
Data-Driven Partitioning of Power Networks

via Koopman Mode Analysis

Fredrik Raak1 a), Yoshihiko Susuki1 2, and Takashi Hikihara1

Abstract—This paper applies a new technique for modal
decomposition based solely on measurements to test sys-
tems and demonstrates the technique’s capability for par-
titioning a power network, which determines the points
of separation in an islanding strategy. The mathematical
technique is called the Koopman Mode Analysis (KMA)
and stems from a spectral analysis of the so-called Koop-
man operator. Here, KMA is numerically approximated by
applying an Arnoldi-like algorithm recently first applied to
power system dynamics. In this paper we propose a practi-
cal data-driven algorithm incorporating KMA for network
partitioning. Comparisons are made with two techniques
previously applied for the network partitioning: spectral
graph theory which is based on the eigenstructure of the
graph Laplacian, and slow-coherency which identifies co-
herent groups of generators for a specified number of low-
frequency modes. The partitioning results share common
features with results obtained with graph theory and slow-
coherency-based techniques. The suggested partitioning
method is evaluated with two test systems, and similari-
ties between Koopman modes and Laplacian eigenvectors
are showed numerically and elaborated theoretically.

Index Terms—Power system monitoring, spectral graph
theory, power network partitioning, coherency identifica-
tion.

Notation

[x]i (or [A]ij) i-th (or (i, j)-th) element of a vector x
(or a matrix A)

||x|| Euclidean norm of x

diag(e1, . . . , en) n × n diagonal matrix with elements
(e1, . . . , en)

> Transpose operation of vectors

zc Complex-conjugate of z ∈ C

z = |z|∠φ Angle notation of z with modulus |z|
and argument φ := =[ln z]

N (or K) Set {1, . . . , N} (or {1, . . . ,K})
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1 Introduction

New technologies emerging in the power system such as in-
tegrated information systems and micro-grids enable new
possibilities for coordinated counter-strategies against cas-
cading failures. A commonly proposed strategy to pre-
vent blackouts and limit fault propagation is the controlled
islanding strategy [1–4]. A key part of the controlled is-
landing strategy is the partitioning problem, i.e. to decide
where to separate a power network. In this paper, we pro-
pose a new method for power network partitioning based
on solely measurements of bus-voltage angles.

The partitioning is based on the premise that a power
network consists of tightly connected groups of buses (clus-
ters) loosely connected to each other. Existing methods
are classified into two types: (static) graph-based and
dynamics-based. For the first one, the network partitioning
problem has also attracted interest from a purely graph the-
oretical perspective. If the network is preferably separated
by identifying loosely connected clusters, relevant cutsets
can be identified by applying graph methods such as spec-
tral graph theory. For the second one, a vast power net-
work exhibits inter-area oscillations (or modes) that cause
multiple groups of generators to oscillate in an anti-phase
motion. An in-phase group of generators is called coher-
ent. The notion of coherency is used for determining the
partition of a target network.

Numerous papers have outlined partitioning methods.
In [3] a strategy based on the concept of slow-coherency [5]
is presented where optimal separation points are deter-
mined using a search algorithm. The same method is ap-
plied in [4] to a test-case similar to the infamous black-
out 2003 in North America and it is shown that a con-
trolled islanding strategy can improve the network’s fault
response. The standard slow-coherency technique is ex-
tended to include load-buses in [6] to directly provide a
partitioning of the network. In [7] a new strategy is pro-
posed based on so-called ordered binary decision diagram.
In [8] a simulation study of the same strategy is given and it
is modified and extended to an effective real-time strategy
in [9]. Spectral graph theory is an integral part in identify-
ing network partitions in [10] where power flow and gener-
ator coherency constraints are included and in [11] where
they evaluate graph Laplacians constructed using different
weight on graph edges (transmission lines) and utilize a
dendrogram to derive partitions.

In this paper, we focus on the partitioning problem of
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power networks by utilizing the Koopman Mode Analysis
(KMA) [12–15]. KMA is a nonlinear generalization of stan-
dard modal decomposition and is based on the point spec-
trum of the Koopman operator which provides an infinite-
dimensional, linear description of nonlinear evolution of dy-
namics. An algorithm for computing the so-called Koop-
man Modes (KMs) from observation data is developed in
[13] and is used as data-driven performance assessment of
power systems [16–18]. The contribution of the current
paper is to demonstrate a new power network partitioning
method by applying the KMA on sampled dynamics of bus-
voltage angles. Despite solely based on measurements, two
relevant properties are derived from the demonstrated par-
titioning algorithm. First, graph theoretical properties of a
target network are captured. Second, similarities from the
well-known slow-coherency theory are identified. It is thus
expected that dynamically significant partitions are gen-
erated by the proposed technique which is proven to cap-
ture versatile features from sampled data without models
or simplifications. A preliminary version of this work was
published in [19]. This work contains substantial improve-
ments to the proposed method and new simulations that do
not appear in [19]. In difference to [19], this paper focuses
only on the phase coherency of bus-angles and a practical
method is outlined which incorporates K-means to identify
coherent groups of buses. Furthermore, it is demonstrated
that the proposed partitioning method yields similar results
when applied to data for different disturbance locations in
the test network. Finally, a new comparison with slow co-
herency is made and a theoretical motivation is given.

