TUTORIAL ON LOCAL INTERSECTION INEQUALITIES

IVAN CHELTSOV

Abstract. We survey several local intersection inequalities for effective \mathbb{Q}-divisors on smooth surfaces, and present their global applications as examples and exercises.

Let S be a normal surface, let P be a smooth point of the surface S, and let

$$
D=\sum_{i=1}^{r} a_{i} C_{i}
$$

where C_{1}, \ldots, C_{r} are distinct irreducible curves on S, and a_{1}, \ldots, a_{r} are non-negative rational numbers. Let $f: \widetilde{S} \rightarrow S$ be a birational morphism such that $\widetilde{\widetilde{S}}$ is smooth, let E_{1}, \ldots, E_{n} be exceptional curves of the morphism f, and let $\widetilde{C}_{1}, \ldots, \widetilde{C}_{r}$ be proper transforms of the curves C_{1}, \ldots, C_{r} on the surface \widetilde{S}, respectively. Then

$$
K_{\widetilde{S}}+\sum_{i=1}^{r} a_{i} \widetilde{C}_{i}+\sum_{i=1}^{n} b_{i} E_{i} \sim_{\mathbb{Q}} f^{*}\left(K_{S}+D\right)
$$

for some rational numbers b_{1}, \ldots, b_{n}. Suppose also that all curves $\widetilde{C}_{1}, \ldots, \widetilde{C}_{r}$ are smooth, and the divisor

$$
E_{1}+\cdots+E_{n}+\widetilde{C}_{1}+\cdots+\widetilde{C}_{r}
$$

has at most simple normal crossing singularities.
Definition. The \log pair (S, D) is \log canonical at P if the following conditions hold:
(1) $a_{i} \leqslant 1$ for every $i \in\{1, \ldots, r\}$ such that $P \in C_{i}$;
(2) $b_{j} \leqslant 1$ for every $j \in\{1, \ldots, n\}$ such that $f\left(E_{j}\right)=P$.

Exercise 1. Show that this definition does not depend on the choice of f.
If $\operatorname{mult}_{P}(D)>2$ then (S, D) is not log canonical at P.
Question. Which simple conditions on D imply that (S, D) is \log canonical at P ?
Here is an easy answer to this question:
Exercise 2. Show that the inequality

$$
\operatorname{mult}_{P}(D) \leqslant 1
$$

implies that the \log pair (S, D) is \log canonical at the point P.
Let us show how to use this simple criterion.
We assume that all considered varieties are projective, normal and defined over complex numbers.

Example 3 ([3, Lemma 1.7.9]). Let $S=\mathbb{P}^{1} \times \mathbb{P}^{1}$. Suppose that D has bi-degree (a, b), where $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$ such that $a \leqslant 1$ and $b \leqslant 1$. Then (S, D) is \log canonical at P. Indeed, let L_{1} and L_{2} be the curves of bi-degree $(1,0)$ and $(0,1)$ such that $P=L_{1} \cap L_{2}$. Then $\left(S, a L_{1}+b L_{2}\right)$ is \log canonical at P. Moreover, if $L_{1} \nsubseteq \operatorname{Supp}(D)$, then

$$
1 \geqslant b=L_{1} \cdot D \geqslant\left(L_{1} \cdot D\right)_{P} \geqslant \operatorname{mult}_{P}\left(L_{1}\right) \operatorname{mult}_{P}(D)=\operatorname{mult}_{P}(D)
$$

so that (S, D) is \log canonical at P as required. Similarly, if $L_{2} \nsubseteq \operatorname{Supp}(D)$, then

$$
1 \geqslant a=L_{2} \cdot D \geqslant\left(L_{2} \cdot D\right)_{P} \geqslant \operatorname{mult}_{P}\left(L_{2}\right) \operatorname{mult}_{P}(D)=\operatorname{mult}_{P}(D)
$$

so that (S, D) is \log canonical at P. Hence, we may assume that $L_{1}=C_{1}$ and $L_{2}=C_{2}$. Put

$$
\mu=\min \left(\frac{a_{1}}{a}, \frac{a_{2}}{b}\right)
$$

which gives $\mu \leqslant 1$, since $a_{1} \leqslant a$ and $a_{2} \leqslant b$. Moreover, if $\mu=1$, then $a_{1}=a$ and $a_{2}=b$, which implies that $D=a L_{1}+b L_{2}$, so that the pair (S, D) is \log canonical at P as required. Therefore, we may assume that $\mu<1$, which implies that $r \geqslant 3$. Let

$$
D^{\prime}=\frac{a_{1}-\mu a}{1-\mu} L_{1}+\frac{a_{2}-\mu b}{1-\mu} L_{2}+\sum_{i=3}^{r} \frac{a_{i}}{1-\mu} C_{i}
$$

so that either $L_{1} \nsubseteq \operatorname{Supp}\left(D^{\prime}\right)$ or $L_{2} \nsubseteq \operatorname{Supp}\left(D^{\prime}\right)$. Moreover, we also have $D^{\prime} \sim_{\mathbb{Q}} D$, so that the log pair $\left(S, D^{\prime}\right)$ is log canonical at P (we just proved this). But

$$
D=(1-\mu) D^{\prime}+\mu\left(a L_{1}+b L_{2}\right)
$$

and $\left(S, a L_{1}+b L_{2}\right)$ is \log canonical at P. This implies that (S, D) is \log canonical at P.
Exercise 4 ([16, Lemma 4.8]). Let $S=\mathbb{F}_{1}$, let C and L be irreducible curves on the surface S such that $C^{2}=-1, C \cdot L=1$ and $L^{2}=0$. Suppose that

$$
D \sim_{\mathbb{Q}} a C+b L,
$$

where $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$ such that $a \leqslant 1$ and $b \leqslant 1$. Prove that (S, D) is \log canonical at P.
Exercise 5 ([4, Lemma 3.1]). Let S be a smooth hypersurface of degree 6 in $\mathbb{P}(1,1,2,3)$. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$. Prove that $\left(S, \frac{5}{6} D\right)$ is \log canonical.

