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A Riemannian manifold (M, g) is called Sasakian if its conical metric ḡ = r2g+dr2 is a Kähler
metric on the cone C(M) = M × R+. Sasakian metrics, which are defined on odd dimensional
manifolds, can be considered as an odd dimensional counterpart of Kähler metrics, which are
defined on even dimensional manifolds. Also Riemannian manifold is called contact if conical
metric is simplectic. Contact manifold is odd-dimensional counterpart of symplectic manifold.
If the metric g satisfies the Einstein condition, i.e., Ricg = λg for some constant λ, then the
metric g is called Einstein. The Sasakian manifold M is isometrically embedded into C(M)
by M = M × {1} ↪→ C(M). The cone C(M) is equipped with an integrable complex structure
J since it is Kähler. The canonical vector field r∂r defines the Reeb vector field ξ on M through
the integrable complex structure, i.e., ξ := J(r∂r). Sasakian manifolds can be classified into
three types according to the Reeb foliation Fξ given by the Reeb vector field ξ. If the orbits of
the Reeb vector field ξ are all closed, then ξ integrates to an isometric S1-action on M . Since ξ
vanishes nowhere, the action is locally free. If the action is free, then the Sasakian structure is
said to be regular. If not, then it is said to be quasi-regular. On the other hand, if the orbits
of the Reeb vector field ξ are not all closed, then it is said to be irregular. In the regular or the
quasi-regular case, the space of leaves of the Reeb foliation Fξ is a compact Kähler manifold or
orbifold, respectively. Furthermore, if M is Sasaki-Einstein, then it becomes a Kähler-Einstein
manifold or orbifold. Indeed, the classification of (2n − 1)-dimensional quasi-regular Sasaki-
Einstein manifolds is closely related to the study of (n − 1)-dimensional Kähler-Einstein Fano
orbifolds.

It is not an easy task to determine whether a given Fano orbifold admits an orbifold Kähler-
Einstein metric. However, the seminal work of Chen, Donaldson, Sun and Tian on existence of
Kähler-Einstein metrics on Fano manifolds and their K-stability has opened wide a new gate to
an area where existence of Kähler-Einstein metrics can be determined in purely algebraic ways.
Since then, the result has been gradually being developed toward log Q-Fano varieties. Indeed,
Li, Tian and Wang proved that the result of Chen, Donaldson, Sun and Tian also holds for log
Q-Fano varieties with a mild assumption. The following theorem is a simplified version of their
result that allows us to immediately utilize it for our purpose.

Theorem 0.1. Let S be a del Pezzo surface with quotient singularities and D be a prime divisor
on S. Suppose that −(KS + m−1

m D) is ample for a positive integer m. If (S, m−1m D) is uniformly

K-stable, then S has a Kähler-Einstein edge metric with angle 2π
m along D.

There are a few algebro-geometric methods known to us that can verify K-stability in concrete
cases. The α-invariant originally introduced by Tian is one of the ways. The original definition
of the α-invariant was given in an analytic way. There is however an algebro-geometric way to
define the α-invariant over an arbitrary field of characteristic zero.
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Definition 0.2. Let (X,∆) be a log Q-Fano variety. The α-invariant of (X,∆) is defined by
the number

α(X,∆) = sup

{
λ ∈ Q

∣∣∣∣∣the log pair (X,∆ + λD) is log canonical for every

effective Q-divisor D numerically equivalent to −(KX + ∆).

}
.

The α-invariant plays a role in Kähler geometry by giving a sufficient condition for existence
of orbifold Kähler-Einstein metrics.

Theorem 0.3. Let (X,∆) be a Fano orbifold. If

α(X,∆) >
dim(X)

dim(X) + 1
,

then (X,∆) admits an orbifold Kähler-Einstein metric.

It quite often occurs that the α-invariant cannot determine existence of an orbifold Kähler-
Einstein metric on a given Fano orbifold.

Recently Fujita and Odaka introduced a new algebro-geometric way to test K-stability of log
Q-Fano varieties. This supplies another method to check existence of orbifold Kähler-Einstein
metrics.

To explain the method of Fujita and Odaka, let (X,∆) be a Q-factorial log pair with Kawa-
mata log terminal singularities, Z ⊂ X a closed subvariety and D an effective Q-divisor on X.
The log canonical threshold of D along Z on the log pair (X,∆) is the number given by

cZ(X,∆;D) = sup
{
λ
∣∣∣ the log pair (X,∆ + λD) is log canonical along Z.

}
.

Since log canonicity is a local property,

cZ(X,∆;D) = inf
p∈Z
{cp(X,∆;D)} .