The advantage of the method presented in this paper
compared with the previously mentioned ones is that ours
is basically model-free and relies only on actual data on
dynamics in the network following a disturbance to iden-
tify a suitable network partitioning. On the other hand,
graph theoretical methods or linearization techniques are
per default constrained by modeling simplifications and/or
potentially require substantial amounts of detailed power
grid data and parameters to provide accurate results.

The rest of this paper is organized as follows. Section 2
provides a short theory of KMA and a concise description
of fundamental concepts in spectral graph theory. Section
3 presents and explains the main idea of the paper: data-
driven partitioning via KMA. Section 4 presents a demon-
stration of the idea with two benchmark test systems. Con-
clusions of this paper are given in Section 5.

2 Theoretical Backgrounds

In this section, we summarize theoretical backgrounds for
the current development and demonstration: KMA and
spectral graph theory.

2.1 Koopman Mode Analysis

The following theory is based on [12–17]. The Koopman
operator [20] defined for arbitrary dynamical systems is a

linear operator with the ability to capture nonlinear phe-
nomena. Here, let us introduce the Koopman operator for
power network dynamic data. A power network is thought
of as a continuous-time dynamical system evolving on a
smooth manifold M : for each state x ∈M ,

dx

dt
= F (x), (1)

where x is the vector that contains internal variables of
the system such as generator angles, and F is a nonlinear
vector-valued function defined on M to represent the rule
of how x evolves in time. Normally, measurements in a
system are acquired under uniform sampling. Thus, it is
natural to consider the evolution of a discrete-time system
as

xk+1 = Φh(xk), h := tk+1 − tk, (2)

where Φh is the time-invariant map defined by solutions
of (1) and tk denotes the time instance at a sample. Let
us consider a scalar observable g : M → R from (2). The
observable is a mathematical model of measurements of the
network dynamics via sensors such as voltage phasors and
power flows. The Koopman operator U belongs to a family
of operators that applied on g, it maps g to a new function
Ug as,

(Ug)(x) := (g ◦Φh)(x) = g(Φh(x)), (3)

where g is composed with Φh. The Koopman operator
itself is linear and thus it is natural to perform the spectral
analysis. Eigenvalues λi ∈ C and eigenfunctions ϕi : M →
C of U are defined as

Uϕi = λiϕi, i = 1, 2, . . . (4)

Next, a spectral representation of measured network
dynamics based on the Koopman operator is presented.
To encompass the scenario when the network is syn-
chronously measured at multiple locations like in a PMU-
based wide area measurement system [21], let g(x) :=
(g1(x), g2(x), . . . , gm(x))> : M → Rm be a vector-valued
observable. If all the components of g lies within the span
of eigenfunctions ϕi, we can expand g(x) in terms of eigen-
functions,

g(x) =

∞∑
i=1

ϕi(x)vi, (5)

where vi ∈ Cm are vector-valued coefficients in the expan-
sion and depend on the choice of observable. We call λi the
i-th Koopman Eigenvalue (KE) and vi the i-th Koopman
Mode (KM). The time evolution of observable g(xk) from
g(x0) is thus expanded as follows:

g(xk) =

∞∑
i=1

ϕi(xk)vi =

∞∑
i=1

λki ϕi(x0)vi. (6)
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This shows that the possibly nonlinear evolution in mea-
sured network dynamics is characterized by the spectrum
of the Koopman operator U .

It is shown in [13] that an Arnoldi-type algorithm pro-
duces a decomposition of the same type as (6) for a finite
series. The input of the algorithm is N + 1 vectors of the
measured network dynamic data under uniform sampling,

{g0, . . . , gN},

where gk ∈ Rm is the snapshot at the discrete time k, and
m the number of measurement locations. The algorithm
presents the following finite-series approximation of (6):

gk =

N∑
i=1

λ̃ki ṽi, k = 0, . . . , N − 1,

gN =

N∑
i=1

λ̃Ni ṽi + r,


(7)

where r ∈ Rm is a residue representing an approximation
error. The N pairs (λ̃i, ṽi) are the output of the algorithm
and behave similarly to KEs and KMs. We refer to the type
of data analysis based on (7) as KMA. Dominant KMs in
(7) are identified by sorting on the Growth Rate (GR) |λ̃i|
and norm ‖ṽi‖. GR indicates the damping of a KM and
the norm quantifies its contribution in the measured data.
We speculate that a heuristic condition to decide on the
number of dominant KMs can be derived by evaluating the
ratio between a chosen set of KMs and remaining KMs for
the sum (7).

