow squares,
and load and intermediate buses by filled circles.

Bus-Angle 6; (rad)

Time (s)

Fig. 4. Dynamics of bus-angles in the IEEE 118-bus test
system following a three-phase fault at bus 17 (the
same data are also used in Raak et al. (2015)).

Power Systems Test Case Archive (accessed on February 9,
2015) and simulated with 19 synchronous generators with
parameters chosen same as Sun et al. (2005). Simulations
are carried out using the Power System Analysis Toolbox
(PSAT) for MATLAB, see Milano (2005).

Every bus-angle measurement is related to a mean-angle
defined at a time-instant k = ¢, as

1 m
O = — E 6,
k mj:1 7.k

which acts as a reference frame similar to the center of
inertia or center of angle defined for generator rotor angles,
see Kundur (1994). The advantage of the choice is that
we do not need any additional generator measurements
to establish a reference. By relating each bus-angle to the
mean angle, it is easy to detect the coherent motions of
groups of buses swinging against each other or separating
the system in a desynchronized manner.

(13)

In the proposed partitioning method, to facilitate clear
results with few and large coherent groups and to prevent
the case where scattered isolated buses becomes identified
as partition candidates, we disregard “lonely” buses with a
phase difference more than e, £ 10° to its closest neighbor
and let those buses join its closest geographical neighbor.

Table 1. Dominant KMs obtained for the data
on bus-angle dynamics shown in Fig. 4.

No. GR Freq. [Hz] Norm
J [Ail ImfnA;]/@2nTs) |9
1 1 0 3.29
2 0.9977 +1.04 0.28
3 0.9976 +1.24 0.25
! 0.9975 +3.29 0.05
! 0.9970 +0.21 0.02
! 0.9965 +2.59 0.03
! 0.9959 +2.37 0.16
4 0.9950 +2.02 0.19

4.2 Partitioning Results

The test system is subjected to a three-phase fault at bus
17 inducing the oscillatory response shown in Fig. 4. The
short-circuit duration is 280 ms and is cleared at ¢t =1
s. KMA is now applied to the data for [1,8] s with a
fs = 1/T5 = 60 Hz sampling frequency which yields 420
KMs. Dominant KMs are identified and listed in Table 1.
Let us here pick up the three oscillatory KMs which rows
are marked in gray, because of their large norms compared
to the rest. KM-1 is a bias mode containing a time-average
of bus-angle measurements and is hence not used for the
partitioning. In Fig. 5, initial phases for the chosen KMs
are plotted on the unit circle. A few scattered buses are
clearly visible in Fig. 5 (one for KM-3 and three for KM-
4) and are here disregarded as explained in the previous
section.

Figure 6 presents NCG vs. €, plots for the three KMs
individually and for their combination based on (9). KM-
2 displays a clear partitioning for two groups which is
maintained for €, € [5°,152°], and KM-4 gives a similar
result. KM-3 displays clear plateaus for a NCG of 4,3 and
2. For the plot corresponding to NCG for multiple KMs
denoted “All KMs,” a wide plateau is visible for NCG = 4.
However, for this plateau NCG decreases to 1 for KM-4
and does not provide any information. Thus, the second
largest plateau occurring for NCG =5 is used here as a
multi-way partitioning for KMs. This actually corresponds
to the union of cutsets for NCG = 2 for all KMs, shown
in Fig. 7. The almost identical cutsets (except for the two
load-buses 71 and 73) in the left central part provided by
KM-3 and 4 are treated as one which ultimately provides
a 4-way partitioning of the network.

The KMA-based partitioning is depicted in the bench-
mark system in Fig. 8. For the sake of comparison, a 4-
way SC partitioning derived with the technique in Yusof
et al. (1993) and lastly, 3 and 4-way partitioning using
the Laplacian eigenvectors {V2,V3} and {V3,V5,V 4},
together with k-means are also illustrated in Fig. 8. The
Laplacian is produced with all edge weights w;; set to 1.

Let us compare the 4-way partitioning results. Roughly
speaking, the three different techniques identify the same
three large partitions. The KMA and SC based methods
identify a coherent area around generator bus 87. In fact,
the resulting partitions contain the same generators. On
the contrary, graph-based partitioning suggests a partition
in the lower right part of the network.
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Fig. 5. Initial phases for KMs 2-4 given in Table 1 plotted
on the unit circle (plots also appear in Raak et al.
(2015)).
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Fig. 6. Number of Coherent Groups (NCG) vs. phase
tolerance €, according to (8) for KMs 2-4 and for the
combination of them (“All KMs”).

4.8 Time-Domain Simulations

Now time-domain simulations are run for the four different
partitioning results in Fig. 8. The system remains in a
steady state until ¢t =1 s when the network separation
is initiated by simultaneously disconnecting all tie-lines
associated with the partitioning. In Fig. 9, time responses
for angular frequencies w; of generators are given for
the four cases. It is clear that all simulation cases yield
stable responses converging to new steady states. The
magnitude of the frequency deviation depends on the
balance between load and generation, and the lowest
deviations are achieved for the partitioning according
to spectral graph theory into three parts. For 4-way
partitioning, the proposed KMA-based method yields the
overall smallest frequency deviations.

A close up showing the angular responses of generators
during the first second after separation are given in Fig.
10. The KMA-based partitioning displays possibly the
smallest oscillation amplitudes of generators for 4-way
partitioning.

5. CONCLUDING REMARKS

In this paper, we proposed and demonstrated a method of
power network partitioning based solely on measurements
of bus voltage angles by applying the so-called Koop-
man Mode Analysis (KMA). The KMA-based method
was applied to the ITEEE 118-bus test system and the
result was compared with two other well-known meth-
ods of network partitioning; spectral graph theory and a
technique based on slow coherency. By exploiting a new
coherency condition in (9) for KMs based on a maximum
allowable phase difference tolerance between two buses,
an appropriate amount of partitions can be identified as

1,04 Hz KM-2
w1 24 Hz KM-3
202 Hz KM-4 | 2

Fig. 7. Partitioning of the benchmark system for KMs 2-4
with cutsets indicated by colored lines.

Fig. 8. Multi-way partitioning of the IEEE 118-bus test
system based on (a) phase-coherency in KMs 2-4
identified from dynamics of the three phase fault, (b) a
Slow-Coherency (SC) technique including load buses,
and (c)-(d) for spectral graph theory for 3 and 4-way
partitioning. Disjoint partitions can be distinguished
based on the gray and non-colored areas.

a permissiveness to changes in phase difference tolerance
for a certain Number of Coherent Groups (NCG), which
is apparent as plateaus in a NCG vs. phase tolerance plot.
This technique is valid for multiple KMs and can thus
derive multiple frequency coherent partitions.
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