Unfortunately, the application scope of this simple multiplicity-criterion is very limited. To expand its application scope, we suppose that $r \geqslant 2$ and write

$$
\Delta=\sum_{i=2}^{r} a_{i} C_{i}
$$

so that $D=a_{1} C_{1}+\Delta$.
Theorem 6 ([6, Theorem 7]). If $a_{1} \leqslant 1, P \in C_{1}$, the curve C_{1} is smooth at P, and

$$
\left(C_{1} \cdot \Delta\right)_{P} \leqslant 1
$$

then the \log pair (S, D) is \log canonical at P.

Let us show how to apply this result.
Example 7 ([13, Theorem 3.3]). Let S be a surface of degree 4 in $\mathbb{P}(1,1,1,2)$ that has at most isolated ordinary double points, and let $\pi: S \rightarrow \mathbb{P}^{2}$ be the double cover induced by the projection $\mathbb{P}(1,1,1,2) \rightarrow \mathbb{P}^{2}$, and let R be the quartic in \mathbb{P}^{2} that is the ramification curve of the morphism π. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$ and (S, D) is not \log canonical at P. We claim that $\pi(P) \in R$. Indeed, suppose that $\pi(P) \notin R$. Let us seek for a contradiction. Let $g: \widehat{S} \rightarrow S$ be the blow up of the surface S at the point P. Then

$$
K_{\widehat{S}}+\widehat{D}+\left(\operatorname{mult}_{P}(D)-1\right) E \sim_{\mathbb{Q}} g^{*}\left(K_{S}+D\right) \sim_{\mathbb{Q}} 0
$$

where \widehat{D} is the proper transform of the divisor D on the surface \widehat{S}, and E is the exceptional curve of the morphism g. Then the log pair

$$
\left(\widehat{S}, \widehat{D}+\left(\operatorname{mult}_{P}(D)-1\right) E\right)
$$

is not \log canonical at some point $Q \in E$. Hence, our original criterion gives

$$
\operatorname{mult}_{P}(D)+\operatorname{mult}_{Q}(\widehat{D})>2
$$

but $\left|-K_{S}\right|$ contains a curve Z such that its proper transform \widehat{Z} via g passes through Q. Note that $P \in Z$ and Z is smooth at the point P, so that (S, Z) is \log canonical at P. Thus, arguing as in Example 3, we may assume that the support of D does not contain at least one irreducible component of the curve Z. If the curve Z is irreducible, then

$$
2-\operatorname{mult}_{P}(D)=2-\operatorname{mult}_{P}(Z) \operatorname{mult}_{P}(D)=\widehat{Z} \cdot \widehat{D} \geqslant \operatorname{mult}_{Q}(\widehat{Z}) \operatorname{mult}_{Q}(\widehat{D})=\operatorname{mult}_{Q}(\widehat{D})
$$ which contradicts the inequality we proved earlier. Thus, the curve Z must be reducible. We may then write $Z=Z_{1}+Z_{2}$, where Z_{1} and Z_{2} are irreducible smooth rational curves. Without loss of generality we may assume that the curve Z_{2} is not contained in $\operatorname{Supp}(D)$. Then $P \in Z_{1}$, because otherwise $P \in Z_{2}$, so that

$$
1=D \cdot Z_{2} \geqslant \operatorname{mult}_{P}\left(Z_{2}\right) \operatorname{mult}_{P}(D)=\operatorname{mult}_{P}(D)>1
$$

Similarly, we see that Z_{1} is contained in $\operatorname{Supp}(D)$, so that we may assume that $C_{1}=Z_{1}$. Let k be the number of singular points of the surface S that are contained in C_{1}. Then

$$
1=Z_{2} \cdot D=a_{1} Z_{2} \cdot C_{1}+Z_{2} \cdot \Delta \geqslant a_{1}\left(Z_{2} \cdot C_{1}\right)=\left(2-\frac{k}{2}\right) a_{1},
$$

which gives $a_{1} \leqslant \frac{2}{4-k} \leqslant 1$ because $k \leqslant 2$ (why?). Recall that the log pair

$$
\left(\widehat{S}, a_{1} \widehat{C}_{1}+\widehat{\Delta}+\left(\operatorname{mult}_{P}(D)-1\right) E\right)
$$

is not \log canonical at Q, where \widehat{C}_{1} and $\widehat{\Delta}$ are the proper transforms of C_{1} and Δ on the surface \widehat{S}, respectively. Then $a_{1}>\frac{2}{4-k}$, since

$$
\left(2-\frac{k}{2}\right) a_{1}=\widehat{C}_{1} \cdot\left(\widehat{\Delta}+\left(\operatorname{mult}_{P}(D)-1\right) E\right)>1
$$

by Theorem 6 . This is a contradiction.

Exercise 8 ([4, Lemma 4.1]). Let \bar{S} be a hypersurface of degree 6 in $\mathbb{P}(1,1,2,3)$ that has at most Du Val singular points of type A_{1} or A_{2}, and let $\nu: S \rightarrow \bar{S}$ be its minimal resolution of singularities. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$. Show that $\left(S, \frac{2}{3} D\right)$ is \log canonical at P.
Exercise 9 ([13, Theorem 3.1]). Let \bar{S} be a hypersurface of degree 6 in $\mathbb{P}(1,1,2,3)$ that has at most Du Val singularities, let O be its singular point of type D_{4}, let \bar{C} be the unique curve in the linear system $\left|-K_{\bar{S}}\right|$ that passes through O, and let $\nu: S \rightarrow \bar{S}$ be the minimal resolution of singularities of the surface \bar{S}. Suppose that $\nu(P)=O$. Suppose also that

$$
D \sim_{\mathbb{Q}}-K_{S},
$$

and the support of the divisor D does not contain the proper transform of the curve \bar{C}. Prove that the \log pair (S, D) is \log canonical at P.

