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1. Introduction – Borcherds Φ-function

This note is a brief summary of our talk in Kinosaki Algebraic Geometry Sympo-
sium 2019. We report a recent progress on a generalization of Borcherds Φ-function
to higher dimension. For the details, we refer the reader to the forthcoming paper
[47].

In 1996, Borcherds proved the following:

Theorem 1.1 (Borcherds [16]). The moduli space of Enriques surfaces is quasi-
affine.

This theorem has the following application to the family of Enriques surfaces.

Corollary 1.2. Every family of Enriques surfaces without singular fibers over a
compact connected complex space is isotrivial.

Borcherds proved Theorem 1.1 by constructing an automorphic form Φ nowhere
vanishing on the moduli space of Enriques surfaces. This remarkable automorphic
form is called the Borcherds Φ-function or the Borcherds-Enriques form. In many
respects, Φ is similar to the Dedekind η-function and is viewed as its generalization
to Enriques surfaces (cf. [45], [46]). In this way, on the moduli space of compact
Kähler manifolds with torsion canonical bundle of low dimension, we often have
a nice automorphic form such as the Dedekind η-function and the Borcherds Φ-
function. So it is very natural to seek for their generalizations in higher dimension.
In this note, we explain such a generalization to a class of compact Kähler manifolds
of even dimension 2n. These manifolds, which we call simple Enriques 2n-folds, are
higher dimensional analogues of Enriques surfaces introduced and studied indepen-
dently by Boissière-Nieper-Wißkirchen-Sarti [12] and Oguiso-Schröer [35].

Contrary to its geometric nature, the original construction of Φ due to Borcherds
is not geometric. Indeed, it is obtained from the denominator formula for certain
generalized Kac-Moody Lie algebra [16] or Borcherds products [17]. On the other
hand, it is possible to construct Φ from analytic torsion of Enriques surfaces [44].
In this note, we explain how this third approach can be generalized to construct
a function on the moduli space of simple Enriques 2n-folds. We will discuss the
following topics:

• a holomorphic torsion invariant for simple Enriques 2n-folds,
• applications of the invariant to families of simple Enriques 2n-folds,
• the automorphy of the holomorphic torsion invariant,
• some explicit formulas for the invariant as a function on the moduli space.
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2 KEN-ICHI YOSHIKAWA

2. Simple Enriques 2n-folds

Let us recall the Beauville-Bogomolov decomposition theorem.

Definition 2.1. Let X be a compact connected Kähler manifold. Then

(1) X is Calabi-Yau ⇐⇒ KX
∼= OX and hq(OX) = 0 (0 < q < dimX).

(2) X is hyperkähler ⇐⇒ π1(X) = {1} and H0(Ω2
X) is generated by a holo-

morphic symplectic form.

Theorem 2.2 (Beauville [5], Bogomolov [14]). Let Y be a compact connected Ricci-
flat Kähler manifold. Then there is a finite étale covering X → Y such that

X ∼= T ×
∏

Ui ×
∏

Sj ,

where T is a complex torus, Ui is a simply connected Calabi-Yau manifold, and Sj

is a hyperkähler manifold.

In this note, since we are interested in generalizations of Enriques surfaces in
higher dimension and their holomorphic torsion invariant, we focus on compact
Kähler manifolds of even dimension with torsion canonical bundle. Unfortunately,
in even dimension, it turns out that the holomorphic analytic torsion (of the trivial
bundle) is trivial for the building blocks in the Beauville-Bogomolov decomposition
theorem. 1 However, as in the case of Enriques surfaces, it turns out that the
holomorphic torsion of their étale quotient is non-trivial in general. Among those
compact Kähler manifolds of even dimension with torsion canonical bundle, we
focus on the simplest ones.

Definition 2.3. A compact connected Kähler 2n-fold Y is simple Enriques if

π1(Y ) ̸= {1} and its universal covering Ỹ is either Calabi-Yau or hyperkähler. The

covering degree of Ỹ → Y is called the index of Y . Y is said to be of Calabi-Yau

(resp. hyperkähler) type if Ỹ is Calabi-Yau (resp. hyperkähler).

We remark that this class of manifolds have already been introduced and stud-
ied by two groups of authors: Boissière-Nieper-Wißkirchen-Sarti [12] introduced
Enriques varieties and Oguiso-Schröer [35] introduced Enriques manifolds.

Fact 2.4 (Boissière-Nieper-Wißkirchen-Sarti [12], Oguiso-Schröer [35]). Let Y be
a simple Enriques 2n-fold with index d. Then the following hold:

(1) π1(Y ) ∼= Z/dZ.
(2) K⊗d

Y
∼= OY and K⊗i

Y ̸∼= OY (0 < i < d).
(3) If Y is of Calabi-Yau type, then d = 2.
(4) If Y is of hyperkähler type, then d|(n+ 1).

