Relative \mathbb{A}^1 -homotopy and its applications

Yuri Shimizu (Tokyo institute of technology) email: qingshuiyouli27@gmail.com

<u>What's \mathbb{A}^1 -homotopy and \mathbb{A}^1 -homology?</u>

Let k be a field. \mathbb{A}^1 -homotopy theory is a homotopy theory of smooth schemes over k introduced by Morel-Voevodsky [MV]. In this theory, the affine line \mathbb{A}^1 plays the role of unit interval [0,1] in the ordinary homotopy theory. An analogue of homotopy groups in the \mathbb{A}^1 homotopy theory, called \mathbb{A}^1 -homotopy sheaf, is defined as a sheaf on the Nisnevich topology on the category of smooth schemes over k, where the Ninsnevich topology is a Grothendieck topology stronger than Zariski and weaker than étale. In Morel's book [Mo], he introduced an \mathbb{A}^1 -version of the homology groups, called \mathbb{A}^1 homology sheaves, as Nisnevich sheaves, and prove an analogue of the Hurewicz theorem relates \mathbb{A}^1 -homotopy and \mathbb{A}^1 -homology sheaves.

Ordinary homotopy	\mathbb{A}^1 -homotopy
Topological spaces	Smooth schemes
Unit interval [0,1]	Affine line \mathbb{A}^1
Homotopy group $\pi_i(X)$	\mathbb{A}^1 -homotopy sheaf $\pi_i^{\mathbb{A}^1}(X)$
Homology group $H_i(X)$	\mathbb{A}^1 -homology sheaf $\mathbf{H}^{\mathbb{A}^1}_i(X)$

$\underline{\mathbb{A}^1}$ -Whitehead theorem

Whitehead theorem on homology groups states that a continuous map of simply connected CW-complexes which induces isomorphisms for all homology groups is a homotopy equivalence. Our first result in [Sh] is an analogue of this result with a degree bound. A smooth k-scheme is called \mathbb{A}^1 -n-connected, if the \mathbb{A}^1 -homotopy sheaves are trivial (*i.e.* isomorphic to the constant sheaf of a point) in degree $\leq n$. Our theorem as follows.

Theorem 1 ([Sh]). Let $f: X \to Y$ be a morphism of smooth schemes over a perfect field, and we write $d = \max\{\dim X + 1, \dim Y\}.$ Suppose that X and Y are \mathbb{A}^1 -1-connected and that f induces an isomorphism $\mathbf{H}_i^{\mathbb{A}^1}(X) \xrightarrow{\cong} \mathbf{H}_i^{\mathbb{A}^1}(Y)$ for all $2 \leq i < d$ and an epimorphism

 $\mathbf{H}_{d}^{\mathbb{A}^{1}}(X) \twoheadrightarrow \mathbf{H}_{d}^{\mathbb{A}^{1}}(Y).$

Then the morphism f is a homotopy equivalence in the sense of \mathbb{A}^1 -homotopy theory.

$\underline{\mathbb{A}^1}$ -excision theorem

Our secnd theorem is excision results for \mathbb{A}^1 -homology and \mathbb{A}^1 -homotopy sheaves. That is, our theorem says that Zariski open embeddings induce isomorphisms for the \mathbb{A}^1 -homology and the \mathbb{A}^1 -homotopy sheaves in low degrees. The precise statement as follows.

Theorem 2 ([Sh]). Let X be a smooth scheme over a perfect field and $U \subseteq X$ be an open set whose complement has codimension r. (1) The induced morphism

$$\mathbf{H}_{i}^{\mathbb{A}^{1}}(U) \to \mathbf{H}_{i}^{\mathbb{A}^{1}}(X)$$

is an isomorphism for every $0 \le i < r - 1$ and an epimorphism for i = r - 1. (2) If X and U are \mathbb{A}^1 -1-connected, then the

induced morphism

 $\pi_i^{\mathbb{A}^1}(U) \to \pi_i^{\mathbb{A}^1}(X)$ is an isomorphism for every $0 \le i < r-1$ and an epimorphism for i = r-1.

Relative \mathbb{A}^1 -homotopy and \mathbb{A}^1 -homology

For proving Theorems 1 and 2, we introduce a relative version of \mathbb{A}^1 -homotopy and \mathbb{A}^1 -homology sheaves which satisfice an analogue of relative Hurewicz theorem of topological spaces. By using the language of relative \mathbb{A}^1 - theory, our two theorems are described by the vanishing of the relative \mathbb{A}^1 -homotopy and the relative \mathbb{A}^1 -homology. Moreover, we compute the relative \mathbb{A}^1 -homology of the hyperplane embedding $\mathbb{P}^{n-1} \subseteq \mathbb{P}^n$.

Theorem 3 ([Sh]). When the base field is perfect, we have

$$\mathbf{H}_{i}^{\mathbb{A}^{1}}(\mathbb{P}^{n}, \mathbb{P}^{n-1}) \cong \begin{cases} \underline{\mathbf{K}}_{n}^{MW} & (i=n) \\ 0 & (i$$

for all n > 0 and $0 \le i \le n$, where $\underline{\mathbf{K}}_{n}^{MW}$ is the sheaf of the unramified Milnor-Witt K-theory introduced by Morel [Mo].

References

[Mo] F. Morel, \mathbb{A}^1 -algebraic topology over a field, Lecture notes in Math., **2052**, Springer, Heidelberg (2012). [MV] F. Morel and V. Voevodsky, \mathbb{A}^1 -homotopy theory of schemes, Publ. Math. IHES, **90** (1999) 45-143. [Sh] Y. Shimizu, Relative \mathbb{A}^1 -homology and its applications, preprint available at <u>https://arxiv.org/abs/1904.08644</u> (2019).