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0. Introduction

This article gives a brief survey of open algebraic surfaces and presents
recent results on open algebraic surfaces of logarithmic Kodaira dimen-
sion zero in any characteristic.

Section 1 surveys results on open algebraic surfaces. First of all, we
recall structure theorems for open algebraic surfaces. Then we recall a
minimal model theory of open algebraic surfaces of non-negative loga-
rithmic Kodaira dimension and collect results on open algebraic surfaces
of logarithmic Kodaira dimension zero. In Section 2, some results of [17]
are introduced. Theorems 2.1 and 2.2 are the main results of this article.
In Section 3, we classify the affine plane curves whose complements have
logarithmic Kodaira dimension ≤ 0 by using a result of Ganong [6] and
Theorems 2.1 and 2.2.
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1. Known results on open algebraic surfaces

In this section, we survey results on open algebraic surfaces. Through-
out this article, we work over an algebraically closed field k.

A reduced effective divisor D on a smooth surface is called an SNC-
divisor if it has only simple normal crossings. Let S be a smooth open
algebraic surface. Then there exist a smooth projective surface V and
an SNC-divisor on V such that V − D(:= V \ SuppD) = S. The pair
(V,D) is called an SNC-completion of S and D is called the boundary
divisor of (V,D). For a positive integer n, h0(V, n(KV + D)) is called
the logarithmic n-genus of S and is denoted by P n(S). The logarithmic
1-genus of S is also called the logarithmic geometric genus of S and is
denoted by pg(S). The Iitaka dimension κ(V,KV + D) of KV + D is
called the logarithmic Kodaira dimension of S and is denoted by κ(S).
Of course, the numbers P n(S) and κ(S) are independent of the choices
of SNC-completions of S. We note that P n(S) and κ(S) can be defined
when char(k) > 0 (see [10]).
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1.1. Some structure theorems. Here we recall some well-known struc-
ture theorems for open algebraic surfaces. For more details, we refer to
Miyanishi [20] and [22]. Let S be a smooth open algebraic surface.

First of all, we recall some results on surfaces of κ = −∞.

Theorem 1.1. (Fujita [3], Miyanishi–Sugie [23], Russell [29]) If S is a
smooth rational surface of κ(S) = −∞ with connected boundary at infin-
ity (i.e., the boundary divisor of an SNC-completion of S is connected),
then it is affine ruled (i.e., it contains a surface isomorphic to A1 × T ,
where T is a smooth curve, as a Zariski open subset).

Theorem 1.2. (Miyanishi [21]) If S is a smooth irrational surface of
κ(S) = −∞, then it is affine ruled.

We note that Theorems 1.1 and 1.2 hold true in the case char(k) > 0.
Later on, Keel and McKernan proved the following remarkable result

in the case k = C.

Theorem 1.3. (Keel–McKernan [12]) Every open algebraic surface of
κ = −∞ defined over C is log uniruled.

We next consider the case κ(S) ≥ 0. Let (V,D) be an SNC-completion
of S. Since κ(S) ≥ 0, the log canonical divisorKV +D is pseudo-effective.
So we have the Zariski decomposition of KV +D:

KV +D ≡ (KV +D)+ + (KV +D)−,

where (KV +D)+ (resp. (KV +D)−) is the nef part of KV +D (resp. the
negative part of KV +D). Then we have the following result.

Theorem 1.4. (Kawamata [11], Fujita [5] (in any characteristic)) With
the same notations and assumptions as above, (KV +D)+ is semiample.
So we have the following:

(1) κ(S) = 0 ⇐⇒ (KV +D)+ ≡ 0.
(2) κ(S) = 1 ⇐⇒ ((KV +D)+)2 = 0 and (KV +D)+ ̸≡ 0.
(3) κ(S) = 2 ⇐⇒ ((KV +D)+)2 > 0.

We consider the following cases.

Case: κ(S) = 1. In [11], Kawamata gave a structure theorem for open
algebraic surfaces of logarithmic Kodaira dimension one when char(k) =
0. The structure theorem is generalized in [15] in any characteristic.
Here, we recall briefly the result.

By Theorem 1.4, we know that, for a sufficiently large integer n,
|n(KV +D)+| is composed of an irreducible pencil Λ without base points.
Let Φ : V → T be the fibration associated with Λ. Then, Φ is an elliptic
fibration, a quasi-elliptic fibration or a P1-fibration. Further, we have a
log canonical bundle formula for the fibration Φ. For more details, we
refer to [15].