3. Analytic torsion of Calabi-Yau and hyperkähler manifolds

Let us recall the notion of analytic torsion (of the trivial line bundle). Let
(X, γ) be a compact Kähler manifold. Let ζq(s) be the spectral zeta function of the
Hodge-Kodaira Laplacian □q = (∂̄ + ∂̄∗)2 acting on the (0, q)-forms on X:

ζq(s) :=
∑

λ∈σ(□q)\{0}

λ−s dimE(□q, λ),

1In odd dimension, the analytic torsion of the trivial line bundle of a Calabi-Yau manifold

is non-trivial. Moreover, in arbitrary dimension, one can construct another holomorphic torsion
invariant called the BCOV invariant [20], [18], [19], [49], [50]. In this note, we will not discuss

BCOV invariants.
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ENRIQUES 2n-FOLDS AND ANALYTIC TORSION – A SUMMARY 3

where σ(□q) ⊂ R≥0 is the set of eigenvalues of □q and E(□q, λ) is the eigenspace of
□q corresponding to the eigenvalue λ. By the ellipticity of □q, σ(□q) is a discrete
subset of R and E(□q, λ) is of finite dimensional for all λ ∈ σ(□q). It is classical
that ζq(s) extends to a meromorphic function on C and is holomorphic at s = 0.

Definition 3.1 (Ray-Singer [38]). The analytic torsion of (X, γ) is defined as

τ(X, γ) := exp{−
∑
q≥0

(−1)qq ζ ′q(0)}.

Recall that for a positive-definite Hermitian matrix H of finite dimension, one
has

log detH = − d

ds

∣∣∣∣
s=0

TrH−s.

After this formula, the regularized determinant of the Laplacian □q is defined as

det□q := exp(−ζ ′q(0)).

Hence the analytic torsion τ(X, γ) can be expressed as the product

τ(X, γ) =
∏

(det□q)
(−1)qq.

One of the reasons why the analytic torsion is so interesting rests on the following
theorem of Bismut-Gillet-Soulé known as the curvature formula.

Theorem 3.2 (Bismut-Gillet-Soulé [8], [9], [10]). For a proper, surjective, locally
Kähler, smooth morphism f : X → S between complex manifolds endowed with a
fiberwise Kähler metric hX/S on the relative tangent bundle TX/S, one has

−ddc log τ +
∑

(−1)qc1(R
qf∗OX , hL2) = [f∗Td(TX/S, hX/S)]

(1,1).

Here c1(R
qf∗OX , hL2) is the first Chern form of the locally free sheaf Rqf∗OX on S

endowed with the L2-metric, Td(TX/S, hX/S) is the Todd form of (TX/S, hX/S),

and [f∗Td(TX/S, hX/S)]
(1,1) is the degree (1, 1)-component of its fiber integral.

We remark that this theorem is a special case of the general curvature formula
for Quillen metrics. See [8], [9], [10] for more details.

Up to a universal constant, the analytic torsion of a flat elliptic curve with
normalized area 1 is given by the value of the Petersson norm of the Dedekind
η-function evaluated at its period [38]. Similarly, up to a universal constant, the
analytic torsion of a Ricci-flat Enriques surface with normalized volume 1 is given
by the value of the Petersson norm of the Borcherds Φ-function evaluated at its
period [44]. However, the analytic torsion of a flat complex torus is given by the
constant function 1, and the same is true for Ricci-flat K3 surfaces.

In higher and even dimension, we have the following result for the building blocks
of the Beauville-Bogomolov decomposition theorem. Let X be a complex torus or
a Calabi-Yau manifold or a hyperkähler manifold of dimension 2n. Let η be a non-
zero canonical form, i.e., nowhere vanishing holomorphic volume form on X. Let
γ be a Kähler form on X. Let c1(X, γ) be the first Chern form of (TX, γ) and let
Td(X, γ) be the Todd form of (TX, γ).

Theorem 3.3 ([47]). The analytic torsion of (X, γ) is given by

τ(X, γ) = exp

{
−1

2

∫
X

log

(
η ∧ η

γ2n/(2n)!
· Vol(X, γ)

∥η∥2L2

)
Td(X, γ)

Td(c1(X, γ))

}
.

In particular, if γ is Ricci-flat, then τ(X, γ) = 1.
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4 KEN-ICHI YOSHIKAWA

This theorem says that in even dimension the analytic torsion does not give any
interesting function on the moduli space for the building blocks of the Beauville-
Bogomolov decomposition theorem.

Remark 3.4. In contrast to Theorem 3.3, the BCOV invariant of a Calabi-Yau n-fold
is non-trivial for n ̸= 2. However, for complex tori and hyperkähler manifolds, the
BCOV invariant is again trivial [18]. If we replace a principally polarized abelian
variety (p.p.a.v.) of dimension g > 1 by its theta divisor, then the holomorphic
torsion of the theta divisor is given by the Petersson norm of a Siegel modular form
characterizing the Andreotti-Mayer locus evaluated at the period of the p.p.a.v [43].