Under an additional constrained on Δ, the assertion of Theorem 6 can be improved.
Theorem 10 ([10, Lemma 3.5]). Suppose that $a_{1} \leqslant 1, P \in C_{1}$, and C_{1} is smooth at P. If $\operatorname{mult}_{P}(\Delta) \leqslant 1$ and

$$
\left(C_{1} \cdot \Delta\right)_{P} \leqslant 2-a_{1}
$$

then the \log pair (S, D) is \log canonical at P.
Let us show how to apply this result.
Example 11 ([17, Remark 2.11]). Let S be a smooth surface of degree 6 in $\mathbb{P}(1,1,2,3)$. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$, and C_{1} is a curve in the pencil $\left|-K_{S}\right|$ that passes through P. Suppose also that $a_{1} \leqslant \frac{1}{3}$, and C_{1} is singular at P. Then $\left(S, \frac{3}{2} D\right)$ is \log canonical at P. Indeed, suppose that $\left(S, \frac{3}{2} D\right)$ is not \log canonical at P. Let us seek for a contradiction. Let $m=\operatorname{mult}_{P}(\Delta)$. Then $m \leqslant \frac{1-a_{1}}{2}$, since

$$
1=D \cdot C_{1}=\left(a_{1} C_{1}+\Delta\right) \cdot C \geqslant a_{1}+2 m .
$$

Let $g: \widehat{S} \rightarrow S$ be the blow up of the point P, let E be the exceptional curve of blow up g, let \widehat{C}_{1} and $\widehat{\Delta}$ be the proper transforms of C_{1} and Δ on the surface \widehat{S}, respectively. Then

$$
\left(\widehat{S}, \frac{3 a_{1}}{2} \widehat{C}+\frac{3}{2} \widehat{\Delta}+\left(3 a_{1}+\frac{3}{2} m-1\right) E\right)
$$

is not \log canonical at some point $Q \in E$. Note that $3 a_{1}+\frac{3}{2} m-1<1$. But

$$
E \cdot \widehat{\Delta}=m \leqslant \frac{1-a_{1}}{2} \leqslant \frac{1}{2} .
$$

Thus, we have $Q \in E \cap \widehat{C}$ by Theorem 6 . On the other hand, we have

$$
\operatorname{mult}_{Q}\left(\frac{3}{2} \widehat{\Delta}+\left(3 a_{1}+\frac{3}{2} m-1\right) E\right) \leqslant 3\left(a_{1}+m\right)-1 \leqslant 1
$$

so that we can apply Theorem 10 to our \log pair at Q. This gives

$$
\frac{9}{2} a_{1}-\frac{1}{2}=\widehat{C} \cdot\left(\frac{3}{2} \widehat{\Delta}+\left(3 a_{1}+\frac{3}{2} m-1\right) E\right)>2-\frac{3}{2} a_{1}
$$

so that $a_{1}>\frac{5}{12}$, which is a contradiction.

Exercise $12([17, \S 4.1])$. Let S be a smooth cubic surface in \mathbb{P}^{3}, let $g: \widehat{S} \rightarrow S$ be the blow up of the point P, and let \widehat{D} be the proper transform of the divisor D on the surface \widehat{S}. Suppose that P is an Eckardt point of the surface S, and C_{1}, C_{2} and C_{3} are the lines in the surface S that passes through P. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$, and

$$
\operatorname{mult}_{P}(D)+\operatorname{mult}_{Q}(\widehat{D}) \leqslant \frac{17}{9}
$$

for every point Q in the g-exceptional curve. Suppose also that $a_{1} \leqslant \frac{5}{9}, a_{2} \leqslant \frac{5}{9}$ and $a_{3} \leqslant \frac{5}{9}$. Prove that the \log pair $\left(S, \frac{6}{5} D\right)$ is \log canonical at P (cf. Exercise 5).

Some problems requires very special analogues of Theorems 6 and 10.
Exercise 13 ([8, Lemma 25]). Let $m=\operatorname{mult}_{P}(\Delta)$, and let $x \in \mathbb{Q}$ such that $0 \leqslant x \leqslant 1$. Suppose that $P \in C_{1}$, the curve C_{1} is smooth at $P, a_{1} \leqslant \frac{1}{3}+\frac{x}{2}$ and $m \leqslant 1+\frac{x}{2}-a_{1}$. Suppose also that

$$
\left(C_{1} \cdot \Delta\right)_{P} \leqslant 1-\frac{x}{2}+a_{1}
$$

so that $m \leqslant 1-\frac{x}{2}+a_{1}$. Show that (S, D) is \log canonical at P.
In many generalizations of Theorems 6 and 10, we have to deal with two special curves among C_{1}, \ldots, C_{r}. Because of this, we assume that $r \geqslant 3$, and we let

$$
\Omega=\sum_{i=3}^{r} a_{i} C_{i}
$$

so that $D=a_{1} C_{1}+a_{2} C_{2}+\Omega$.
Theorem 14 ([9, Corollary 1.29]). Suppose that $P \in C_{1} \cap C_{2}$, the curves C_{1} and C_{2} are smooth at the point P, and they intersect transversally at P. Suppose also that

$$
\frac{2 m-2}{m+1} a_{1}+\frac{2}{m+1} a_{2} \leqslant 1
$$

for some integer $m \geqslant 3$. If

$$
\left(C_{1} \cdot \Omega\right)_{P} \leqslant 2 a_{1}-a_{2}
$$

and

$$
\left(C_{2} \cdot \Omega\right)_{P} \leqslant \frac{m}{m-1} a_{2}-a_{1}
$$

then (S, D) is \log canonical at P.
Let us show how to apply this result.
Example 15 ([9, Theorem 4.1]). Let \bar{S} be a hypersurface of degree 6 in $\mathbb{P}(1,1,2,3)$ that has Du Val singularities, and let $\nu: S \rightarrow \bar{S}$ be it minimal resolution of singularities. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$, and $\nu(P)$ is a Du Val singular point of the surface \bar{S} of type A_{3}. Then (S, D) is \log canonical at P. Indeed, suppose that (S, D) is not \log canonical at P. Let us seek for a contradiction. We may assume that C_{1}, C_{2} and C_{3} are ν-exceptional curves with the following intersection form