Case: κ(S) = 2. In this case, the log canonical ring of S is finitely
generated over k by Theorem 1.4. Of course, the classification of such
surfaces is not fully understood.
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1.2. Construction of strongly minimal models. There are several
minimal model theories of open algebraic surfaces. Here, we use the one
by Tsunoda [30]. The results of [30, §1] are generalized in Miyanishi–
Tsunoda [24, Chapter 1] (see also [22, Chapter 2]). Here we use the result
of [30] because the theory given in [24, Chapter 1] needs graph theoretic
arguments.

Lemma 1.5. (cf. [30, Theorem 1.3]) With the same notations as above,
assume that κ(S) ≥ 0. Let f : V → W be a successive contractions of
(−1)-curves in Supp(KV +D)− and set C = f∗(D). Then we have:

(1) C is an SNC-divisor.
(2) P n(W−C) = P n(X−B) for any positive integer n. In particular,

κ(W − C) = κ(X −B) = 0.
(3) f∗((KV +D)+) = (KW + C)+.
(4) (KW+C)− ≤ C and each connected component of Supp(KW+C)−

can be contracted to a KLT singular point.

The SNC-pair (W,C) is called an almost minimal model of (X,B).
From now on, we mainly consider open algebraic surfaces of logarithmic

Kodaira dimension zero. In order to state some results of such surfaces,
we introduce how to construct their strongly minimal models.

Assume that κ(S) = 0. Then (KV + D)+ ≡ 0 by Theorem 1.4 and
so (KW + C)+ ≡ 0. Set C# := C − (KW + C)− and C ′ := C − ⌊C#⌋.
Let π : W → W be the contraction of SuppC ′. Here W is a normal
projective surface with only KLT singular points by (4) of Lemma 1.5.
So we can run a log MMP for the surface W . Let g : W → X be the
corresponding birational map. Let π′ : X → X be the minimal resolution
of X. Then there exists a birational morphism g : W → X such that the
following diagram commutes.

W
∃g−−−→ X

π

y π′

y
W

g−−−→ X

Set B := g∗(C). We note that the divisor B may not be an SNC-
divisor. We call the pair (X,B) a strongly minimal model of (X,B). We
often call the surface W − B (resp. X − B) a strongly minimal model
(resp. an almost minimal model) of S. Moreover, the surface S is said
to be strongly minimal (resp. almost minimal) if there exists a strongly
minimal model (X,B) (resp. an almost minimal model (W,C)) of a SNC-
completion of S such that S = X −B (resp. S = W − C).

1.3. Some known results on open algebraic surfaces of κ = 0. We
recall some results on open algebraic surfaces of κ = 0. This subsection
consists of three parts.

(I) By the results of Tsunoda [30] and Blache [2], we have the following
result.
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Theorem 1.6. Assume that char(k) = 0. Let S be a smooth open al-
gebraic surface of κ(S) = 0 and set I(S) := min{n ∈ N | P n(S) > 0}.
Then we have:

(1) 1 ≤ I(S) ≤ 21.
(2) Let (V,D) be an SNC-completion of D. If D is connected or the

intersection matrix of D is not negative definite, then 1 ≤ I(S) ≤
6.

(II) A log Enriques surface is, by definition, a normal projective ratio-
nal surface with only KLT singular points and with numerically trivial
canonical divisor. The smooth part of a log Enriques surfaces is an inter-
esting example of an almost minimal open rational surface of κ = pg = 0.
Log Enriques surfaces have been studied by many mathematicians (when
char(k) = 0). For more details, see Blache [2], Kudryavtsev [18] [19],
Oguiso–Zhang [26] [27] [28], Zhang [32] [33] [34] [35] [36], etc.

(III) In order to study open algebraic surfaces of κ = 0, it is important
to classify their strongly minimal models. We have some partial classifi-
cation results for the strongly minimal models. We recall some of them
without explicit classification. Let S, (V,D), (W,C) and (X,B) be the
same as above.

(III-1) Since κ(S) = 0, the Kodaira dimension κ(V ) of V ≤ 0. If
κ(V ) = 0, then C# = 0 and KW ≡ 0. So W is a minimal surface of
κ(V ) = 0 and each connected component of C can be contracted to a
canonical singular point.

(III-2) Suppose that κ(V ) = −∞. Then strongly minimal smooth
open algebraic surfaces are classified in the following cases, where S is a
strongly minimal and (V,D) is an SNC-completion of S.

• S is an irrational ruled surface. (Iitaka [7] [8] (when char(k) = 0),
K. [16] (in any characteristic).)

• S is a rational surface, D is connected and the intersection matrix
of D is not negative definite. (K. [13] (in any characteristic). See
also Fujita [4].)

• S is a rational surface, pg(S) = 1 and char(k) = 0. (Iitaka [7] [8]
(partially), Zhang [31].)