4. Holomorphic torsion invariant of Enriques 2n-folds

Let Y be a simple Enriques 2n-fold of index d. Let Ξ be a pluricanonical
form of weight d, i.e., a nowhere vanishing holomorphic section of K⊗d

Y . Then

|Ξ| 2d := |Ξ ⊗ Ξ| 1d is a volume form on Y . Let γ be a Kähler form on Y . Define a
Bott-Chern term A(Y, γ) by

A(Y, γ) := exp

1

2

∫
Y

log

 |Ξ| 2d
γ2n/(2n)!

· Vol(Y, γ)
∥Ξ∥2/d

L
2
d

 Td(Y, γ)

Td(c1(Y, γ))

 .

If p : Ỹ → Y is the universal covering, then A(Y, γ) = τ(Ỹ , p∗γ)−1/d.

Definition 4.1. With the same notation as above, define

τEnr(Y ) :=

{
τ(Y, γ)Vol(Y, γ)

d−1
d A(Y, γ)

τ(Y, γ)Vol(Y, γ)
(n+1)(d−1)

2nd A(Y, γ)
if Y is of

{
Calabi-Yau type

hyperkähler type.

By the anomaly formula for Quillen metrics [8], [9], [10], we have the following:

Theorem 4.2 ([47]). τEnr(Y ) is independent of the choice of a Kähler metric γ on
Y . In particular, τEnr(Y ) is an invariant of Y , and τEnr is viewed as a function on
the moduli space of simple Enriques 2n-folds.

When n = 1, τEnr is given by the Petersson norm of the Borcherds Φ-function
[44]. To understand the nature of τEnr, let us explain some of its basic properties.

Let Y be a simple Enriques 2n-fold of index d. Let Def(Y ) be the Kuranishi space
of Y , which is smooth by Bogomolov-Tian-Todorov [15], [39], [40]. Let f : (Y, Y ) →
(Def(Y ), [Y ]) be the universal deformation of Y . Let Ξ be a relative pluricanonical

form of weight d for f , i.e., Ξ is a nowhere vanishing section of f∗K
⊗d
Y/Def(Y ).

Definition 4.3. The Weil-Petersson form is the Kähler form on Def(Y ) defined as

ωWP := −ddc log ∥Ξ∥2/d
L2/d .

Theorem 4.4 ([47]). log τEnr is a strictly plurisubharmonic function on Def(Y )
such that

ddc log τEnr = νn,d ωWP,

where

νn,d :=

{
d−1
d = 1

2
(n+1)(d−1)

2nd

if Y is of

{
Calabi-Yau type

hyperkähler type.
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This formula follows from the curvature formula for Quillen metrics [8], [9], [10]
(or its equivariant version [27]):

−ddc log τ +
∑

(−1)qc1(R
qf∗OY, hL2) =

[
f∗Td(TY/S, hY/S)

](1,1)
applied to the Kuranishi family f : Y → S = Def(Y ).

By Theorem 4.4, it is easy to deduce the following generalization of Corollary 1.2
in higher dimension.

Corollary 4.5. Every family of simple Enriques 2n-folds without singular fibers
over a compact complex space is isotrivial.

In Corollary 4.5, the total space of the family is not assumed to be Kähler. Hence
the result holds true even when the total space of the family is non-Kähler.

Another basic property of the invariant τEnr is its regularity for one parameter
degenerating families of simple Enriques 2n-folds.

Theorem 4.6 ([47]). Let f : Y → C be a family of 2n-folds over a compact Riemann
surface C, whose general fibers are simple Enriques. If 0 ∈ C is a point of the
discriminant locus, i.e., f−1(0) is singular, then there exists α ∈ Q such that

log τEnr(Ys) = α log |s|2 +O (log(− log |s|)) (s → 0),

where s is a local parameter of C centered at 0.

This theorem is obtained by applying the Bismut-Lebeau embedding theorem
[11] for Quillen metrics to the family of embedings Ys ↪→ Y. When the degenera-
tion f : (Y, Y0) → (S, 0) is semistable, i.e., Y0 is a reduced simple normal crossing
divisor, α can explicitly be evaluated as the integral of certain characteristic classes
attached to the critical locus. It is also possible to compute the value α by using
the embedding formula for equivariant Quillen metrics [7].

As in the case of BCOV invariant [20], [18], we propose the following:

Conjecture 4.7. τEnr is a birational invariant of simple Enriques 2n-folds. Namely,
if Y and Y ′ are birational simple Enriques 2n-folds, then

τEnr(Y ) = τEnr(Y
′).

5. Quasi-affinity of the moduli space: polarized case

Let us recall the following result, which is a special case of a very general result
of Viehweg:

Theorem 5.1 (Viehweg [42]). (1) There is a coarse moduli space of polarized
simple Enriques 2n-folds of index d with Hilbert polynomial h. Let M be a
component of the moduli space. Then M is quasi-projective.