\bullet	C_{1}	C_{2}	C_{3}
C_{1}	-2	1	0
C_{2}	1	-2	1
C_{3}	0	1	-2

Write $\Lambda=a_{3} C_{3}+\cdots+a_{r} C_{r}$. Then $D \cdot C_{1}=D \cdot C_{2}=D \cdot C_{3}=0$, so that

$$
\left\{\begin{array}{l}
2 a_{1}-a_{2}=\Lambda \cdot C_{1} \geqslant 0 \\
2 a_{2}-a_{1}-a_{3}=\Lambda \cdot C_{1} \geqslant 0 \\
2 a_{3}-a_{2}=\Lambda \cdot C_{1} \geqslant 0
\end{array}\right.
$$

which implies that $a_{1}>0, a_{2}>0$ and $a_{3}>0$. Let \bar{Z} be the unique curve in $\left|-K_{\bar{S}}\right|$ that passes through $\nu(P)$, and let Z be its proper transform on the surface S. Then

$$
Z+C_{1}+C_{2}+C_{3} \sim-K_{S}
$$

and Z is irreducible. Arguing as in Example 3, we may assume that $Z \nsubseteq \operatorname{Supp}(\Lambda)$. Then

$$
0 \leqslant Z \cdot \Lambda=1-a_{1}-a_{2},
$$

so that $a_{1}+a_{2} \leqslant 1$ which (together with previous inequalities for a_{1}, a_{2} and a_{3}) gives

$$
\left\{\begin{array}{l}
a_{1} \leqslant \frac{3}{4} \\
a_{2} \leqslant 1 \\
a_{3} \leqslant \frac{3}{4}
\end{array}\right.
$$

If $P \in C_{1} \backslash C_{2}$, then Theorem 6 gives

$$
2 a_{1}-a_{2}=\Lambda \cdot C_{1}>1,
$$

which gives a contradiction with previously obtained inequalities, so that $P \notin C_{1} \backslash C_{2}$. Similarly, we see that $P \notin C_{3} \backslash C_{2}$. Using the same approach, we obtain $P \notin C_{2} \backslash\left(C_{1} \cup C_{2}\right)$. Thus, without loss of generality, we may assume that $P=C_{1} \cap C_{2}$. Then

$$
\left(\Lambda \cdot C_{1}\right)_{P} \leqslant \Lambda \cdot C_{1}=2 a_{1}-a_{2}
$$

and $a_{1}+\frac{1}{2} a_{2} \leqslant 1$. Thus, applying Theorem 14 with $m=3$, we get

$$
2 a_{2}-a_{1}-a_{3}=\Lambda \cdot C_{2} \geqslant\left(\Lambda \cdot C_{2}\right)_{P}>\frac{3}{2} a_{2}-a_{1}
$$

which immediately leads to a contradiction.
Exercise 16 ([9, Lemma 4.6]). Let \bar{S} be a surface of degree 6 in $\mathbb{P}(1,1,2,3)$ that has one singular point, which is a singular point of type A_{4}, and let $\nu: S \rightarrow \bar{S}$ be the minimal resolution of singularities. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$. Show that $\left(S, \frac{4}{5}\right)$ is \log canonical at P.

Theorem 14 has very limited application scope. It can be generalized as follows:

Theorem 17 ([9, Theorem 1.28]). Suppose that $P \in C_{1} \cap C_{2}$, the curves C_{1} and C_{2} are smooth at the point P, and they intersect transversally at P. Suppose also that there are non-negative rational numbers α, β, A, B, M, and N such that

$$
\left\{\begin{array}{l}
\alpha a_{1}+\beta a_{2} \leqslant 1 \\
A(B-1) \geqslant 1 \\
\alpha(A+M-1) \geqslant A^{2}(B+N-1) \beta \\
\alpha(1-M)+A \beta \geqslant A \\
M \leqslant 1 \\
N \leqslant 1
\end{array}\right.
$$

Suppose that $2 M+A N \leqslant 2$ or $\alpha(B+1-M B-N)+\beta(A+1-A N-M) \geqslant A B-1$. If

$$
\left(C_{1} \cdot \Omega\right)_{P} \leqslant M+A a_{1}-a_{2}
$$

and

$$
\left(C_{1} \cdot \Omega\right)_{P} \leqslant N+B a_{2}-a_{1}
$$

then the \log pair (S, D) is \log canonical at P.
This result has more applications than Theorem 14 (see [5] for examples).
Example 18 ([12, Lemma 4.9]). Let S be a smooth cubic surface in \mathbb{P}^{3}, and let T_{P} be its plane section that is singular at the point P. Suppose that $T_{P}=L+C$, where L is a line, and C is a conic that intersects L transversally at P. Suppose also that $D \sim_{\mathbb{Q}}-K_{S}$. Then (S, D) is \log canonical at P. Indeed, suppose that (S, D) is not \log canonical at P. Let us seek for a contradiction. Arguing as in Example 3, we may assume that either the line L or the conic C (or both) is not contained in $\operatorname{Supp}(D)$. If $L \nsubseteq \operatorname{Supp}(D)$, then

$$
1=L \cdot D \geqslant(L \cdot D)_{P} \geqslant \operatorname{mult}_{P}(D)>1
$$

which is a contradiction. So, we see that L is contained in $\operatorname{Supp}(D)$, so that $C \nsubseteq \operatorname{Supp}(D)$. We may assume that $C_{1}=L$. Let $m=\operatorname{mult}_{P}(\Delta)$. Then

$$
2=C \cdot D=2 a_{1}+\Delta \cdot C \geqslant 2 a_{1}+m .
$$

Let $g: \widehat{S} \rightarrow S$ be the blow up of the point P, let E be the g-exceptional curve, let \widehat{C}_{1} be the proper transform on \widehat{S} of the line C_{1}, and let $\widehat{\Delta}$ be the proper transform of the divisor Δ. Then $\left(\widehat{S}, a_{1} \widehat{C}_{1}+\left(a_{1}+m-1\right) E+\widehat{\Delta}\right)$ is not \log canonical at some point $Q \in E$, since

$$
K_{\widehat{S}}+a_{1} \widehat{C}_{1}+\widehat{\Delta}+\left(a_{1}+m-1\right) E \sim_{\mathbb{Q}} g^{*}\left(K_{S}+D\right)
$$