• S is a rational surface, pg(S) = 0, P 2(S) = 1, the intersection
matrix of D is not negative definite and char(k) = 0. (K. [14].)

2. Open algebraic surfaces of κ = 0 with low defects

We work over an algebraically closed field k. Let S be a smooth open
algebraic surface and let (V,D) be an SNC-completion of S.
In [25], Nakayama defined the defect of a pair of a normal Moishezon

surface and a reduced divisor on it. The defect of (V,D) is ρ(V )+2−#D,
where ρ(V ) is the Picard number of V and #D is the number of all
irreducible components in SuppD. We then define the number δ(S) as
δ(S) = ρ(V ) + 2 − #D, that is the defect of (V,D). The number δ(S)
does not depend on the choices of the SNC-completions of S.
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For a non-negative integer r, set A1
(r) = A1

k − {r points}. We consider

a smooth affine surface Sr,s = A1
(r) × A1

(s) for two non-negative integers

r and s. It is clear that δ(Sr,s) = 2 − (r + s). Furthermore, we easily
see that κ(Sr,s) = −∞ (resp. κ(Sr,s) = 0, κ(Sr,s) = 1, κ(Sr,s) = 2)
if min{r, s} = 0 (resp. r = s = 1, min{r, s} = 1 and max{r, s} ≥ 2,
min{r, s} ≥ 2). This shows that, for ℓ ∈ {−∞, 1, 2}, there does not exist
lower bound for the set of numbers δ(S) of the smooth open algebraic
surfaces S of κ(S) = ℓ.
In this section, some results of [17] are introduced. In [17], the author

considers the following problems motivating the recent work on classifica-
tions of the almost toric surfaces and the half-toric surfaces by Nakayama
[25].

Problem 1. Does there exist min{δ(S) | S is a smooth open algebraic
surface of κ(S) = 0 }? If so, give the minimal number.

Problem 2. Classify the open algebraic surfaces S of κ(S) = 0 with low
δ(S).

The main results of this article are as follows:

Theorem 2.1. (cf. [17, Theorem 1.1]) Let S be a smooth open algebraic
surface of κ(S) = 0. Then the following assertions hold true:

(1) δ(S) ≥ 0.
(2) δ(S) = 0 if and only if S is isomorphic to G2

m minus n points
(n ≥ 0), where G2

m is the two dimensional algebraic torus over k.

Theorem 2.2. (cf. [17, Theorem 1.2]) Let S be a smooth open algebraic
surface of κ(S) = pg(S) = 0. Then the following assertions hold true:

(1) δ(S) ≥ 1.
(2) δ(S) = 1 if and only if S is a surface constructed in Example 2.3.

Example 2.3. Let V0 = Σ1 be the Hirzebruch surface of degree one,
let M1 be the minimal section on V0 and let ℓ be a fiber of the ruling
π on V0. Let C ′ be an irreducible curve with C ′ ∼ 2M1 + 2ℓ. Since
π|C′ : C ′ → P1 is a finite morphism of degree two, there exist at least
two fibers, say ℓ1 and ℓ2, of π such that #ℓi ∩ C ′ = 1 for i = 1, 2. Let
µ0 : V1 → V0 be the blowing-up with centers ℓ1 ∩ C ′ and ℓ2 ∩ C ′ and set
Ei := µ−1(ℓi ∩ C ′) (i = 1, 2). Let µ1 : V2 → V1 be the blowing-up with
centers Q1 := E1 ∩ µ′

0(ℓ1) and Q2 := E2 ∩ µ′
0(ℓ2) and set

D(0) = µ−1
1 (Q1) + µ−1

1 (Q2) + µ′
1(E1 + E2 + µ′

0(C
′ + ℓ1 + ℓ2)).

Then κ(V2 −D(0)) = pg(V2 − D(0)) = 0 and P 2(V2 − D(0)) = 1. The

surface V2−D(0) is called H[−1, 0,−1] in [4, (8.5)] (see also [13, Example
2.1]).

