Multidimensional continued fractions for Gorenstein cyclic quotient singularities

Yusuke Sato (Graduate school of Mathematical Sciences, The University of Tokyo) yusuke.sato@ipmu.jp

Background and Definition

Question

Let G be a finite subgroup of $SL(n, \mathbb{C})$, then the quotient \mathbb{C}^n/G has a Gorenstein canonical singularity. When does \mathbb{C}^n/G have a crepant resolution?

- In the case n = 2, 3, it is known that \mathbb{C}^n/G has crepant resolutions.
- However, in higher dimension, \mathbb{C}^n/G does not always have crepant resolutions.

In this poster, we show a sufficient condition of existence of crepant resolution in all dimensions by using Ashikaga's continuous fractions.(This is joint work with Kohei Sato.)

Definition

A resolution $f: Y \to X$ is called a crepant resolution if the adjunction formula $K_Y = f^*K_X + \sum_{i=1}^n a_i D_i$ satisfies $a_i = 0$ for all i

Crepant resolution as toric varieties

G:finite abelian subgroups of $SL(n, \mathbb{C})$. Any $g \in G$ is of the form $g = \operatorname{diag}(\varepsilon_r^{a_1}, \ldots, \varepsilon_r^{a_n})$, where $\varepsilon_r^r = 1$ primitive. Then we can represent it as $g = \frac{1}{r}(a_1, \ldots, a_n)$. Also, we define

 $\bar{g} = \frac{1}{r}(a_1, \dots, a_n) \in \mathbb{R}^n$. Let $N := \mathbb{Z}^n + \mathbb{Z}\bar{g}$, and σ be the region of \mathbb{R}^n whose all entries are non-negative.

Then the toric variety determined by σ and N is isomorphic to \mathbb{C}^n/G . Remark

Remark

Let Σ is subdivision of σ using by lattice points of $age(\bar{g})=1$. If the toric variety U_{Σ} is smooth, then U_{Σ} is a crepant resolution of \mathbb{C}^n/G where we define $age(g) = \frac{1}{r} \sum_{i=1}^n a_i$.

This figure shows the triangle of age = 1 (For $\frac{1}{11}(1, 2, 8)$ -type singularity). Let $n \in \mathbb{N}$. Let $\mathbf{a} = (a_1, \ldots, a_n) \in \mathbb{Z}^n$ and $d \in \mathbb{N}$ which satisfies $0 \le a_i \le d-1$ for $1 \le i \le n$. We call the symbol

$$\frac{\mathbf{a}}{d} = \frac{(a_1, \ldots, a_n)}{d}$$

an *n-dimensional proper fraction*. Ashikaga's continued fraction

Let \mathbb{Q}_n^{prop} be the set of *n*-dimensional proper fractions, and $\overline{\mathbb{Q}_n^{prop}} = \mathbb{Q}_n^{prop} \cup \{\infty\}.$

(i) The *i*-th remainder map:
$$\mathbb{Q}_n^{prop} \to \mathbb{Q}_n^{prop}$$
 is defined by

$$R_i\left(\frac{(a_1,\ldots,a_n)}{d}\right) = \begin{cases} \left(\frac{a_1,\ldots,a_{i-1},-d,a_{i+1},\ldots,a_n}{a_i}\right) \text{ if } a_i \neq 0\\ \infty \qquad \text{ if } a_i = 0 \end{cases}$$

and $R_i(\infty) = \infty$.

