Multidimensional continued fractions for Gorenstein cyclic quotient singularities

Yusuke Sato (Graduate school of Mathematical Sciences, The University of Tokyo)
yusuke.sato@ipmu.jp

Background and Definition

Question

Let G be a finite subgroup of $S L(n, \mathbb{C})$, then the quotient \mathbb{C}^{n} / G has a Gorenstein canonical singularity. When does \mathbb{C}^{n} / G have a crepant resolution?

■ In the case $n=2,3$, it is known that \mathbb{C}^{n} / G has crepant resolutions.

- However, in higher dimension, \mathbb{C}^{n} / G does not always have crepant resolutions.
In this poster, we show a sufficient condition of existence of crepant resolution in all dimensions by using Ashikaga's continuous fractions.(This is joint work with Kohei Sato.)

Definition

A resolution $f: Y \rightarrow X$ is called a crepant resolution if the adjunction formula $K_{Y}=f^{*} K_{X}+\sum_{i=1}^{n} a_{i} D_{i}$ satisfies $a_{i}=0$ for all i

Crepant resolution as toric varieties

$G:$ finite abelian subgroups of $S L(n, \mathbb{C})$. Any $g \in G$ is of the form $g=\operatorname{diag}\left(\varepsilon_{r}^{a_{1}}, \ldots, \varepsilon_{r}^{a_{n}}\right)$, where $\varepsilon_{r}^{r}=1$ primitive. Then we can represent it as $g=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right)$. Also, we define $\bar{g}=\frac{1}{r}\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{R}^{n}$. Let $N:=\mathbb{Z}^{n}+\mathbb{Z} \bar{g}$, and σ be the region of \mathbb{R}^{n} whose all entries are non-negative.
Then the toric variety determined by σ and N is isomorphic to \mathbb{C}^{n} / G

Remark

Let Σ is subdivision of σ using by lattice points of age $(\bar{g})=1$. If the toric variety U_{Σ} is smooth, then U_{Σ} is a crepant resolution of \mathbb{C}^{n} / G where we define $\operatorname{age}(g)=\frac{1}{r} \sum_{i=1}^{n} a_{i}$.

This figure shows the triangle of age $=1$ (For $\frac{1}{11}(1,2,8)$-type singularity). Let $n \in \mathbb{N}$. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}^{n}$ and $d \in \mathbb{N}$ which satisfies $0 \leq a_{i} \leq d-1$ for $1 \leq i \leq n$. We call the symbol

$$
\overline{\mathbf{a}}=\frac{\left(a_{1}, \ldots, a_{n}\right)}{d}
$$

an n-dimensional proper fraction.

Ashikaga's continued fraction

Let $\mathbb{Q}_{n}^{\text {prop }}$ be the set of n-dimensional proper fractions, and $\overline{\mathbb{Q}_{n}^{\text {prop }}}=\mathbb{Q}_{n}^{\text {prop }} \cup\{\infty\}$.
(i) The i-th remainder map: $\mathbb{Q}_{n}^{\text {prop }} \rightarrow \overline{\mathbb{Q}}_{n}^{\text {prop }}$ is defined by

$$
R_{i}\left(\frac{\left(a_{1}, \ldots, a_{n}\right)}{d}\right)=\left\{\begin{array}{cl}
\left(\frac{\overline{a_{1}}, \ldots, \overline{a_{i-1}}, \bar{d}, \overline{a_{i+1}}, \ldots, \overline{a_{n}}}{a_{i}}\right) & \text { if } a_{i} \neq 0 \\
\infty & \text { if } a_{i}=0
\end{array}\right.
$$

and $R_{i}(\infty)=\infty$.
(ii) Let $\frac{a}{d}$ be n-dimensional proper fraction, the remainder polynomial $\mathcal{R}_{*}\left(\frac{a}{d}\right) \in \overline{\mathbb{Q}}_{n}^{\text {prop }}\left[x_{1}, \ldots, x_{n}\right]$ is defined by

$$
\mathcal{R}_{*}\left(\frac{\mathbf{a}}{d}\right)=\frac{\mathbf{a}}{d}+\sum_{\left(i_{1}, i_{2}, \ldots, i_{i}\right) \in I^{\prime}}\left(R_{i \geq 1} \cdots R_{i_{2}} R_{i_{1}}\right)\left(\frac{\mathbf{a}}{d}\right) \cdot x_{i_{1}} x_{i_{2}} \cdots x_{i_{1}}
$$

excluding the term with coefficient ∞ or $\frac{(0,0, \ldots, 0)}{1}$.