A data-driven coherency identification from the mea-
sured data via KMA was first proposed in [16] and was
theoretically refined in [14]. For a derived KM vi with
[vi]j = Aij∠αij where i ∈ N and j ∈ {1, . . . ,m}, we call
Aij the amplitude factor and αij the initial phase. A coher-
ent group of buses with respect to a particular KM implies
that all the buses in the group show in-phase swings with
the (single) frequency determined by the KM. Now con-
sider the i-th KM vi. For a small positive constant ε, if
for the two scalar observables j1 and j2 in g, the initial
phases satisfy |αij1 − αij2 | < ε, then the two observables
are called (ε-) phase-coherent with respect to the i-th KM.
Related to this, we define the sum of Complex Conjugate
(CC) (oscillatory) KEs scaled by their KMs as

[SCC,i]
k
j = λki [vi]j + (λci )

k[vi]
c
j

= 2Aij |λi|k cos(αij + kφi), λi = |λi|∠φi,

where setting k = 0 (initial time) yields

[SCC,i]j = 2Aij cos(αij), (8)

which provides a quantitative measure on how the oscil-
latory KM pair is excited at each measurement location.
The real-valued vector SCC,i will be referred to as the i-th
spatial shape of oscillatory KMs in (6).

2.2 Spectral Graph Theory

In the rest of this section, we introduce fundamental con-
cepts in graph theory based on [22]. Spectral graph theory
studies networks in terms of eigenvalues and eigenvectors
of associated matrices. We denote a graph by the tuple
G = (V, E , w), where V is the set of vertices, E is the set of
edges, and w : E → R is the weight function of each edge
(e.g. see Fig. 2). For a power network with m buses and
an arbitrary number of transmission lines, V and E corre-
spond to the sets of buses labeled by integers from 1 to m
and transmission lines, respectively. We use the notation
(i, j) for representing the edge connecting between vertices
i and j ∈ V = {1, . . . ,m}. The weight function w usually
assigns every edge unity (= 1), line admittance, or steady
power flow on the line [11]. The graph considered is said
to be connected if there exists a path between any two ver-
tices. The adjacency matrix A for the graph G is defined
as

[A]ij :=

{
w(i, j), if (i, j) ∈ E .
0, otherwise.

(9)

By counting the degree of vertex i as di :=
∑m
j=1[A]ij ,

the so-called graph Laplacian L is defined as the following
symmetrical matrix:

L := diag(d1, d2, . . . , dm)− A. (10)

Our current interest lies in analyzing the eigenstructure
of this matrix. For a connected graph, L has simple zero
eigenvalue, and all of the other eigenvalues are positive.
Below, they are listed based on increasing magnitude, that
is, λ1 = 0 < λ2 < · · · < λm.

The eigenstructure of L has been exploited for graph par-
titioning. In [23] the so-called algebraic connectivity is de-
fined and associated with the pair of the 2nd eigenvalue
and associated eigenvector, (λ2,V 2), where V 2 is known
as the Fiedler vector. For a connected graph G, the so-
called graph bisectioning, which partitions V into two dis-
joint sets V1 and V2, can be conducted using V 2 by the
following conditions [24]:

i ∈ V1 if [V 2]i ≥ 0, i ∈ V2 if [V 2]i < 0. (11)

This method will be used in this paper as a conventional
one for comparison and we let w(i, j) = 1 for all edges.

3 Proposed Data-Driven Partition-
ing Method

In this paper, we demonstrate how a power network is sepa-
rated into several disjoints parts by applying KMA to bus-
angle dynamics following a disturbance. First of all, we
make two assumptions:

(i) Graph information of a target power network is given.

(ii) Bus-angle dynamics are observed for every bus.
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The network’s configuration can be obtained from the state
estimator’s topology processor [25], and hence (i) is reason-
able. Assumption (ii) is based on two reasons. First, within
foreseeable future we can expect an extensive deployment
of synchronized measurement units. Second, with the dy-
namic state estimator, full observability is achievable even
with a limited amount of PMUs. In fact, placing PMUs at
about one third of the total number of buses is generally
sufficient to achieve full observability [26]. Until such a sys-
tem is in place, it is possible to construct a state estimator
utilizing both SCADA and PMU measurements [25].

The data-driven partitioning method demonstrated in
this paper is outlined below. Its pseudocode is provided
in Algorithm 1.