(ii) Let $\frac{\mathbf{a}}{d}$ be *n*-dimensional proper fraction, the remainder polynomial $\mathcal{R}_*(\frac{\mathbf{a}}{d}) \in \overline{\mathbb{Q}_n^{prop}}[x_1, \dots, x_n]$ is defined by

$$\mathcal{R}_*\left(\frac{\mathbf{a}}{d}\right) = \frac{\mathbf{a}}{d} + \sum_{\substack{(i_1, i_2, \dots, i_l) \in \mathbf{l}' \ l \ge 1}} \left(R_{i_l} \cdots R_{i_2} R_{i_1}\right) \left(\frac{\mathbf{a}}{d}\right) \cdot x_{i_1} x_{i_2} \cdots x_{i_l}$$

excluding the term with coefficient ∞ or $\frac{(0,0,...,0)}{1}$

Ashikaga's continued fraction summarizes informations of Fujiki-Oka resolution for $\frac{1}{r}(1, a_2, \ldots, a_n)$ -type cyclic quotient singularities.

Lemma(Ashikaga) Let $G = \frac{1}{r}(1, a_2, \ldots, a_n) \subset GL(n, \mathbb{C})$ and the cone $\sigma_i = CONE(e_1, \ldots, \hat{e}_i, \ldots, e_n, \frac{1}{r}(1, a_2, \ldots, a_n))$. Then the affine toric variety U_{σ_i} is isomorphic to $R_i(\frac{1}{r}(1, a_2, \ldots, a_n))$ -type quotient singularity.

Main Result

Theorem 1 (K.Sato, S)

Let $G = \frac{1}{r}(1, a_2, ..., a_n) \subseteq SL(n, \mathbb{C})$. Suppose that all coefficients of $\mathcal{R}_*(G)$ satisfy age = 1, then \mathbb{C}^n/G has a crepant resolution.

Example

Let $G = \frac{1}{11}(1, 2, 8)$. Then, the remainder polynomial is

$$\begin{aligned} \mathcal{R}_*\left(\frac{(1,2,8)}{11}\right) = \frac{1}{11}(1,2,8) + \frac{1}{8}(1,2,5)x_3 + \left\{\frac{1}{2}(1,1,0)x_2 \right. \\ \left. + \frac{1}{2}(1,0,1)x_3x_2\right\} + \frac{1}{5}(1,2,2)x_3x_3 \\ \left. + \left\{\frac{1}{2}(1,1,0)x_3x_3x_2 + \frac{1}{2}(1,0,1)x_3x_3x_3\right\} \end{aligned}$$

<u>Step 1</u>:We subdivide the cone σ at the point $\frac{1}{11}(1,2,8)$. Then we can obtain three 3-dimensional cone σ_1 , σ_2 , and σ_3 .By above lemma, σ_1 is smooth, σ_2 is $\frac{1}{2}(1,0,1)$ -type quotient singularity and σ_3 is $\frac{1}{8}(1,2,5)$ -type.

Step 2: Since the coefficient $\frac{1}{8}(1,2,5)$ corresponds to the point $\frac{1}{11}(2,4,5)$, we consider star subdivison at $\frac{1}{11}(2,4,5)$.

By repeating this operation, we get the smooth fan Δ corresponding to the crepant resolution.

Theorem 2 (K.Sato, S)

If there is a repdigit proper point satisfy $age \ge 2$. Then \mathbb{C}^n/G has not any crepant resolutions.

- The term of the remainder polynomial $R_i \cdots R_i \left(\frac{\mathbf{a}}{r}\right) x_i x_i \cdots x_i$ is called *repdigit term*, and its coefficient is called *repdigit coefficient*.
- A repdigit point is a point of N corresponding to repdigit coefficient a/r.

Example

Let $G = \frac{1}{15}(1, 6, 4, 4)$, then $R_2(\frac{1}{15}(1, 6, 4, 4)) = \frac{1}{6}(1, 3, 4, 4)$ The coefficient $\frac{1}{6}(1, 3, 4, 4)$ corresponds to repdigit point $\frac{1}{15}(3, 3, 12, 12)$, and age $(\frac{1}{15}(3, 3, 12, 12)) = 2$. Therefore, \mathbb{C}^4/G has not any crepant resolutions.

Reference

[1] T. Ashikaga, *Multidimensional continued fractions for cyclic quotient singularities and Dedekind sums*, To appear in Kyoto J. Math. Advance publication (2019).