(2) There exists an ample line bundle λ on M such that λ is identified with
the “direct image of the d-th tensor power of the relative canonical bundle
of the universal family”.

In general, there is no universal family of polarized simple Enriques 2n-folds over
M. However, we have its substitute in an appropriate sense [42].

Theorem 5.2 ([47]). There exists a natural number N ∈ N such that λN ∼= OM.
In particular, M is quasi-affine.

Corollary 5.3. M does not contain compact subvarieties of positive dimension.
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6 KEN-ICHI YOSHIKAWA

We remark that this corollary follows also from Theorem 4.4. The proof of
Theorem 5.2 is based on the Grothendieck-Riemann-Roch theorem and is very
similar to Pappas’ proof of the quasi-affinity of the moduli space of Enriques surfaces
[37].

By the curvature theorem and the regularity theorem, we have the following:

Theorem 5.4 ([47]). There exist N ∈ Z>0, a flat U(1)-bundle χ ∈ H1(M, U(1))
and a nowhere vanishing holomorphic section σ of λ2Nνn,d ⊗ χ defined on M such
that

τ−2N
Enr = ∥σ∥2.

Moreover, there exists a compactification M of M with the following properties:

(i) M is a normal projective variety.
(ii) λN extends to an ample line bundle on M.
(iii) Set B := M \ M. Then there exist a flat U(1)-bundle χ ∈ H1(M \

(SingM∩B), U(1)) with χ|M = χ and a (possibly meromorphic) section σ
of λ2Nνn,d ⊗ χ defined on M\ (SingM∩B) such that

σ|M = σ.

Remark 5.5. If χ ∈ H1(M, U(1)) in Theorem 5.4, then it is possible to prove that
σ is defined on M, from which the quasi-affinity of M follows. Hence we have
an analytic proof of Theorem 5.2 in this case. In general, we do not know if χ is
extended to an element of H1(M, U(1)).

Question 5.6. Does there always exist a compactification M of M to which χ
extends as a flat U(1)-bundle and to which λN extends as an ample line bundle?

6. Automorphy of τEnr

Let Y be a simple Enriques 2n-fold of hyperkähler type with index 2. Let X = Ỹ
be its universal covering hyperkähler manifold.

Fact 6.1 (Beauville [5], Fujiki [21]). There is an integral non-degenerate symmetric
bilinear form (·, ·)X on H2(X,Z) and a constant cX ∈ Q>0 such that

(1)
∫
X
λ2n = cX · (λ, λ)nX (∀λ ∈ H2(X,Z)).

(2) (σ, σ)X = 0 and (σ, σ)X > 0 for all σ ∈ H0(X,Ω2
X).

(3) sign (·, ·)X = (3, b2 − 3).

The pair (H2(X,Z), (·, ·)X) is called the Beauville-Bogomolov-Fujiki lattice (BBF
lattice for short).

In what follows, we make the following:

Assumption 6.2.

Aut0(X) := ker
{
Aut(X) → Aut

(
H2(X,Z)

)}
= {1} and b2(X) ≥ 5.

Let Λ be a fixed abstract lattice isometric to the BBF lattice of X. An isometry
of lattices α : H2(X,Z) → Λ is called a marking of X and the pair (X,α) is called
a marked hyperkähler manifold. By Huybrechts [24], there exists a coarse moduli
space of marked hyperkähler manifolds with BBF lattice Λ. By Markman [31],
under the assumption Aut0(X) = {1}, this is a fine moduli space, i.e., there exists
a universal marked family.
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Let ι : X → X be the involution such that X/ι = Y and let I := α ◦ ι∗ ◦ α−1 be
the involution on Λ induced by ι. Set

M := {x ∈ Λ; I(x) = x}, N := {x ∈ Λ; I(x) = −x}.

Then sign(M) = (1, r(M)− 1) and sign(N) = (2, r(N)− 2).

Definition 6.3. The period domain for simple Enriques 2n-folds deformation
equivalent to Y is the Hermitian domain of type IV defined by

ΩN := {[σ] ∈ P(N ⊗ C); (σ, σ)N = 0, (σ, σ)N > 0}.

The period of (Y, α) = (X, ι, α) is defined as

α(H0(X,Ω2
X)) ∈ ΩN .

Recall that there exists a moduli space of (unpolarized) Enriques surfaces. Sim-
ilarly, under Assumption 6.2, it is possible to construct a moduli space of (unpo-
larized) simple Enriques 2n-folds of hyperkähler type by using the existence of a
universal marked family of hyperkähler manifolds. In contrast to the fact that the
moduli space of Enriques surfaces is Hausdorff, the resulting moduli space of simple
Enriques 2n-folds of hyperkähler type is non-Hausdorff in general if n > 1. Two
simple Enriques 2n-folds Y and Y ′ of hyperkähler type are said to be inseparable
if Def(Y ) ∩Def(Y ′) ̸= ∅ as set germs. We define a relation ∼ on the moduli space
of simple Enriques 2n-folds of hyperkähler type by Y ∼ Y ′ if Y and Y ′ are insepa-
rable. In [25], Joumaah proved that the relation ∼ is an equivalence relation. The
quotient of the moduli space of simple Enriques 2n-folds by the equivalence relation
∼ is called the Hausdorff reduction of the moduli space. Joumaah has proved the
following result. (For the notion of MBM classes, we refer the reader to [1], [2], [3].
For a lattice L, O(L) denotes its automorphism group.)