If X = Cn, ∆ = 0, and D = (f = 0), where f is a polynomial defined over Cn, then we also use
the notation c0(f) for the log canonical threshold of D at the origin, instead of c0(X, 0;D).

Definition 0.4. Let (X,∆) be a log Q-Fano variety and let m be a positive integer such that the
plurianticanonical linear system | −m(KX + ∆)| is non-empty. Set `m = h0(X,OX(−m(KX +
∆))). For a section s in H0(X,OX(−m(KX +∆))), we denote the effective divisor of the section
s by D(s). If `m sections s1, . . . , s`m form a basis of the space H0(X,OX(−m(KX + ∆))), then
the Q-divisor

D :=
1

`m

`m∑
i=1

1

m
D(si)

is said to be of m-basis type with respect to the log Q-Fano variety (X,∆). For a positive integer
m, we set

δm(X,∆) = inf
D:

m-basis type

cX(X,∆;D).

We set δm(X,∆) = 0 if | −m(KX + ∆)| is empty. The δ-invariant of (X,∆) is defined by the
number

δ(X,∆) = lim sup
m

δm(X,∆).

The δ-invariant turns out to provide a necessary and sufficient criterion for uniform K-stability.

Theorem 0.5. Let (X,∆) be a log Q-Fano variety. Then (X,∆) is uniformly K-stable if and
only if δ(X,∆) > 1.
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This potent criterion has been put into practice for smooth del Pezzo surfaces, and therein
its effectiveness has been presented.

The development of the theory on quasi-regular Sasaki-Einstein metrics has followed that of
the theory on Kähler-Einstein metrics on Fano varieties.

Now we have been strongly reinforced by new technologies for detecting Kähler-Einstein Fano
orbifolds, in particular, the δ-invariant method, so it would be natural to expect that many
hidden Sasaki-Einstein manifolds can be detected by the new methods. Indeed, the classification
of simply connected Sasaki-Einstein rational homology 5-spheres can be completed by applying
the δ-invariant method to certain hypersurfaces in 3-dimensional weighted projective spaces.

The main result is the complete classification of simply connected Sasaki-Einstein rational
homology 5-spheres. Before we state the Main Theorem, let us explain how closed simply
connected spin 5-manifolds are classified.

Theorem 0.6. For a positive integer m, there is a unique closed simply connected 5-dimensional
manifold Mm with H2(Mm,Z) = Z/mZ ⊕ Z/mZ that admits a spin structure. Furthermore, a
closed simply connected 5-dimensional manifold M that admits a spin structure is of the form

M = k(S2 × S3)#Mm1# . . .#Mmr ,

where k(S2 × S3) is the k-fold connected sum of S2 × S3 for a non-negative integer k and mi is
a positive integer greater than 1 with mi dividing mi+1.

We denote by kMm the k-fold connected sum of Mm. Since a simply connected Sasaki-
Einstein manifold must be spin, Smale’s classification of simply connected 5-manifolds will be
enough for our purpose. Thus Smale manifolds can be considered in three types.

• Torsion free
• Rational homology sphere
• Mixed type

Main Theorem. For each positive integer n ≥ 4, the rational homology 5-sphere nM2 admits
a Sasaki-Einstein metric.

Together with the works of Boyer, Galicki, Kollár and Nakamaye, the Main Theorem com-
pletes the classification of simply connected rational homology 5-spheres that admit Sasaki-
Einstein metrics.

Theorem 0.7. A simply connected rational homology 5-sphere admits a (quasi-regular) Sasaki-
Einstein metric if and only if it is one of the following:

(1) the 5-sphere S5;
(2) Mr, where r is a positive integer with r ≥ 2 not divisible by 30;
(3) 2M5;
(4) 2M4;
(5) 2M3, 3M3, 4M3;
(6) nM2, where n ≥ 2.

Remark 0.8. Regular Sasaki-Einstein metrics on simply-connected 5-manifolds are completely
classified. In particular, the 5-sphere is the only simply-connected regular Sasaki-Einstein ra-
tional homology 5-sphere. No irregular Sasaki-Einstein structure exists on a simply connected
rational homology 5-sphere.

The proof of the Main Theorem is based on the method introduced by Kobayashi and de-
veloped by Boyer, Galicki and Kollár. Our new ingredient added to this method is to use the
δ-invariant instead of the α-invariant. Even though it is difficult to compute or estimate both
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the invariants in general, a few methods have been developed well enough so that δ-invariants
can be estimated effectively on surfaces with at worst quotient singularities.