Moreover, it follows from Example 7 that $Q=\widehat{C}_{1} \cap E$. Now, applying Theorem 17 with

$$
\left\{\begin{array}{l}
M=1, \\
N=0, \\
A=1, \\
B=2, \\
\alpha=1, \\
\beta=1,
\end{array}\right.
$$

we get

$$
m=\widehat{\Delta} \cdot E \geqslant(\widehat{\Delta} \cdot E)_{P}>1+\left(a_{1}+m-1\right)-a_{1}=m
$$

or

$$
1+a_{1}-m=\widehat{\Delta} \cdot \widehat{C}_{1} \geqslant\left(\widehat{\Delta} \cdot \widehat{C}_{1}\right)>2 a_{1}-\left(a_{1}+m-1\right)=1+a_{1}-m
$$

where we used E and \widehat{C}_{1} as the curves C_{1} and C_{2} in Theorem 17 , respectively.
The assertion proved in Example 18 can be reproved using the following result:
Theorem 19 ([6, Theorem 13]). Suppose that $P \in C_{1} \cap C_{2}$, the curves C_{1} and C_{2} are smooth at P, and they intersect transversally at P. Suppose that $\operatorname{mult}_{P}(\Omega) \leqslant 1$. If

$$
\left(C_{1} \cdot \Omega\right)_{P} \leqslant 2\left(1-a_{2}\right)
$$

and

$$
\left(C_{2} \cdot \Omega\right)_{P} \leqslant 2\left(1-a_{1}\right)
$$

then the \log pair (S, D) is \log canonical at P.
Let us show how to apply Theorem 19.
Example 20 ([12, Lemma 4.8]). Let S be a smooth cubic surface in \mathbb{P}^{3}, and let T_{P} be its plane section that is singular at the point P. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$, and

$$
T_{P}=L_{1}+L_{2}+L_{3}
$$

where L_{1}, L_{2}, L_{3} are lines such that $L_{1} \cap L_{2}=P \notin L_{3}$. Then (S, D) is \log canonical at P. Indeed, suppose that (S, D) is not \log canonical at P. Let us seek for a contradiction. Arguing as in Example 3, we may assume that one line among L_{1}, L_{2} and L_{3} is not contained in the support of the divisor D. If $L_{1} \nsubseteq \operatorname{Supp}(D)$, then

$$
1=L_{1} \cdot D \geqslant \operatorname{mult}_{P}\left(L_{1}\right) \operatorname{mult}_{P}(D)=\operatorname{mult}_{P}(D)>1,
$$

which is absurd. This shows that $L_{1} \subseteq \operatorname{Supp}(D)$. Similarly, we see that $L_{2} \subseteq \operatorname{Supp}(D)$. Thus, the line L_{3} is not contained in $\operatorname{Supp}(D)$. We may assume that $C_{1}=L_{1}$ and $C_{2}=L_{2}$. Then $a_{1}+a_{2} \leqslant 1$ since

$$
1=L_{3} \cdot D=L_{3} \cdot\left(a_{1} C_{1}+a_{2} C_{2}+\Omega\right)=a_{1}+a_{2}+L_{3} \cdot \Omega \geqslant a_{1}+a_{2} .
$$

Put $m=\operatorname{mult}_{P}(\Omega)$. Then

$$
\left\{\begin{array}{l}
1=C_{1} \cdot\left(a_{1} C_{1}+a_{2} C_{2}+\Omega\right)=-a_{1}+a_{2}+C_{1} \cdot \Omega \geqslant-a_{1}+a_{2}+m, \\
1=C_{2} \cdot\left(a_{1} C_{1}+a_{2} C_{2}+\Omega\right)=a_{1}-a_{2}+C_{2} \cdot \Omega \geqslant a_{1}-a_{2}+m
\end{array}\right.
$$

which implies that $m \leqslant 1$. Thus, we can apply Theorem 19 to (S, D). This gives

$$
1+a_{1}-a_{2}=C_{1} \cdot \Omega \geqslant\left(C_{1} \cdot \Omega\right)>2\left(1-a_{2}\right)
$$

or

$$
1-a_{1}+a_{2}=C_{2} \cdot \Omega \geqslant\left(C_{2} \cdot \Omega\right)>2\left(1-a_{1}\right)
$$

so that $a_{1}+a_{2}>1$. But we proved already that $a_{1}+a_{2} \leqslant 1$.

Exercise 21 ([12, Corollary 1.13]). Let S be a smooth cubic surface in \mathbb{P}^{3}, and let T_{P} be the plane section of the surface S that is singular at the point P. Suppose that $D \sim_{\mathbb{Q}}-K_{S}$, and at least one irreducible component of the cubic curve T_{P} is not contained in $\operatorname{Supp}(D)$. Show that (S, D) is \log canonical at the point P.
Exercise 22 ([11, Theorem 4.1]). Let S be a smooth surface in $\mathbb{P}(1,1,1,2)$ of degree 4. Suppose that D is ample. Let

$$
\lambda=\frac{2}{3} \frac{\left(-K_{S} \cdot D\right)}{D^{2}}
$$

and suppose that $-K_{S}-\lambda D$ is nef. Prove that $(S, \lambda D)$ is \log canonical at P.
Exercise 23 ([1, Theorem 1.2]). Let S be a smooth hypersurface in \mathbb{P}^{3} of degree 4, let T_{P} be its hyperplane section that is singular at P, let

$$
\lambda=\sup \left\{\mu \in \mathbb{Q} \mid \text { the } \log \text { pair }\left(S, \mu T_{P}\right) \text { is } \log \text { canonical at } P\right\}
$$

and suppose that $D \sim_{\mathbb{Q}} T_{P}$. Prove that $(S, \lambda D)$ is \log canonical at P.
Exercise 24 ([2, Theorem 4.1]). Let S be a smooth hypersurface in \mathbb{P}^{3} of degree $d \geqslant 3$, and let T_{P} be its plane section that is singular at the point P. Suppose that $D \sim_{\mathbb{Q}} T_{P}$. Let $\lambda=\frac{2}{d}$. Prove that $(S, \lambda D)$ is \log canonical at P.

