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Abstract
For retracts of the polynomial ring, in [Cos77], Costa asks us whether
every retract of k[x1 . . . , xn] is also the polynomial ring or not, where
k is a field. We call it the polynomial retraction problem (PRP).

In this paper, we give an affirmative answer to PRP in the case
where k is a field of characteristic zero and n = 3 ([Nag19]). Also,
we state relations between PRP and Zariski’s cancellation problem.

Definition (retracts of a commutative ring)

B: commutative ring,
A ⊂ B: subring of B.
We say A is a retract of B if
∃ an ideal I ⊂ B such that B ∼= A⊕ I as A-modules,
⇔ ∃ ϕ : B → A such that the following splits:

0 −→ kerϕ −→ B
ϕ−→ A −→ 0,

⇔ ∃ ϕ : B → A such ϕ|A = idA.

Example B = k[x, y, z]: polynomial ring in three variables.

Then,

k, k[x], k[x, y] and k[x, y, z] are retracts of B.

k[xz, yz] is a retract of B.

∵ Define ϕ : B → k[xz, yz] by x (→ xz, y (→ yz, z (→ 1.
Then ϕ|k[xz,yz] = idk[xz,yz].

k[x, xz + y2] is NOT a retract of B.

Polynomial Retraction Problem (PRP)

Is every retract of k[x1, . . . , xn] the polynomial ring?

dimension n char k = 0 char k > 0
n = 1 YES YES
n = 2 YES ([Cos77]) YES ([Cos77])
n = 3 YES (Main Theorem) ???
n ≥ 4 ??? NO ([Gup14a], [Gup14b])

Zariski’s Cancellation Problem (ZCP)

X × A1
k
∼=k An+1

k =⇒ X ∼=k An
k?

dimension n char k = 0 char k > 0
n = 1 YES YES
n = 2 YES ([Fuj79], [MS80])) YES ([Rus81])
n = 3 ??? NO ([Gup14a])
n ≥ 4 ??? NO ([Gup14b])

Proposition (PRP vs ZCP)

Let n ≥ 1. Then the affirmative answer to PRP for n
implies the affirmative answer to ZCP for n− 1.

Proof of Proposition
Suppose that PRP holds true for n ≥ 1.
Let X = Spec (A) such that X × A1

k
∼=k An

k.
Then A[t] = k[x1, . . . , xn].
Define ϕ : A[t]→ A by ϕ(f (t)) = f (0).
Then A is a retract of k[x1, . . . , xn].
Therefore A = k[y1, . . . , yn−1], hence X ∼=k An−1

k . "

Main theorem (N. 2019)

k: field of characteristic zero.
k[x1, . . . , xn]: polynomial ring in n ≥ 3 variables.
A ⊂ k[x1, . . . , xn]: sub k-algebra.

Assume that A is a retract of k[x1, . . . , xn] of dimension d.
If 0 ≤ d ≤ 2 or d = n, then A = k[y1, . . . , yd].

Corollary (the answer to PRP)

k: field of characteristic zero.
Every retract of k[x, y, z] is the polynomial ring.

Outline of the proof

k: field of characteristic zero.
B = k[x1, . . . , xn]: polynomial ring in n variables.
A ⊂ B: retract of B.

tr.degk A = 0, n ⇒ easy to show that A is the polynomial ring.

tr.degk A = 1 ⇒ A = k[t] (follows from [Cos77]).
Suppose that tr.degk A = 2.
Due to [Kam75], we may assume that k is algebraically closed.

By combing results in [Eak72], [Cos77] and [Iit77], we have:
A is a UFD, finitely generated over k, and A∗ = k∗,

X = Spec (A) is a smooth affine surface over k,

the logarithmic Kodaira dimension of X is −∞.
By combing results in [Miy75], [Fuj79] and [MS80],
we have X ∼=k A2

k.
This implies that A = k[s, t]. "
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