Ashikaga's continued fraction summarizes informations of Fujiki-Oka resolution for $\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)$-type cyclic quotient singularities.

Lemma(Ashikaga) Let $G=\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right) \subset G L(n, \mathbb{C})$ and the cone $\sigma_{i}=\operatorname{CONE}\left(e_{1}, \ldots, \hat{e}_{i}, \ldots, e_{n}, \frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)\right)$. Then the affine toric variety $U_{\sigma_{i}}$ is isomorphic to $R_{i}\left(\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right)\right)$-type quotient singularity.

Main Result

Theorem 1 (K.Sato, S)

Let $G=\frac{1}{r}\left(1, a_{2}, \ldots, a_{n}\right) \subseteq S L(n, \mathbb{C})$. Suppose that all coefficients of $\mathcal{R}_{*}(G)$ satisfy age $=1$, then \mathbb{C}^{n} / G has a crepant resolution.

- Example

Let $G=\frac{1}{11}(1,2,8)$. Then, the remainder polynomial is

$$
\begin{aligned}
\mathcal{R}_{*}\left(\frac{(1,2,8)}{11}\right)=\frac{1}{11}(1,2,8) & +\frac{1}{8}(1,2,5) x_{3}+\left\{\frac{1}{2}(1,1,0) x_{2}\right. \\
& \left.+\frac{1}{2}(1,0,1) x_{3} x_{2}\right\}+\frac{1}{5}(1,2,2) x_{3} x_{3} \\
& +\left\{\frac{1}{2}(1,1,0) x_{3} x_{3} x_{2}+\frac{1}{2}(1,0,1) x_{3} x_{3} x_{3}\right\}
\end{aligned}
$$

Step 1:We subdivide the cone σ at the point $\frac{1}{11}(1,2,8)$. Then we can $\overline{\text { obtain }}$ three 3 -dimensional cone σ_{1}, σ_{2}, and σ_{3}. By above lemma, σ_{1} is smooth, σ_{2} is $\frac{1}{2}(1,0,1)$-type quotient singularity and σ_{3} is $\frac{1}{8}(1,2,5)$-type.
Step 2: Since the coefficient $\frac{1}{8}(1,2,5)$ corresponds to the point $\frac{1}{11}(2,4,5)$, we consider star subdivison at $\frac{1}{11}(2,4,5)$.

By repeating this operation, we get the smooth fan Δ corresponding to the crepant resolution.

Theorem 2 (K.Sato, S)

If there is a repdigit proper point satisfy age ≥ 2. Then \mathbb{C}^{n} / G has not any crepant resolutions.
$■$ The term of the remainder polynomial $R_{i} \cdots R_{i}\left(\frac{\mathbf{a}}{r}\right) x_{i} x_{i} \cdots x_{i}$ is called repdigit term, and its coefficient is called repdigit coefficient.

- A repdigit point is a point of N corresponding to repdigit coefficient \mathbf{a} / r.
- Example

Let $G=\frac{1}{15}(1,6,4,4)$, then $R_{2}\left(\frac{1}{15}(1,6,4,4)\right)=\frac{1}{6}(1,3,4,4)$ The coefficient $\frac{1}{6}(1,3,4,4)$ corresponds to repdigit point $\frac{1}{15}(3,3,12,12)$, and age $\left(\frac{1}{15}(3,3,12,12)\right)=2$.
Therefore, \mathbb{C}^{4} / G has not any crepant resolutions.

Reference

[1] T. Ashikaga, Multidimensional continued fractions for cyclic quotient singularities and Dedekind sums, To appear in Kyoto J. Math. Advance publication (2019).