Theorem 19 has other applications (see $[13,7]$). Let us present one of them.
Example 25. Let \mathcal{C} be a smooth curve of bi-degree $(1,2)$ in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ that is given by

$$
x_{1} x_{2}^{2}=y_{1} y_{2}^{2}
$$

and let L_{λ} be the curve given by $x_{1}=\lambda y_{1}$, so that L_{∞} is the curve given by $y_{1}=0$. Let $\pi: S \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ be blow up of $k \geqslant 4$ points in the curve \mathcal{C} such that no two of them are contained in one curve L_{λ} for every $\lambda \in \mathbb{C} \cup\{\infty\}$. Suppose that C_{1} is the proper transform of a curve L_{μ} for some $\mu \in \mathbb{C} \backslash 0$ such that L_{μ} contain no points blown up by π, and C_{2} is the proper transform of the curve \mathcal{C}, and $P=C_{1} \cap C_{2}$. Suppose that

$$
1>a_{2} \gg \frac{1}{2} \geqslant a_{1} \geqslant 0
$$

and $D \sim_{\mathbb{Q}}-K_{S}$. Then the \log pair (S, D) is \log canonical at P. Suppose that it is not. Let us seek for a contradiction. Let $\beta=1-a_{2}$ and $m=\operatorname{mult}_{P}(\Omega)$. Then $a_{1}+m-\beta<1$, because

$$
1 \gg 2 \beta=C_{1} \cdot \Omega \geqslant\left(C_{1} \cdot \Omega\right)_{P} \geqslant m .
$$

Let $g: \widehat{S} \rightarrow S$ be the blow up of the point P, let E be the g-exceptional curve, let \widehat{C}_{1} be the proper transform of the curve C_{1} via g, let \widehat{C}_{2} the proper transform of the curve C_{2}, and let $\widehat{\Omega}$ be the proper transform of the divisor Ω. Then the log pair

$$
\left(\widehat{S}, a_{1} \widehat{C}_{1}+(1-\beta) \widehat{C}_{2}+\left(a_{1}+m-\beta\right) E+\widehat{\Omega}\right)
$$

is not \log canonical at some point $Q \in E$. We have $Q \in \widehat{C}_{1} \cup \widehat{C}_{2}$, since otherwise

$$
2 \beta \geqslant m=E \cdot \widehat{\Omega} \geqslant(E \cdot \widehat{\Omega})_{Q}>1
$$

by Theorem 6 . Similarly, we have $Q \in \widehat{C}_{2}$, since otherwise Theorem 6 gives

$$
1 \gg 2 \beta \geqslant E \cdot \widehat{\Omega} \geqslant(E \cdot \widehat{\Omega})_{Q}>1-a_{1} \geqslant \frac{1}{2} .
$$

Since $\operatorname{mult}_{Q}(\widehat{\Omega}) \leqslant m<1$, we can apply Theorem 19. Either it gives

$$
2 \beta \geqslant m=E \cdot \widehat{\Omega}>2 \beta
$$

or it gives

$$
2-\beta(k-4)-2 a_{1}-m=\widehat{C} \cdot \widehat{\Omega}>2\left(1-a_{1}-m+\beta\right)
$$

so that $2 \beta \geqslant m>(k-2) \beta$. In both cases, we obtain a contradiction.
Finally, let us present two local inequalities discovered in [15].
Theorem 26 ([15, Theorem 3.4]). Suppose that $P \in C_{1} \cap C_{2}$, the curves C_{1} and C_{2} are smooth at the point P, and they intersect transversally at P. Let $m=\operatorname{mult}_{P}(\Omega)$. Suppose that $a_{1} \leqslant 1, a_{2} \leqslant 1$ and $m \leqslant 1$. Suppose that

$$
\left(C_{1} \cdot \Omega\right)_{P} \leqslant 2-a_{1}-a_{2}
$$

in the case when $a_{1}+m>1$. Suppose also that

$$
\left(C_{2} \cdot \Omega\right)_{P} \leqslant \frac{m}{a_{2}+m-1}\left(1-a_{1}\right)-1+a_{2}
$$

in the case when $a_{2}+m>1$. Then (S, D) is \log canonical at P.
Proof. By Theorem 6, we may assume that $a_{2}<1$. We will use an inductive argument. Let $g: \widehat{S} \rightarrow S$ be the blow up of the point P, let E be the g-exceptional curve, let \widehat{C}_{1} be the proper transform of the curve C_{1} via g, let \widehat{C}_{2} the proper transform of the curve C_{2}, and let $\widehat{\Omega}$ be the proper transform of the divisor Ω. Then the log pair

$$
\left(\widehat{S}, a_{1} \widehat{C}_{1}+a_{2} \widehat{C}_{2}+\left(a_{1}+a_{2}+m-1\right) E+\widehat{\Omega}\right)
$$

is not \log canonical at some point $Q \in E$. If $a_{1}+m \leqslant 1$, then $a_{1}+a_{2}+m-1 \leqslant a_{2} \leqslant 1$. Similarly, if $a_{1}+m>1$, then

$$
a_{1}+a_{2}+m-1 \leqslant a_{1}+a_{2}+\left(C_{1} \cdot \Omega\right)_{P}-1 \leqslant 1 .
$$

Observe also that $\widehat{C}_{1} \cap \widehat{C}_{1} \cap E=\varnothing$.
Arguing as in Example 25, we see that $Q=\widehat{C}_{1} \cap E$ or $Q=\widehat{C}_{2} \cap E$, because $m \leqslant 1$. Moreover, if $Q=\widehat{C}_{1} \cap E$, then applying Theorem 6 twice, we see that $1<\left(\widehat{C}_{1} \cdot\left(\left(a_{1}+a_{2}+m-1\right) E+\widehat{\Omega}\right)\right)_{Q}=a_{1}+a_{2}+m-1+\left(\widehat{C}_{1} \cdot \widehat{\Omega}\right)_{Q}=a_{1}+a_{2}-1+\left(C_{1} \cdot \Omega\right)_{Q}$ and

$$
1<\left(E \cdot\left(a_{1} \widehat{C}_{1}+\widehat{\Omega}\right)\right)_{Q}=a_{1}+(E \cdot \widehat{\Omega})_{Q}=a_{1}+m
$$

which contradicts our assumptions. This shows that $Q=\widehat{C}_{2} \cap E$. Thus, the log pair

$$
\left(\widehat{S}, a_{2} \widehat{C}_{2}+\left(a_{1}+a_{2}+m-1\right) E+\widehat{\Omega}\right)
$$

is not \log canonical at the point Q. Applying Theorem 6 to this log pair, we obtain

$$
1<\left(E \cdot\left(a_{2} \widehat{C}_{2}+\widehat{\Omega}\right)\right)_{Q}=a_{2}+(E \cdot \widehat{\Omega})_{Q}=a_{2}+m
$$