Theorem 6.4 (Joumaah [25]). The Hausdorff reduction of the moduli space of
simple Enriques 2n-folds of hyperkähler type deformation equivalent to Y is given
by the modular variety of orthogonal type

(ΩN −DMBM
N )/ΓN,[K],

where DMBM
N is a divisor on ΩN determined by the MBM classes in N , ΓN,[K] ⊂

O(N) is a subgroup of finite index, and [K] is a datum encoding the deformation
equivalence class of (X, ι).

Remark 6.5. Precisely speaking, Joumaah dealt with the moduli space of pairs
consisting of a hyperkähler manifold ofK3[n]-type and an anti-symplectic involution
on it. Thanks to [1], [2], [3], [41], [30], [4], his proof still works in the case of moduli
space of those simple Enriques 2n-folds satisfying Assumption 6.2.

Remark 6.6. By [25], there is a chamber structure of the positive cone of M induced
by the MBM classes inM . Then K is one of the chambers, and there is a finite-index
subgroup ΓM ⊂ O(M) such that [K] is the ΓM -orbit of the chamber K ([25]).

Theorem 6.7 ([47]). There exist an integer ν ∈ Z>0 and a (possibly meromorphic)
automorphic form ΦN,[K] on Ω+

N for ΓN,[K] of weight ν(n+ 1)/4 such that

τ−ν
Enr,[K] =

∥∥ΦN,[K]

∥∥2 , Supp
(
div ΦN,[K]

)
⊂ DMBM

N .
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8 KEN-ICHI YOSHIKAWA

Question 6.8. Without Assumption 6.2, it is not clear for us if the invariant τEnr

descends to a function on the space of periods. Does Theorem 6.7 still hold true
without Assumption 6.2?

Since the line bundle of automorphic forms is an ample line bundle on the
modular variety ΩN/ΓN,[K] by Baily-Borel, we have the following generalization
of Borcherds’ theorem [16] (cf. Theorem 1.1).

Theorem 6.9 ([47]). The Hausdorff reduction of the moduli space of simple En-
riques 2n-folds satisfying Assumption 6.2 is quassi-affine.

By Theorems 6.7 and 6.9, ΦN,[K] may be viewed as a generalization of the
Borcherds Φ-function in higher dimension. At least as a working hypothesis, it
makes sense to conjecture that ΦN,[K] possesses some nice properties similar to
those of the Borcherds Φ-function.

Conjecture 6.10 (elliptic modularity). ΓN,[K] contains the stable orthogonal group

Õ(N) := ker{O(N) → O(N∨/N, qN )}, and ΦN,[K] is a Borcherds product. Namely,
there is an elliptic modular form of type ρN , the Weil representation attached to
N , and weight (4− r(N))/2, whose Borcherds lift is ΦN,[K].

Conjecture 6.11 (reflectivity). ΦN,[K] is holomorphic and reflective, i.e., div(ΦN,[K])
is an effective divisor, whose support is contained in the ramification divisor of the
modular projection ΩN → ΩN/ΓN,[K].

We refer the reader to [22] for a characterization of the ramification divisor of
the modular projection in terms of lattices. Recall the following theorem of Ma:

Theorem 6.12 (Ma [28]). Let L be a lattice of signature (2, n). If n > 26, then
there are no reflective modular forms for any finite-index subgroup of O(L).

Combining Conjecture 6.11 and Theorem 6.12, we make the following:

Conjecture 6.13. For any simple Enriques 2n-fold Y of index 2 of hyperkähler

type with Aut0(Ỹ ) = {1}, one has the following uniform upper bound of the di-
mension of the Kuranishi space of Y :

dimDef(Y ) ≤ 26.

If Conjecture 6.11 holds true, then so does Conjecture 6.13 by Theorem 6.12.
Hence Conjecture 6.13 is a conjectural consequence of Conjecture 6.11 and Theo-
rem 6.12.

Recall that when ΦN,[K] is holomorphic and its divisor is expressed as

div ΦN,[K] =
∑

d∈∆MBM
N

c(d) d⊥, c(d) ∈ Z≥0,

then the slope of ΦN,[K] is defined as

slope(ΦN,[K]) := max
d∈∆MBM

N

c(d)

wt(ΦN,[K])
,

where wt(Ψ) denotes the weight of an automorphic form Ψ.