1. Under the stated assumptions (i) and (ii), consider the
finite-time data on bus-angle dynamics under uniform
sampling, given by

{θ0, . . . ,θN},

where θk = (θ0,k, . . . , θm,k)> is the m-dimensional
snapshot of bus-angles at the k-th time instance and
the number of available snapshots corresponds to N+1
(see Fig. 1(a)). By applying the Arnoldi-like algorithm
to the finite-time data, N pairs (λ̃i, ṽi) (i ∈ N ) of KEs
and KMs are obtained (KoopmanModeAnalysis).

2. A set of dominant KMs, denoted by Nd ⊂ N , is identi-
fied by arranging them in descending order of GR and
norm (DominantKMA).

3. For every pair (λ̃i, ṽi) in the dominant KMs, the ini-
tial phase vector αi := (αi1, . . . , αim)> is calculated
(InitialPhaseVector).

4. By plotting all the components of αi on the unit cir-
cle, the phase coherency in bus-angles is detected. Be-
low, we use the same notation αij to represent its
plotted point. When the K-means clustering algo-
rithm [27] is applied to the m points on the unit cir-
cle, K center points called centroids C`i (` ∈ K) and
associated clusters (subsets of buses) A`i are located
(KmeansClustering).

Algorithm 1 Data-Driven Partitioning via KMA

Require: {θ0, . . . ,θN}: bus-angle dynamic data; G =
(V, E , w): power network graph; K: order of K-means
clustering algorithm

Ensure: Cutset
1: {(λ̃i, ṽi); i ∈ N} ← KoopmanModeAnalysis(θ)
2: Nd ← DominantKMA(λ̃, ṽ)
3: {αi; i ∈ Nd} ← IntialPhaseVector(λ̃, ṽ,Nd)
4: {(C`i ,A`i); i ∈ Nd, ` ∈ K} ← KmeansClustering(α)
5: {ClC`i ; i ∈ Nd, ` ∈ K} ← ComputeClC(C,A)
6: i∗ ← SelectBestPartition(ClC)
7: IdentifyCutset(λ̃i∗ , ṽi∗ ,G)

Time

B
u
s-

A
n
g
le

N + 1 samples

θ1

θ2

θ3

θm

(a) Finite-time, sampled data on
bus-angles.

-1

-1

1

1Centroid

θsep

(  )αij

(b) Phase coherency in one KM.

"Scattered bus"

Cutset

(c) Identified cutset.

Figure 1: Illustration of data-driven network partitioning
via Koopman mode analysis described in Algorithm 1.

5. For each A`i , the distance between a contained point
αij and its centroid C`i is denoted by dist(αij , C

`
i ) with

the standard Euclidean norm. Thus, we compute the
Cluster Coefficient ClC for each cluster A`i as

ClC`i :=

∑
j∈A`

i
dist(αij , C

`
i )

#(A`i)
, (12)

where #(A`i) stands for the number of elements be-
longing to A`i (ComputeClC). A small ClC indicates a
tightly clustered group of buses, and is deemed “small”
in comparison to other dominant KMs and previous
data.

6. The number of dominant KMs is now decreased from
#(Nd) such that only KMs with small ClCs and clear
phase separation θsep between centroids are included
(see Fig. 1(b); SelectBestPartition).

7. Since from assumption (i) the complete network struc-
ture is given, the cutsets are identified by first assign-
ing an index to each bus that represents one of the K
groups and second identify the lines connecting buses
of different groups (IdentifyCutset). In the case that a
singular bus or few buses are detected incoherent with
surrounding buses (see Fig. 1(c)), the so-called scat-
tered buses may be discarded depending on the pre-
ferred partitioning setting.
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V3

Edge (line)

Vertex (bus)

4 3
2

1

P+jQ

j0.2

j0.2

Bus
Line
Load

E2

E1

E3
j0.3

Power System

Modeling

Graph

Representation

j0.2

δ1
ω1

{

δ2
ω2

{

δ3
ω3

{

θiViV=i

V4

V2

V1

Figure 2: Simple test system used in simulations with three
generator buses and one load bus. Two representations are
shown; the upper figure depicts typical power system mod-
eling and the lower figure depicts a graph representation in
terms of vertices comprised by generator buses (filled cir-
cles) and one load bus (hollow circle) connected by edges
(transmission lines).

4 Demonstration

In this section, we demonstrate the data-driven partitioning
method in both simple and more realistic benchmark sys-
tems. The details of how to apply the method to dynamic
data are described here. A connection between partition-
ing results obtained with KMA and spectral graph theory
is also analytically revealed.