Then, by our assumption, we have

$$
\left(C_{2} \cdot \Omega\right)_{P} \leqslant \frac{m}{a_{2}+m-1}\left(1-a_{1}\right)-1+a_{2}
$$

since we just proved that $a_{2}+m>1$.
Set $\widehat{a}_{1}=a_{1}+a_{2}+m-1$. Now we are going to apply our theorem to the \log pair

$$
\left(\widehat{S},\left(a_{1}+a_{2}+m-1\right) E+a_{2} \widehat{C}_{2}+\widehat{\Omega}\right) .
$$

Here, we use induction on the number of blow ups used in the definition of \log canonicity. Of course, we have to check that the new log pair satisfies all the condition of our theorem.

We know that $\widehat{a}_{1} \leqslant 1$. Set $\widehat{m}=\operatorname{mult}_{Q}(\widehat{\Omega})$. Then $\widehat{m} \leqslant m \leqslant 1$. We have to check that

$$
(E \cdot \widehat{\Omega})_{Q} \leqslant 2-\widehat{a}_{1}-a_{2}
$$

in the case when $\widehat{a}_{1}+\widehat{m}>1$, and we have to check that

$$
\left(\widehat{C}_{2} \cdot \widehat{\Omega}\right)_{Q} \leqslant \frac{\widehat{m}}{a_{2}+\widehat{m}-1}(1-\widehat{a})-1+a_{2}
$$

in the case when $a_{2}+\widehat{m}>1$.
Suppose that $\widehat{a}_{1}+\widehat{m}>1$ and $(E \cdot \widehat{\Omega})_{Q}>2-\widehat{a}_{1}-a_{2}$. Let us seek for a contradiction. We have

$$
a_{1}+2\left(a_{2}+m-1\right)+1=a_{1}+2 a_{2}+2 m-1=\widehat{a}_{1}+a_{2}+m \geqslant \widehat{a}_{1}+a_{2}+(E \cdot \widehat{\Omega})_{Q}>2 .
$$

so that

$$
2>\frac{1-a_{1}}{a_{2}+m-1}
$$

since we proved earlier that $a_{2}+m>1$. Similarly, we have

$$
\widehat{a}_{1}-m+\left(C_{2} \cdot \Omega\right)_{P} \geqslant \widehat{a}_{1}+\widehat{m}>1 .
$$

because $\left(C_{2} \cdot \Omega\right)_{P} \geqslant m+\widehat{m}$. Since $\widehat{a}_{1}=a_{1}+a_{2}+m-1$, this gives

$$
a_{1}+a_{2}+\left(C_{2} \cdot \Omega\right)_{P}>2
$$

which can be rewritten as

$$
2\left(1-a_{2}\right)=2-2 a_{2}<\left(C_{2} \cdot \Omega\right)_{P}+a_{1}-a_{2}=\left(C_{2} \cdot \Omega\right)_{P}-\left(1-a_{1}\right)+1-a_{2} .
$$

Thus, we have

$$
2<\frac{\left(C_{2} \cdot \Omega\right)_{P}-\left(1-a_{1}\right)+1-a_{2}}{1-a_{2}}
$$

which immediately gives

$$
2<\frac{\frac{m}{a_{2}+m-1}\left(1-a_{1}\right)-1+a_{2}-\left(1-a_{1}\right)+1-a_{2}}{1-a_{2}}=\frac{1-a_{1}}{a_{2}+m-1},
$$

because $\left(C_{2} \cdot \Omega\right)_{P} \leqslant \frac{m}{a_{2}+m-1}\left(1-a_{1}\right)-1+a_{2}$. Hence, summarizing, we get

$$
\frac{1-a_{1}}{a_{2}+m-1}>2>\frac{1-a_{1}}{a_{2}+m-1}
$$

which is absurd. This shows that $(E \cdot \widehat{\Omega})_{Q} \leqslant 2-\widehat{a}_{1}-a_{2}$ if $\widehat{a}_{1}+\widehat{m}>1$.
Now we suppose that $a_{2}+\widehat{m}>1$ and we suppose that $\left(\widehat{C}_{2} \cdot \widehat{\Omega}\right)_{Q}>\frac{\widehat{m}}{a_{2}+\widehat{m}-1}(1-\widehat{a})+a_{2}-1$. Let us seek for a contradiction. We have

$$
\begin{aligned}
\frac{m}{a_{2}+m-1}(1 & \left.-a_{1}\right)-1+a_{2} \geqslant\left(C_{2} \cdot \Omega\right)_{P}>\left(\widehat{C}_{2} \cdot \widehat{\Omega}\right)_{Q}+m> \\
& >\frac{\widehat{m}}{a_{2}+\widehat{m}-1}(1-\widehat{a})+a_{2}-1+m \geqslant \frac{m}{a_{2}+m-1}(1-\widehat{a})+a_{2}-1+m,
\end{aligned}
$$

since $m \geqslant \widehat{m}$. This gives

$$
m=\frac{m}{a_{2}+m-1}\left(a_{2}+m-1\right)=\frac{m}{a_{2}+m-1}\left(\widehat{a}-a_{1}\right)>m
$$

which is absurd. This shows that $\left(\widehat{C}_{2} \cdot \widehat{\Omega}\right)_{Q} \leqslant \frac{\widehat{m}}{a_{2}+\widehat{m}-1}(1-\widehat{a})+a_{2}-1$ if $a_{2}+\widehat{m}>1$.
Thus, we can apply our theorem to the pair $\left(\widehat{S},\left(a_{1}+a_{2}+m-1\right) E+a_{2} \widehat{C}_{2}+\widehat{\Omega}\right)$ at Q, which gives us a contradiction, since this pair is not \log canonical at Q.