Assume further that π|C′ : C ′ → P1 is not separable. Then char(k) = 2
and π|C′ is purely inseparable. Let P1, . . . , Pr (r ≥ 0) be points on
µ′
1(µ

′
0(C

′)) \ {µ−1
1 (Q1) ∪ µ−1

1 (Q2)} and let Fi (1 ≤ i ≤ r) be the fiber of
the ruling π′ = π◦µ0 ◦µ1 : V2 → P1 passing through Pi. Let µ2 : V3 → V2
be a composite of blowing-ups over points P1, . . . , Pr such that the fiber
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µ∗
2(Fi) (1 ≤ i ≤ r) of π′ ◦ µ2 : V3 → P1 has the dual graph in Figure 1,

where µ∗
2(Fi) = 2(G1 +Di

1 + · · · +Di
si−2) +Di

si−1 +Di
si
and si ≥ 2. Set

V = V3 and D = µ′
2(D

(0))+
∑r

i=1(
∑si

j=1D
i
j), where V = V2 and D = D(0)

if r = 0 or π|C′ is separable. Then κ(V −D) = κ(V2 −D(0)) = 0,
pg(V −D) = pg(V2 −D(0)) = 0 and P 2(V −D) = P 2(V2 −D(0)) = 1.

Figure 1
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We outline the proofs of Theorems 2.1 and 2.2 in [17].

Let S be a smooth open algebraic surface of κ(S) = 0 and let (V,D)
be an SNC-completion of S. Let (X,B) be a strongly minimal model of
(V,D) (cf. 1.2 of §1). Then we have a birational morphism f : V → X
such that f∗(D) = B. The following lemma can be proved easily.

Lemma 2.4. With the same notations and assumptions as above, set
S̃ := X −B. Then we have:

(1) δ(S) ≥ δ(S̃).
(2) δ(S) = δ(S̃) if and only if S = S̃ − {n points} for some integer

n ≥ 0.
(3) If S is the smooth part of a normal affine surface, then δ(S) =

δ(S̃) ⇐⇒ S = S̃.

Case 1: S is not a rational surface. In this case, by using results of
[16], we have the following lemma. See [17, §3] for its proof.
Lemma 2.5. Suppose that S is not a rational surface. Then the following
assertions hold true.

(1) If S is not birationally ruled, then δ(S) ≥ 3.
(2) If S is birationally ruled, then δ(S) ≥ 2. Moreover, δ(S) = 2 if

and only if S = V−D−{n points}, where n ≥ 0, V = PE(OE⊕L),
where E is an elliptic curve and L ∈ Pic(E), and D = D1+D2 is
a sum of two disjoint sections D1 and D2 of the ruling π : V → E.

Case 2: S is a rational surface. We use the notations in Lemma 2.4.
Let π′ : X → X be the birational morphism defined in 1.2 of §1. The
divisor B may not be an SNC-divisor. In fact, we know that the divisor
B is an SNC-divisor if δ(S) ≤ 1.
From now on, we assume further that δ(S) ≤ 1. Then δ(S̃) ≤ δ(S) ≤ 1

by Lemma 2.4. So the intersection matrix of B is not negative definite
by the Hodge index theorem. In particular, B := π′(B) ̸= 0.

By the construction of a strongly minimal model of S, we see that
KX + B = g(KW + π(C)) ≡ 0, where g : W → X is the birational
morphism defined in 1.2 of §1. So KX is not nef since B ̸= 0. Hence, we
obtain the following lemma.
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Lemma 2.6. With the same notations and assumptions as above, one
of the following two cases takes place.

(I) There exists a P1-fibration p : X → P1 such that every fiber of p
is irreducible.

(II) −KX is ample and ρ(X) = 1. (In this case, X is a log del Pezzo
surface of rank one.)

We consider the following cases separately.

Case (I) in Lemma 2.6. Then the morphism p ◦ π′ is a P1-fibration
from X onto P1. By using this P1-fibration, we can determine the pair
(X,B) when either δ(S̃) ≤ 0 or δ(S̃) = 1 and pg(S) = 0. Hence the
assertions of Theorems 2.1 and 2.2 are verified in this case. For more
details, see [17, §§4 and 5].

Case (II) in Lemma 2.6. In this case, since ρ(X) = ρ(X)+#B−#B
and ρ(X) = 1, we have δ(S̃) = ρ(X) + 2 − #B = 1 − #B. So, #B =
1− δ(S̃) ≥ 2. We can determine the pair (X,B) when either δ(S̃) = 0 or
δ(S̃) = 1 and pg(S) = 0. More precisely, we have the following lemma.

Lemma 2.7. With the same notations and assumptions as above, the
following assertions hold true:

(1) δ(S̃) ≥ 0. Moreover, if δ(S̃) = 0, then S̃ ∼= G2
m.

(2) If δ(S̃) = 1, then pg(S) = 1.

See [17, §§4 and 5] for its proof. To prove (2) of Lemma 2.7 is the most
difficult part in the proofs of Theorems 2.1 and 2.2 in [17].

Theorems 2.1 and 2.2 are thus proved.