4.1 Benchmark Systems and Simulation
Models

We use two benchmark systems in this section. The number
of buses for each system is denoted as m and the number
of generators as n. The first is depicted in Fig. 2 and is
a simple four-bus test system consisting of three genera-
tor buses and one load bus. The second is the IEEE 118-
bus test system [28] depicted in Fig. 6 and simulated with
19 generators with parameters chosen same as [8]. Sys-
tem equations are solved using the Power System Analysis
Toolbox (PSAT) [29] for MATLAB. In PSAT, dynamic re-
sponses of the systems are simulated with the following set
of nonlinear Differential Algebraic Equations (DAEs):

dx

dt
= f(x,y), 0 = g(x,y), (13)

where x is the set of state variables consisting of phase an-
gles δj and rotor speed deviations ωj of generators, and y
the set of algebraic variables of bus-voltages Vj and bus-
angles θj . The vector-valued function f represents the rule
of time-evolution of x defined by the classical swing equa-
tions for synchronous generators, and g governs the active
and reactive power balance at each bus.

The setting for numerical simulations is summarized be-
low. Throughout the simulations, the sampling frequency

fs = 60 Hz was used. Bus-voltage angles θ were sampled
and observed from the so-called mean-angle, which is sim-
ilar to the Center-Of-Inertia (COI) [30] and is defined as
follows: for every time k,

θ̄k :=
1

m

m∑
j=1

θj,k. (14)

According to simulations, this produces a moving reference
similar to the COI reference frame for generator rotor an-
gles. Consequently, a change of reference frame from the
proposed one to COI yields similar results on partitioning.
Also, by using the proposed reference frame no additional
measurement points at generator locations is required.

4.2 Simple Test System

We introduce our approach by first considering a small test
system which comprises three generator buses and one load
bus: see Fig. 2. Parameters of the test system are cho-
sen as follows: base power Sb and generator ratings Sg

are set to 100 MVA, nominal frequency fn = 60 Hz and a
constant impedance load SL = PL + jQL = 3 + j0.05 p.u.
Generator parameters are chosen in a simple manner: tran-
sient reactances x′d,i = 0.2 p.u., inertia constants Mi = 7 s,
damping Di = 0.1, for all generators and mechanical power
Pm = {Pm,1, Pm,2, Pm,3} = {1.5, 0.5, 1} p.u. Two complex
conjugate oscillatory mode pairs are identified from lin-
earization of system equations (13): 1.64 Hz and 2.27 Hz.

A partition of the simple test system is presented by
KMA of sampled data on bus-angle dynamics. For ini-
tial generator frequencies ω0

i , a perturbation is initiated as
ω0
i + ∆ωi, i = 2, 3 with ∆ωi = 0.005 p.u., and the resulting

dynamics are shown in Fig. 3. KMA is applied to 5 s of dis-
turbance data to give 300 KMs. Two oscillatory KMs with
frequencies 1.66 Hz and 2.24 Hz, respectively, are identified
as dominant in the decomposition. Note that the frequen-
cies of the identified KMs are almost identical to the linear
modes. Their spatial shapes denoted by SCC(1.66Hz) and
SCC(2.24Hz) are displayed in Fig. 4 together with V 2 and
V 3, derived from the graph Laplacian of the test system.
The spatial shapes SCC are scaled with appropriate fac-
tors for the sake of comparison. The values of elements
quantify the connectivity. For SCC(1.66Hz), buses 1 and 2
are strongly connected (coherent) and separated from bus
3. By inspecting the initial phases of v1.66Hz in Fig. 5 it
is concluded that bus 4 is also coherent with buses 1 and
2. Thus, the partition according to the 1.66 Hz KM leads
to two groups of buses: {1, 2, 4} and {3}. This is intuitive
by inspection of the network’s structure. The bus-number
dependence of elements are close between SCC(1.66Hz) (or
SCC(2.24Hz)) and V 2 (or V 3). From this observation, we
speculate that the spectral property of the network is ex-
tracted from sampled dynamics of bus-angles via spectrum
of the Koopman operator.
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4.3 Analytical Evaluation

The previous section numerically showed a prominent sim-
ilarity between the Laplacian eigenvectors and spatial
shapes of Koopman modes and hence in the dynamics of
simple test system. Here, we theoretically clarify the con-
nection between KMA and spectral graph theory in terms
of bus-angle dynamics in a general power network model.

