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Background and Definition

Question
Let G be a finite subgroup of SL(n,C), then the quotient
Cn/G has a Gorenstein canonical singularity. When does
Cn/G have a crepant resolution?

In the case n = 2, 3, it is known that Cn/G has crepant
resolutions.
However, in higher dimension, Cn/G does not always have
crepant resolutions.
In this poster, we show a sufficient condition of existence of
crepant resolution in all dimensions by using Ashikaga’s
continuous fractions.(This is joint work with Kohei Sato.)

Definition

A resolution f : Y → X is called a crepant resolution if the
adjunction formula KY = f ∗KX +

∑n
i=1 aiDi satisfies ai = 0 for all i

Crepant resolution as toric varieties

G :finite abelian subgroups of SL(n,C). Any g ∈ G is of the form
g = diag(εa1r , . . . , ε

an
r ), where ε

r
r = 1 primitive. Then we can

represent it as g = 1
r (a1, . . . , an). Also, we define

ḡ = 1
r (a1, . . . , an) ∈ Rn. Let N := Zn + Zḡ , and σ be the region of

Rn whose all entries are non-negative.
Then the toric variety determined by σ and N is isomorphic to Cn/G

Remark

Let Σ is subdivision of σ using by lattice points of age(ḡ)=1. If the
toric variety UΣ is smooth, then UΣ is a crepant resolution of Cn/G
where we define age(g) = 1

r

∑n
i=1 ai .

This figure shows the triangle of age = 1(For 1
11(1, 2, 8)-type singularity).

Let n ∈ N. Let a = (a1, . . . , an) ∈ Zn and d ∈ N which satisfies
0 ≤ ai ≤ d − 1 for 1 ≤ i ≤ n. We call the symbol

a
d
=

(a1, . . . , an)

d
an n-dimensional proper fraction.

Ashikaga’s continued fraction

Let Qprop
n be the set of n-dimensional proper fractions, and

Qprop
n = Qprop

n ∪ {∞}.
(i) The i-th remainder map:Qprop

n → Qprop
n is defined by

Ri

(
(a1, . . . , an)

d

)
=

{(
a1,...,ai−1,−d ,ai+1,...,an

ai

)
if ai (= 0

∞ if ai = 0

and Ri(∞) =∞.
(ii) Let a

d be n-dimensional proper fraction, the remainder polynomial

R∗(ad) ∈ Qprop
n [x1, . . . , xn] is defined by

R∗
(a
d

)
=

a
d
+

∑

(i1,i2,...,il)∈Il l≥1

(Ril · · ·Ri2Ri1)
(a
d

)
· xi1xi2 · · · xil

excluding the term with coefficient ∞ or (0,0,...,0)
1 .

Ashikaga’s continued fraction summarizes informations of Fujiki-Oka
resolution for 1

r (1, a2, . . . , an)-type cyclic quotient singularities.

Lemma(Ashikaga) Let G=1
r (1, a2, . . . , an) ⊂ GL(n,C) and the cone

σi = CONE (e1, . . . , êi, . . . , en,
1
r (1, a2, . . . , an)). Then the affine toric

variety Uσi is isomorphic to Ri(
1
r (1, a2, . . . , an))-type quotient

singularity.

Main Result

Theorem 1 (K.Sato, S)

Let G = 1
r (1, a2, . . . , an) ⊆ SL(n,C). Suppose that all

coefficients of R∗(G ) satisfy age = 1 , then Cn/G has a
crepant resolution.

Example
Let G = 1

11(1, 2, 8). Then, the remainder polynomial is

R∗
(
(1, 2, 8)

11

)
=

1

11
(1, 2, 8) +

1

8
(1, 2, 5)x3 +

{1
2
(1, 1, 0)x2

+
1

2
(1, 0, 1)x3x2

}
+
1

5
(1, 2, 2)x3x3

+
{1
2
(1, 1, 0)x3x3x2 +

1

2
(1, 0, 1)x3x3x3

}

Step 1:We subdivide the cone σ at the point 1
11(1, 2, 8). Then we can

obtain three 3-dimensional cone σ1 , σ2, and σ3.By above lemma, σ1
is smooth, σ2 is

1
2(1, 0, 1)-type quotient singularity and σ3 is

1
8(1, 2, 5)-type.
Step 2: Since the coefficient 1

8(1, 2, 5) corresponds to the point
1
11(2, 4, 5), we consider star subdivison at 1

11(2, 4, 5).

By repeating this operation, we get the smooth fan ∆ corresponding
to the crepant resolution.

Theorem 2 (K.Sato, S)

If there is a repdigit proper point satisfy age ≥ 2. Then
Cn/G has not any crepant resolutions.

The term of the remainder polynomial Ri · · ·Ri

(
a
r

)
xixi · · · xi is

called repdigit term, and its coefficient is called repdigit
coefficient.
A repdigit point is a point of N corresponding to repdigit
coefficient a/r .
Example
Let G = 1

15(1, 6, 4, 4), then R2(
1
15(1, 6, 4, 4)) =

1
6(1, 3, 4, 4)

The coefficient 1
6(1, 3, 4, 4) corresponds to repdigit point

1
15(3, 3, 12, 12), and age

(
1
15(3, 3, 12, 12)

)
= 2.

Therefore, C4/G has not any crepant resolutions.
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