Let X be a quasi-smooth hypersurface in a weighted projective space P(w) = P(a0, a1, . . . , an)
defined by a quasi-homogeneous polynomial F (z0, z1, . . . , zn) in variables z0, . . . , zn with weights

wt(zi) = ai. The equation F (z0, z1, . . . , zn) = 0 also defines a hypersurface X̂ in Cn+1 smooth
outside the origin. The link of X is defined by the intersection

LX = S2n+1
w ∩ X̂,

where S2n+1
w is the unit sphere centred at the origin in Cn+1 with the Sasakian structure induced

from the weight w = (a0, a1, . . . , an). This is a smooth compact manifold of dimension 2n− 1.
It is simply-connected if n ≥ 3. The situation can be diagrammed as follows

LX

��

� � // S2n+1
w

��
X �
� // P(w)

where the horizontal arrows are Sasakian and Kählerian embeddings, respectively, and the ver-
tical arrows are S1 orbibundles and orbifold Riemannian submersions.

Put m = gcd(a1, . . . , an). Suppose that m > 1 and gcd(a0, a1, . . . , ai−1, âi, ai+1, . . . , an) = 1
for each i = 1, . . . , n. Also set b0 = a0 and bi = ai

m for i = 1, . . . , n. We also suppose that
degw(F )−

∑
ai < 0. In other words, X is a Fano orbifold.

There is a quasi-homogeneous polynomial G(x0, . . . , xn) in variables x0, . . . , xn with weights
wt(xi) = bi such that F (z0, z1, . . . , zn) = G(zd0 , z1, . . . , zn). The equation G(x0, . . . , xn) = 0
defines a well-formed quasi-smooth hypersurface Y in P(b0, b1, . . . , bn). Denote by D the divisor
on Y cut by x0 = 0.

Lemma 0.9. If there is a Kähler-Einstein edge metric on Y with angle 2π
m along the divisor D,

then there is a Sasaki-Einstein metric on the link LX of X.

We now consider a specific quasi-smooth hypersurface Xn of degree 4n+2 in P(2, 2, 2n, 2n+1),
where n is a positive integer. We use quasi-homogeneous coordinates x, y, z, w with weights
wt(x) = wt(y) = 2, wt(z) = 2n and wt(w) = 2n + 1. By suitable coordinate changes, Xn may
be assumed to be given by

w2 − z2x− zrn+1(x, y)− r2n+1(x, y) = 0,

where rn+1 and r2n+1 are homogeneous polynomials of degrees n + 1 and 2n + 1, respectively,
in the variables x, y. Note that either rn+1 contains yn+1 or r2n+1 contains y2n+1 due to the
quasi-smoothness of Xn.

Let Yn be the hypersurface in P(1, 1, n, 2n+ 1) defined by

w − z2x− zrn+1(x, y)− r2n+1(x, y) = 0,

where we use the same notation for quasi-homogeneous coordinates as in P(2, 2, 2n, 2n + 1),
abusing the notation. Let Cw be the curve in Yn that is cut out by the equation w = 0. Then
the curve Cw is reduced and irreducible. The log pair

(0.10)

(
Yn,

1

2
Cw

)
is a log del Pezzo surface that works for the Main Theorem.

Lemma 0.11. The link of the surface Xn is nM2.
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It has long been known that the equation is a candidate that yields a Sasaki-Einstein metric
on nM2. The reason why this candidate had not been able to be confirmed as a Sasaki-Einstein
metric producer on nM2 is that we did not have any method to determine whether

(
Yn,

1
2Cw

)
admits an orbifold Kähler-Einstein metric. In particular, the α-invariant method is not sharp
enough to do this job. Indeed, α

(
Yn,

1
2Cw

)
is at most 2

3 , which is too small to apply Theorem 0.3.
However, the δ-invariant is decisive, so that it allows us to determine existence of orbifold Kähler-
Einstein metric on

(
Yn,

1
2Cw

)
through its uniform K-stability.

It follows from Lemmas that for the proof of the Main Theorem it is enough to show that
(Yn,

1
2Cw) possesses an orbifold Kähler-Einstein metric. Previous theorems imply that the fol-

lowing assertion completes the proof of the Main Theorem.

Theorem 0.12. For each n ≥ 4,

δ

(
Yn,

1

2
Cw

)
≥ 8n+ 8

8n+ 7
.

For the detailed proofs of main theorem, we refer readers to the paper [1].

Finally we recall open problems about mixed types in the book–Sasakian geometry by Boyer,
Galicki.

Let M be a Sasakian manifold.

1. Suppose b2(M) > 9. M is Sasaki-Einstein if and only if H2(M,Z)tor = 0.
2. k(S2 × S3)#Mm admits Sasaki-Einstein structure for all 0 ≤ k ≤ 8 and for all m > 2

giving 31 missing cases.
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