Conjecture 6.14 (boundedness of slope). There is a uniform upper bound of
slope(ΦN,[K]). Namely, there exists an absolute constant C > 0 such that for any
deformation type of simple Enriques 2n-folds satisfying Assumption 6.2, one has

0 < slope(ΦN,[K]) ≤ C.
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We recall another theorem of Ma:

Theorem 6.15 (Ma [29]). For any C > 0, up to a scaling, the number of isometry
classes of lattices of rank ≥ 6 carrying a reflective modular form with slope bounded
from above by C is finite.

Combining Conjecture 6.14 and Theorem 6.15, we make the following:

Conjecture 6.16. Up to a scaling, there are only finitely many possibilities of the
anti-invariant sublattice N with rankN ≥ 6.

If both of Conjectures 6.11 and 6.14 hold true, then so does Conjecture 6.16
by Theorem 6.15. Hence Conjecture 6.16 is a conjectural consequence of Conjec-
tures 6.11 and 6.14 and Theorem 6.15.

Question 6.17. Does some of O’Grady’s 10-dimensional hyperkähler manifolds or
their deformations admit an Enriques involution, i.e., a fixed-point-free and anti-
symplectic involution? More generally, does a deformation of a hyperkähler man-
ifold X with Aut0(X) = {1} and dimX = 2(2n + 1) always admit an Enriques
involution?

Question 6.18. For a simple Enriques 2n-fold Y and its universal covering X, one
has the relation

b2(Y ) = b−2 (X) = anti-invariant subspace of H2(X,C).
Is there any bound of b2(X) in terms of b2(Y )? For all Enriques 2n-folds known so
far [35], [36], one always has

b2(X) ≤ 2b2(Y ).

Does this inequality hold true in general? If the answer is affirmative and if Con-
jecture 6.11 holds, then we will have b2(X) ≤ 56 and hence dimDef(X) ≤ 54.

7. Some simple Enriques 2n-folds of Calabi-Yau type

It is classical that the universal covering K3 surface of a generic Enriques surface
is isomorphic to a (2, 2, 2)-complete intersection of P5. By using this projective
model, it is possible to give an algebraic expression of the Borcherds Φ-function
[26]. Replacing the Borcherds Φ-function by the invariant τEnr, we can generalize
this result to higher dimension.

7.1. Simple Enriques 2n-folds of Boissière-Nieper-Wißkirchen-Sarti. Let
A = (A1, . . . , Am+1), B = (B1, . . . , Bm+1) ∈ Sym(m+ 1,C)⊗ Cm+1, where Ai, Bj

are complex (m + 1) × (m + 1)-symmetric matrices. Let Q(x,Ai) = txAix and
Q(y,Bj) =

tyBjy be the quadratic forms associated with Ai and Bj , respectively.
Define a (2, . . . , 2)-complete intersection of P2m+1

X(A,B) :=
{
(x, y) ∈ P2m+1; Q(x,Ai) +Q(y,Bi) = 0 (1 ≤ i ≤ m+ 1)

}
.

If A and B are sufficiently general, then X(A,B) is a Calabi-Yau manifold of dimen-
sion m. Define

Y(A,B) := X(A,B)/ι, ι(x, y) := (x,−y).

Fact 7.1. Let R(A) be the resultant of the system of quadratics Q(x,A1), . . . , Q(x,Am+1).
Then the following hold:

(1) Xι
(A,B) ̸= ∅ ⇐⇒ R(A)R(B) = 0.
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(2) If A and B are sufficiently general, R(A)R(B) ̸= 0, and m is even, then
Y(A,B) is a simple Enriques m-fold of Calabi-Yau type.

Theorem 7.2 ([47]). For even m, there is a constant Cm depending only on m such
that for any A,B ∈ Sym(m+1,C)⊗Cm+1 sufficiently general with R(A)R(B) ̸= 0,

τEnr

(
Y(A,B)

)−2m+1

= Cm |R(A)R(B)|

∣∣∣∣∣
∫
X(A,B)

ω(A,B) ∧ ω(A,B)

∣∣∣∣∣
2m

.

Here ω(A,B) is the canonical form on X(A,B) defined as the residue of the system of
m+ 1-quadric polynomials

Q(x,A1) +Q(y,B1), . . . , Q(x,Am+1) +Q(y,Bm+1).

Remark 7.3. Since τEnr(YA,B) = C ∥Φ(YA,B)∥−1/4 when m = 2 ([44]), where
∥Φ(YA,B)∥ is the Petersson norm of the Borcherds Φ-function evaluated at its
period, Theorem 7.2 is exactly [26, Theorem 1.1] when m = 2. In this sense,
Theorem 7.2 is a generalization of [26, Theorem 1.1] in higher dimension.

7.2. Enriques varieties parametrized by configuration space. Let us con-
sider the special case of (A,B), where all of the quadric equations are of diagonal
type. Let g be an even positive integer. Let Mm,n(C) be the complex m × n-
matrices.