Corollary 27 ([15, Corollary 3.5]). Suppose that $P \in C_{1} \cap C_{2}$, the curves C_{1} and C_{2} are smooth at the point P, and they intersect transversally at the point P. Let $m=\operatorname{mult}_{P}(\Omega)$. Suppose that $a_{1} \leqslant 1, a_{2} \leqslant 1$ and $m \leqslant 1$. If

$$
\left(C_{1} \cdot \Omega\right)_{P} \leqslant 1-a_{2}
$$

or

$$
\left(C_{2} \cdot \Omega\right)_{Q} \leqslant \frac{\left(C_{1} \cdot \Omega\right)_{P}}{\left(C_{1} \cdot \Omega\right)_{P}-1+a_{2}}\left(1-a_{1}\right)-1+a_{2}
$$

then the \log pair (S, D) is \log canonical at the point P.
Proof. Suppose that (S, D) is not \log canonical at P. Then $\left(C_{1} \cdot \Omega\right)_{P}>1-a_{2}$ by Theorem 6. Thus, to complete the proof, we may assume that

$$
\left(C_{2} \cdot \Omega\right)_{Q} \leqslant \frac{\left(C_{1} \cdot \Omega\right)_{P}}{\left(C_{1} \cdot \Omega\right)_{P}-1+a_{2}}\left(1-a_{1}\right)-1+a_{2}
$$

Let us seek for a contradiction. If $m>1-a_{2}$, then

$$
\left(C_{2} \cdot \Omega\right)_{Q} \leqslant \frac{m}{m-1+a_{2}}\left(1-a_{1}\right)-1+a_{2},
$$

since $m \leqslant\left(C_{1} \cdot \Omega\right)_{Q}$. Then $\left(C_{1} \cdot \Omega\right)_{P}>2-a_{1}-a_{2}$ and $a_{1}+m>1$ by Theorem 26. But

$$
m \leqslant\left(C_{2} \cdot \Omega\right)_{P} \leqslant \frac{\left(C_{1} \cdot \Omega\right)_{P}}{\left(C_{1} \cdot \Omega\right)_{P}-1+a_{2}}\left(1-a_{1}\right)-1+a_{2}=a_{2}-a_{1}+\frac{\left(1-a_{1}\right)\left(1-a_{2}\right)}{\left(C_{1} \cdot \Omega\right)_{P}-1+a_{2}},
$$

which implies that

$$
1<a_{1}+m \leqslant 1-\left(1-a_{2}\right) \frac{a_{1}+a_{2}+\left(C_{1} \cdot \Omega\right)_{P}}{(C \cdot \Omega)_{P}-1+a_{2}} \leqslant 1
$$

which is absurd.
Exercise 28 ([15]). Let us use assumptions and notation of Example 25. Suppose that

$$
a_{1} \leqslant \frac{1}{2}-\frac{\beta(r-4)}{8}
$$

and $r \geqslant 7$. Let $\lambda=1+\frac{\beta}{100}$. Prove that $\left(S, a_{1} C_{1}+\lambda a_{2} C_{2}+\lambda \Omega\right)$ is log canonical at P.
Exercise 29 ([14, Proposition 7.6]). Suppose that S is a smooth cubic surface in \mathbb{P}^{3}, and P is its Eckardt point. Suppose also that C_{1} is a line in S that contains P, and

$$
D=a_{1} C_{1}+\Delta \sim_{\mathbb{Q}}-K_{S}
$$

Let $\lambda=\frac{2-a_{1}}{3-a_{1}}$. Suppose that $a_{1} \leqslant 1$. Prove that $\left(S, a_{1} C_{1}+\lambda \Delta\right)$ is \log canonical at P.

References

[1] H. Ahmadinezhad, I. Cheltsov, J. Schicho, On a conjecture of Tian, Math. Z. 288 (2018), 217-241.
[2] I. Cheltsov, Log canonical thresholds on hypersurfaces, Sbornik: Mathematics 192 (2001), 1241-1257.
[3] ——, Birationally rigid Fano varieties, Russian Math. Surveys 60 (2005), 875-965.
[4] ——, Log canonical thresholds of del Pezzo surfaces, GAFA 11 (2008), 1118-1144.
[5] -, Two local inequalties, Izvestia: Mathematics 78 (2014), 375-426.
[6] ——, Del Pezzo surfaces and local inequalities, Springer Proceedings 79 (2014), 83-101.
[7] ——, Worst singularities of plane curves of given degree, J. Geom. Anal. 27 (2017), 2302-2338.
[8] ——, On a conjecture of Hong and Won, Geometric Methods in Physics XXXV (2018), 155-174.
[9] ——, D. Kosta Computing α-invariants of singular del Pezzo surfaces, JGA 24 (2014), 798-842.
[10] -, J. Martinez-Garcia, Dynamic α-invariants of del Pezzo surfaces, IMRN 10 (2016), 2994-3028.
[11] -, J. Martinez-Garcia,Stable polarized del Pezzo surfaces, to appear in IMRN.
[12] ——, J. Park, J. Won, Affine cones over smooth cubic surfaces, JEMS 18 (2016), 1537-1564.
[13] ——, J. Park, J. Won, Cylinders in singular del Pezzo surfaces, Compos. Math. 152 (2016), 1198-1224.
[14] —, Y. Rubinstein, Asymptotically log Fano varieties, Adv. Math. 285 (2015), 1241-1300.
[15] -, Y. Rubinstein, K. Zhang, Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces, Selecta Mathematica 25 (2019), 25-34.
[16] \longrightarrow, K. Shramov, Log canonical thresholds of smooth Fano threefolds (with an appendix by JeanPierre Demailly), Russian Math. Surveys 63 (2008), 859-958.
[17] -, K. Zhang, Delta invariants of smooth cubic surfaces, EJM 5 (2019), 729-762.

47/3 Warrender Park Road
Edinburgh EH9 1EU, Scotland
I.Cheltsov@ed.ac.uk