Now we introduce the equations of motion for a general
power network. Let us denote by VG the set of buses with
synchronous generators and by VL the set of buses with no
generator. For a generator connected to bus i ∈ VG, the
voltage behind reactance is denoted by Ei∠δi, and the bus-

voltage by Vi∠θi. The differential equations in the DAE
model (13) are as follows: for i ∈ VG,

dδi
dt

= ωi, Mi
dωi
dt

= Pm,i − Pe,i −Diωi, (15)

with the electrical output power Pe,i given by

Pe,i =
EiVi
x′d,i

sin (δi − θi) , (16)

where x′d,i is the transient reactance. According to the
standard argument of short-term rotor stability [30], con-
stant voltages and active/reactive power decoupling are as-
sumed. The algebraic variables y coincide with the bus-
angles θ. Thus, the active power part of g is considered:
for i ∈ V = VG ∪ VL,

0 =
∑

j∈V\{i}

ViVj |Yij |cos (θj − θi + φij)−Pi(x, θi), (17)

where |Yij |∠φij is the admittance of lines connecting bus
i and j (if no line exists, we regard its modulo as zero)
and Pi(x, θi) represents injected power (Pe,i) for i ∈ VG or
constant consumed power (PL,i) for i ∈ VL. Now, following
[31], we use the singular perturbation technique for (13)
and introduce a sufficiently small, positive parameter ε as
follows:

dx

dt
= f(x,θ), ε

dθ

dt
= g(x,θ). (18)

By introducing the new independent variable τ := t/ε, we
have

dx

dτ
= εf(x,θ),

dθ

dτ
= g(x,θ). (19)

By taking the ε→ 0 limit, the boundary layer system is
constructed as

dθ

dτ
= g(x,θ), x fixed, (20)

which captures the dynamical feature of (fast) bus-angle
dynamics in an analytical, self-consistent manner. Here, by
linearizing (20) around a feasible equilibrium point (x∗,θ∗)
of the DAE system (13), we derive

dθ

dτ
= (LP,θ + KPe,θ) ∆θ, (21)

with LP,θ defined as

[LP,θ]i,j :=


∑

`∈V\{i}

ViV`|Yi`| sin (θ∗` − θ∗i + φi`) , i = j,

−ViVj |Yij | sin
(
θ∗j − θ∗i + φij

)
, i 6= j,

(22)

where LP,θ is a graph Laplacian matrix of linearized power
flow for every bus where the state variables (x) are viewed

An equilibrium point (x∗,θ∗) of the DAE system (13) is said to be
feasible if the Jacobian matrix of g with respect to y is regular inside
a neighborhood of (x∗,θ∗).
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Figure 6: IEEE 118-bus test system [28]. The dynamics of
the system are simulated with the classical model of 19 gen-
erators. Generator buses are indicated by hollow squares,
and filled circles represent load and intermediate buses.

as constant. The matrix KPe,θ is a diagonal matrix and rep-
resents the linearized injected power from generators given
as follows:

[KPe,θ]i,i :=


EiVi
x′d,i

cos (δ∗i − θ∗i ) , i ∈ VG,

0, i ∈ VL,
(23)

which can be viewed as a perturbation to LP,θ. The mag-
nitude of perturbation becomes small in particular if the
number of buses is much larger than the number of gener-
ators. Equation (21) determines the behavior of bus-angle
dynamics close to the equilibrium point and is influenced
by the graph Laplacian LP,θ. For the data-driven partition-
ing method based on bus-angle dynamics proposed in this
paper, it makes sense to compare the approach based on
the Koopman operator with the network analysis based on
spectral graph theory.

4.4 IEEE 118-bus Test System

Next, we apply the data-driven partitioning method to
a larger test system, the IEEE 118-bus test system (see
Fig. 6). For gaining finite-time data on bus-angle dynam-
ics, the system is perturbed by three-phase-faults according
to following two cases:

(i) Fault applied to bus 17 with a clearing time tc =
280 ms, slightly below the critical clearing time tcc.

(ii) Fault applied to bus 100 with a clearing time tc =
180 ms, slightly below its tcc.

Load flow parameters used are from [28] and generator pa-
rameters are identical to [8]. The dynamic responses of
all bus-angles for the two cases (i) and (ii) are shown in
Fig. 7. For each case, KMA is applied to the post-fault
data on bus-angles during [1 s, 8 s] and provides 420 KMs.
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(a) Fault at bus 17 (Case (i)).
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(b) Fault at bus 100 (Case (ii)).

Figure 7: Dynamics of bus-angles θi in the IEEE 118-bus
test system for (a) fault at bus 17 (Case (i)) and (b) fault
at bus 100 (Case (ii)).