3. Affine plane curves whose complements have
logarithmic Kodaira dimension ≤ 0

We work over an algebraically closed field k. When char(k) = 0, a list
of the affine plane curves whose complements have logarithmic Kodaira
dimension ≤ 1 is given in Iitaka [9]. See also Aoki [1]. In this section, we
give a classification of the affine plane curves whose complements have
logarithmic Kodaira dimension ≤ 0 in any characteristic. In fact, the
results are the same as those in the characteristic zero case.

Let k[2] = k[x, y] be the polynomial ring in two variables over k. Let
C = V (f) ⊂ A2

k = Spec k[2] be an affine plane curve with defining equa-
tion f ∈ k[2] and set S := A2 −C. Let C = ∪ri=1Ci be the decomposition
of C into irreducible components.

We first consider the case κ(S) = −∞. Since δ(S) = 2 − r ≤ 1, we
have a result stronger than Theorem 1.1. See [17, Lemma 2.8]. By using
this result, we know that each irreducible component Ci of C is smooth
and isomorphic to A1. Then we infer from [6, Theorem 2.4] that each Ci
is a coordinate line. Therefore, we have the following proposition.
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Proposition 3.1. (cf. [17, Proposition 6.1]) With the same notations
and assumptions as above, assume further that κ(S) = −∞. Then
there exists a system {x, y} of variables of k[2] and distinct r elements
α1, . . . , αr ∈ k such that f = Πr

i=1(x− αi).

We next consider the case κ(S) = 0.

Lemma 3.2. (cf. [17, Lemma 6.2]) With the same notations and as-
sumptions as above, the following assertions hold true.

(1) r ≤ 2. Moreover, r = 2 if and only if S ∼= G2
m.

(2) pg(S) = 1.

Proof. (1) Since δ(S) = 2 − r and S is affine, the assertion (1) follows
from Theorem 2.1.

(2) If r = 2, then pg(S) = pg(G2
m) = 1. Assume that r = 1. If pg(S) =

0, then we infer from Theorem 2.2 that S is the surface H[−1, 0,−1], here
we note that S is smooth and affine. Then Pic(S) ∼= Z/2Z by [13, p. 949]
(see also [4, (8.5)]). This is a contradiction because the coordinate ring
of S = A2 − C is a UFD. Therefore, pg(S) = 1. □

The following lemma can be proved by the construction of a strongly
minimal model of S. We omit its proof.

Lemma 3.3. (cf. [17, Lemma 6.3]) Assume that S is not strongly min-
imal in the sense of §1. Then S contains an affine line L such that
κ(S − L) = κ(S) = 0. In particular, r = 1.

In Lemma 3.3, S − L ∼= G2
m by Lemma 3.2 (1).

The following lemma can be proved by the classification of strongly
minimal smooth affine surfaces of κ = 0 in [13]. We omit its proof.

Lemma 3.4. (cf. [17, Lemma 6.4]) Assume that S is strongly minimal
in the sense of §1. Then either S ∼= G2

m or S ∼= V (xy − 1) for a suitable
system {x, y} of variables of k[2]. If the latter case occurs, then S contains
an affine line L such that S − L ∼= G2

m.

We determine the defining equation of C. We use the same notations
as above. If r ≥ 2, then r = 2 and S ∼= G2

m by Lemma 3.2 (1). If r = 1,
then S contains an affine line L such that S − L ∼= G2

m. Of course, L
is closed in A2

k. In order to determine the defining equation of C, it is
sufficient to consider the case r = 2 only.

Lemma 3.5. (cf. [17, Lemma 6.5]) With the same notations and as-
sumptions as above, assume that r = 2. Then at least one of κ(A2

k − C1)
and κ(A2

k − C2) equals −∞.

See [17, Lemma 6.5] for its proof.
The following theorem is the main result of this section.

Theorem 3.6. (cf. [17, Theorem 6.6]) Let C = C1 ∪ C2 be an affine
plane curve with two irreducible components C1 and C2. Assume that

10



S = A2
k − C ∼= G2

m and κ(A2
k − C2) = −∞. Then there exists a system

{x, y} of variables of k[2] such that

C1 = V (xmy + p(x)), C2 = V (x),

where m ∈ Z≥0 and p(x) ∈ k[x] is a polynomial in k[x] such that p(0) ̸= 0
and deg p(x) < m (resp. p(x) = 0) if m > 0 (resp. m = 0). Furthermore,

κ(A2
k − C1) =

{
0 if m ≥ 1,
−∞ if m = 0.

By Proposition 3.1, C2 = V (x) for a system {x, y} of variables of
k[2]. Then, by using the argument as in [23, p. 350], we can determine
the defining equation of C. For more details, see [17, Theorem 6.6].
Theorem 3.6 is thus verified.
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