For N = (n1, . . . ,n2g+2) ∈ Mg+1,2g+2(C), ni ∈ Cg+1 (1 ≤ i ≤ 2g + 2), set

XN := {[x] ∈ P2g+1;

2g+2∑
i=1

x2
ini = 0}.

When N is sufficiently general, XN is a Calabi-Yau g-fold.
For J = {j1 < · · · < jg+1} ⊂ {1, . . . , 2g+2}, let Jc be the complement of J and

let ⟨J⟩ be the corresponding partition

⟨J⟩ := J ⨿ Jc = {1, . . . , 2g + 2}.
Hence ⟨J⟩ = ⟨Jc⟩. For each partition ⟨J⟩, define

YN,⟨J⟩ := XN/ι⟨J⟩, ι⟨J⟩(xJ , xJc) := (xJ ,−xJc).

Fact 7.4. (1) If N and N ′ lie in the same orbit of GL(Cg+1)× (C∗)2g+2, then
XN

∼= XN ′ .
(2) X

ι⟨J⟩
N = ∅ iff ∆⟨J⟩(N) := det(nj1 , . . . ,njg+1) det(njc1

, . . . ,njcg+1
) ̸= 0.

(3) YN,⟨J⟩ is a simple Enriques g-fold of Calabi-Yau type for all ⟨J⟩ iff none of
the (g + 1)× (g + 1)-minors of N vanish.

Theorem 7.5 ([47]). For all N ∈ Mo
g+1,2g+2(C) := Mg+1,2g+2(C) \

⋃
⟨J⟩ div(∆⟨J⟩)

and ⟨J⟩, the following equality holds:

τEnr

(
YN,⟨J⟩

)−2g+1

= Cg

∣∣∣∣∆⟨J⟩(N)

∫
XN

ωN ∧ ωN

∣∣∣∣2g .
Here Cg is the same constant as in Theorem 7.2.

Corollary 7.6 ([47]). For all N ∈ Mo
g+1,2g+2(C) and partitions ⟨J⟩, ⟨J ′⟩,{

τEnr

(
YN,⟨J⟩

)
/τEnr

(
YN,⟨J′⟩

)}−2
=

∣∣∆⟨J⟩(N)/∆⟨J′⟩(N)
∣∣ .

In particular, if N is sufficiently general, then YN,⟨J⟩ ̸∼= YN,⟨J′⟩ for all distinct

partitions ⟨J⟩, ⟨J ′⟩. Hence XN has at least
(
2g+2
g+1

)
/2 distinct Enriques structures.
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7.3. Simple Enriques 2n-folds associated with hyperelliptic curves. Let

λ = (λ1, . . . , λ2g+2) ∈ C2g+2 \ div(∆),

where ∆(λ) :=
∏

i<j(λj −λi) is the difference product. Define a hyperelliptic curve
of genus g with level 2 structure

Cλ := {(x, y) ∈ C2; y2 = (x− λ1) · · · (x− λ2g+2)}.

Define a complex (g + 1)× (2g + 2)-matrix of Vandermonde type

M(λ) :=


1 1 · · · 1
λ1 λ2 · · · λ2g+2

λ2
1 λ2

2 · · · λ2
2g+2

...
...

. . .
...

λg
1 λg

2 · · · λg
2g+2

 .

For M(λ) = (M1(λ),M2(λ)), M1(λ),M2(λ) ∈ Mg+1(C), define

M(λ)∨ := (tM1(λ)
−1, tM2(λ)

−1).

Fact 7.7 (Mumford [32]). There is a one-to-one correspondence between the par-
titions {⟨J⟩} and the non-vansihing even theta constants on Cλ.

Under this correspondence, write θ⟨J⟩(Ωλ) for the non-vanishing even theta con-
stant on Cλ corresponding to the partition ⟨J⟩, where Ωλ ∈ Sg is the period of Cλ

with respect to a certain symplectic basis of H1(Cλ,Z) (cf. [32]).

Theorem 7.8 ([47]). There is a constant Cg depending only on g such that for all
λ ∈ C2g+2 \ div(∆),

τEnr

(
YM(λ)∨,⟨J⟩

)−1
= Cg

∥∥θ⟨J⟩(Ωλ)
∥∥2 ,

where ∥θ⟨J⟩(Ωλ)∥ is the Petersson norm of the theta constant θ⟨J⟩(Ωλ).

8. Simple Enriques 2n-folds associated with Enriques surfaces

In [35], [36], Oguiso-Schröer have constructed three series of simple Enriques
2n-folds. We give a formula for τEnr for those simple Enriques 2n-folds.

8.1. Simple Enriques 2n-folds of Oguiso-Schröer I. Let S be an Enriques

surface and let S̃ be the universal covering K3 surface of S. Let X := Hilbn(S̃) be

the Hilbert scheme of zero dimensional subschemes of S̃ of length n. Let ε : X →
S̃n/Sn be the symplectic resolution of the symmetric product S̃n/Sn (Hilbert-
Chow morphism).