Dominant KMs identified in the decompositions are listed
in Table 1. The 0 Hz KMs with unit GR appear for both
cases and correspond to the time-averaged values of the
bus-angle measurements in the system. Three KM pairs
for each fault case are chosen and used for partitioning
the system. The chosen KMs have large norms among the
dominant oscillatory KMs and all show small ClCs and
clear separation θsep. Initial phase vectors for chosen KMs
for both disturbance cases are depicted in Fig. 8. For Case
(i), KM-3 (1.24 Hz) clearly displays 3 large groups of buses,
whereas remaining KMs for both the disturbances predom-
inantly contain 2 large groups of buses in anti-phase. Al-
gorithmically speaking, this is identified by applying the
partitioning algorithm with first K = 2 and then K = 3
and note that the obtained ClCs decrease for the case with
K = 3 while a clear θsep is maintained. Thus for the KM-3,
3-means clustering is applied, otherwise the 2-means one is
used. According to the algorithm, dominant KMs provide
partitioning of the system into two or more sub-systems
(depending on cohesiveness of coherent buses). Partitions
for the chosen dominant KMs based on phase coherency
are given in Figs. 9 and 10. For Case (i), KM-3 provides
a partition that shares the cutset obtained from spectral
graph bisectioning but contains additional cutsets. KM-2
for both the disturbance cases are almost identical in terms
of provided partitioning and frequency. A comparison be-
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Table 1: Dominant Koopman modes obtained for the data
on voltage angle dynamics shown in Fig. 7. Rows marked in
gray indicate KMs that have been chosen for the network
partitioning.

Case No. GR Freq. [Hz] Norm ClC θsep
# j |λ̃j | Im[lnλ̃j ]/(2πTs) ‖ṽj‖ ClC`

j (deg)

(i)

1 1 0 3.29 0,
0

180

2 0.9977 ±1.04 0.28 0.009,
0.008

177

3 0.9976 ±1.24 0.25
0.036,
0.018,
0.028

77,
103,
180

¦ 0.9975 ±3.29 0.05 0.130,
0.074

173

¦ 0.9970 ±0.21 0.02 0.091,
0.004

185

¦ 0.9965 ±2.59 0.03 0.164,
0.246

168

¦ 0.9959 ±2.37 0.16 0.081,
0.055

179

4 0.9950 ±2.02 0.19 0.039,
0.043

180

(ii)

1 1 0 1.02 0,
0

180

2 0.9992 ±1.00 0.17 0.042,
0.104

167

3 0.9976 ±1.40 0.33 0.007,
0.044

178

¦ 0.9970 ±0.83 0.1 0.079,
0.086

173

¦ 0.9970 ±1.59 0.1 0.128,
0.049

176

4 0.9966 ±1.23 1.73 0.007,
0.004

180

¦ 0.9966 0 0.27 0,
0

180

¦ 0.9965 2.46 0.04 0.016,
0.011

179

tween the Laplacian eigenvector V 2 and the spatial shapes
SCC(1.04Hz) and SCC(1.00Hz) of KM-2 is given in Fig. 11
(spatial shapes for buses 86 and 87 are not shown due to
large magnitudes compared to other buses). It is clear that
the same mode is captured for both the disturbance cases
and that its shape is similar to V 2. KM-4 for Case (i) pro-
vides a cutset similar to cutsets for KM-3 and 4 for Case
(ii).

Here, it should be noted that the partition depends on
if buses in a coherent group are geographically adjacent.
For instance, it is possible that buses in the north and
south of the system are swinging coherently against the
central buses for a certain mode. Thus, even though they
are detected as coherent in terms of KM, applying 2-means
clustering and identifying cutsets will yield a partitioning
into 3 groups: see e.g. the broken green circle in Fig. 9
that encircles generator bus 31 which is incoherent with
surrounding buses. A special attention should be given to
these occurrences.

4.5 Comparison with Slow-Coherency-
Based Partitioning

As reviewed in Section 1, the slow-coherency-based parti-
tioning method is widely used. Here, for comparison we
consider a partition obtained from the method presented
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Figure 8: Initial phase vectors αj of selected oscillatory
KMs listed in Table 1.
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Figure 9: (Color online) Partitioning of the IEEE 118-bus
test system based on phase-coherency in KMs for fault Case
(i) (bus 17) and spectral graph bisectioning using V 2. The
cutsets are indicated by colored lines.

in [6] which extends the method in [32] to include load
buses and not only to group generators behind transient
reactances. The resulting 4-way partitioning for the slow-
coherency based method is depicted in Fig. 10. As pointed
in Figs. 9 and 10, the KMA-based partitioning identifies
generator bus 87 as incoherent with the adjacent buses.
In agreement with this, the slow-coherency-based method
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Figure 11: Comparison between the second eigenvector V 2

of the graph Laplacian and spatial shapes SCC of KM-2 for
both disturbance cases.

identifies bus 87 as an incoherent bus with respect to the
adjacent buses. A more refined slow-coherency-based parti-
tioning (not shown) reveals a new partition around bus 31,
as was identified by KM-4 for Case (i). On the other hand,
graph theoretical methods do not take into account the pe-
culiar behavior and interaction of dynamical components
in the large test system. Additionally, KM-2’s partition
for Case (ii) is identical to one of the cutsets obtained from
the slow-coherency technique. Also, KM-2 and 3 from Case
(i) as well as spectral graph bisectioning provides a similar
cutset. In fact, the partitioning obtained from KM-3 (1.24
Hz) for Case (i) corresponds to a large extent to the 4-way
partitioning using the slow-coherency technique. The same
result is also achievable by combining the cutsets of two or
more KMs.

4.6 Advantages and Disadvantages

The advantage of the proposed method lies in that it only
requires a window of sampled dynamics and implicitly takes
into account versatile features in the power system dynam-
ics that otherwise requires a substantial amount of model
parameters. With the expected increase in availability of
synchronized measurements in the future, it is important to
investigate new tools for monitoring and control based on

Table 2: Koopman modes obtained for the Case (ii) fault
for different window lengths where ∆lw is the difference in
number of samples from the original window length 421.
The modes that closely correspond to the previously iden-
tified KMs 2-4 have been picked up among the dominant
modes.

Case ‘KM-2’ ‘KM-3’ ‘KM-4’

∆lw Freq.[Hz] Norm Freq.[Hz] Norm Freq.[Hz] Norm

-30 1.07 0.30 1.37 0.29 1.25 0.71
-6 1.10 0.36 1.32 0.38 - -
0 1.00 0.17 1.40 0.33 1.23 1.73
6 0.96 0.14 1.38 0.73 1.18 0.82
30 0.92 0.25 1.36 0.91 1.19 0.50

sampled data. Since the proposed method is intended only
for application to sampled data following large faults, it is
limited to the extraction of the dynamic behavior excited
by the disturbance, and should act as a complimentary tool
to the standard power system analysis and control. For
real-world applications of data-based methods, one has to
be careful about noise in the data acquisition. It has been
shown that the type of algorithm applied here is sensitive
to noise [33], and thus care should be taken by filtering out
the noise in the measured data.

4.7 Computational Considerations

Another important aspect of this method is the window
length of the acquired data. Here, it is briefly demon-
strated by a numerical example using the data on bus-angle
swings shown in Fig. 7 (b). For the original window length
in terms of samples; lw = N + 1 = 421, we examine the
results of KMA with the slightly perturbed window length
l′w = lw + ∆lw with ∆lw set to ± 6 and ± 30 (here, with
our used fs, ∆lw = 30 corresponds to 0.5 s). Note that the
“starting point” of the window is the same for all window
sizes. In Table 2, KMs are listed which closely correspond
to the KMs previously used for the partitioning. In one
case (for ∆lw = −6), a KM close to ‘KM-4’ could not be
picked up which is marked by ‘-’ in the table. To exemplify
how the partitioning result can change with varied window
length, partitioning for ‘KM-3’ is given in Fig. 12 for all
window lengths. It can be concluded that slightly different
results can be obtained with different window lengths, but
the results remain intact to a large extent despite pertur-
bations of the window size. To achieve a reliable result it
could be of importance to use a moving window and extract
the result using a collection of measurements sets.

Finally, it deserves mentioning that the computation
time for the KMA-algorithm (probably the most time-
consuming computation in the proposed method) using un-
optimized code in MATLAB running on Windows 8 with
a regular laptop PC (Intel Core i5-3317U 1.7 GHz proces-
sor and 8 GB ram of RAM) is about 1.5 s and should not
pose a problem for almost in real-time implementation and
execution.
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lw = - 30  1.37 Hz KM

lw = - 6    1.32 Hz KM

lw = 0      1.40 Hz KM
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lw = 30    1.36 Hz KM

Figure 12: (Color online) Partitioning of the IEEE 118-bus
test system for all cases in Table 2 for ‘KM-3’.

5 Conclusions

In this paper we demonstrated a data-driven method for
power network partitioning based on KMA. It was numer-
ically and analytically shown that the data-driven method
can cover network partitions derived from both spectral
graph and a slow-coherency-based method. Apart from
identifying oscillatory modal structures used for partition-
ing, the KMA-based partitioning pins down the frequency
of oscillations as well as information on damping and par-
ticipation, thus it can be used for monitoring and control
purposes, namely the controlled islanding technique [2, 3].

Integrating the data-driven partitioning with a controlled
islanding strategy is one of the future works. Such a real-
ization could possibly incorporate PMU-based out-of-step
protection as proposed in [34]. Further investigations for
practical implementation of the proposed algorithm are of
great importance: influence of network delay and measure-
ment noise on the partitioning result, and data-acquisition
methods for successful partitioning, e.g. improving the
sample-mean method in the current observation of bus volt-
age angles.
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