Fact 8.1 (Beauville [5]). X is a hyperkähler 2n-fold with the following properties.

(1) b2(X) = 23.
(2) (H2(X,Z), qBBF) ∼= LK3 ⊕ ⟨−2(n− 1)⟩.
(3) ⟨−2(n−1)⟩ is generated by the class E/2, where E is the exceptional divisor

of ε : X → S̃n/Sn.
(4) Aut0(X) = {1}.

Here LK3 := U⊕U⊕U⊕E8 ⊕E8 is the K3-lattice and ⟨k⟩ is the one-dimensional
lattice (Z, kx2).
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Let ι : S̃ → S̃ be the non-trivial covering transformation such that S = S̃/ι. Let
ι̃ : X → X be the involution induced by ι. Let H2(X,Z)± be the ±1-eigenlattice
of the ι̃-action on H2(X,Z). Set

M := U(2)⊕ E8(2)⊕ ⟨−2(n− 1)⟩, N := U⊕ U(2)⊕ E8(2).

Fact 8.2 (Oguiso-Schröer [35], [36]). (1) If n is odd, then Y := X/ι̃ is a simple
Enriques 2n-fold of hyperkähler type.

(2) H2(X,Z)+ ∼= M and H2(X,Z)− ∼= N .

Theorem 8.3 ([47]). There is a constant Cn depending only on an odd n such that

τEnr

(
Hilbn(S̃)/ι̃

)
= Cn ∥Φ(S)∥−

n+1
8

for every Enriques surface S, where ∥Φ(S)∥ is the Petersson norm of the Borcherds
Φ-function evaluated at the period of S.

8.2. Simple Enriques 2n-folds of Oguiso-Schröer II. As before, let S be an

Enriques surface and let S̃ be the universal covering K3 surface of S. Let

ML3 := U(−1)⊕ LK3

be the Mukai lattice such that H(S̃,Z) ∼= MK3. Let v = (v0, v1, v2) ∈ H(S̃,Z),
vi ∈ H2i(S̃,Z) and let H be an ample line bundle on S̃. Let MH(v) be the moduli

space of H-stable torsion free coherent sheaves E on S̃ with Mukai vector v, i.e.,

v(E) := ch(E)

√
Td(S̃) = v.

By Mukai [33], if v1 is a primitive vector of H(S̃,Z) with v2 ≥ 0 and H is sufficiently
general, then MH(v) is a hyperkähler manifold of dimension v2 +2. By Mukai [33]
and O’Grady [34], there is a Hodge isometry of lattices

θ : v⊥ ∩H(S̃,Z) → H2(MH(v),Z).
By Beauville [6], Hassett-Tschinkel [23], Yoshioka [48], MH(v) is deformation equiv-

alent to Hilbv
2/2+1(S̃) such that Aut0(MH(v)) = {1} and b2(MH(v)) = 23.

Recall that ι : S̃ → S̃ is the non-trivial covering transformation such that S =

S̃/ι. When H and v are ι-invariant, ι lifts to an involution ι̃ on MH(v).

Fact 8.4 (Oguiso-Schröer [35], [36]). If v is ι-invariant and χ(E) is odd, then ι̃ is
free from fixed points and MH(v)/ι̃ is a simple Enriques 2n-fold with n = (v2+2)/2
such that

θ((v⊥∩H(S̃,Z))−) = θ(H2(S̃,Z)−) = H2(MH(v),Z)− ∼= H2(S,Z)− ∼= U⊕U(2)⊕E8(2).

Theorem 8.5 ([47]). There is a constant C[K] depending only on the deformation
type [K] of MH(v)/ι̃ such that for every Enriques surface S

τEnr

(
M(S,H)(v)/ι̃

)
= C[K] ∥Φ(S)∥

− v2+4
16 .

8.3. Simple Enriques 2n-folds of Oguiso-Schröer III.

Fact 8.6 (Oguiso-Schröer [35], [36]). For an Enriques surface S, Hilbn(S) is a
simple Enriques 2n-fold of Calabi-Yau type.

Theorem 8.7 ([47]). There is a constant C ′
n depending only on n > 1 such that

τEnr (Hilbn(S)) = C ′
n ∥Φ(S)∥−

n
4 .
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Problem 8.8. Determine the following universal constants:

τEnr(S)/∥Φ(S)∥−1/4, τEnr

(
Hilbn(S̃)/ι̃

)
/τEnr(S)

n+1
2 , τEnr (Hilbn(S)) /τEnr(S)

n.

References

[1] Amerik, E., Verbitsky, M. Rational curves on hyperkähler manifolds, IMRN 2015, 13009–
13045.

[2] Amerik, E., Verbitsky, M. Morrison-Kawamata cone conjecture for hyperkähler manifolds,
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