A note on retracts of polynomial rings in three variables

Takanori Nagamine (Niigata University)

Key words and phrases

Retracts of polynomial rings, Zariski's cancellation problem

Abstract

For retracts of the polynomial ring, in [Cos77], Costa asks us whether every retract of $k[x_1, \ldots, x_n]$ is also the polynomial ring or not, where k is a field. We call it the *polynomial retraction problem* (PRP).

In this paper, we give an affirmative answer to PRP in the case where k is a field of characteristic zero and n=3 ([Nag19]). Also, we state relations between PRP and Zariski's cancellation problem.

Definition (retracts of a commutative ring)

B: commutative ring,

 $A \subset B$: subring of B.

We say A is a **retract** of B if

 \exists an ideal $I \subset B$ such that $B \cong A \oplus I$ as A-modules,

 $\Leftrightarrow \exists \varphi : B \to A$ such that the following splits:

$$0 \to \ker \varphi \to B \xrightarrow{\varphi} A \to 0$$
,

 $\Leftrightarrow \exists \ \varphi: B \to A \text{ such } \varphi|_A = \mathrm{id}_A.$

Then,

- k, k[x], k[x, y] and k[x, y, z] are retracts of B.
- \bullet k[xz, yz] is a retract of B.
 - $\begin{tabular}{ll} \cdots Define $\varphi:B\to k[xz,yz]$ by $x\mapsto xz$, $y\mapsto yz$, $z\mapsto 1$. \\ Then $\varphi|_{k[xz,yz]}=\mathrm{id}_{k[xz,yz]}. \end{tabular}$
- \bullet $k[x, xz + y^2]$ is NOT a retract of B.

Polynomial Retraction Problem (PRP)

Is every retract of $k[x_1, \ldots, x_n]$ the polynomial ring?

	$char\; k = 0$	$char\; k > 0$
n=1	YES	YES
n=2	YES ([Cos77])	YES ([Cos77])
n=3	YES (Main Theorem)	???
$n \ge 4$???	NO ([Gup14a], [Gup14b])

Zariski's Cancellation Problem (ZCP)

 $X\times \mathbb{A}^1_k\cong_k \mathbb{A}^{n+1}_k\Longrightarrow X\cong_k \mathbb{A}^n_k?$

	$char\; k = 0$	$char\; k > 0$
n=1	YES	YES
n=2	YES ([Fuj79], [MS80]))	
n=3	???	NO ([Gup14a])
$n \ge 4$???	NO ([Gup14b])

Proposition (PRP vs ZCP)

Let $n \ge 1$. Then the affirmative answer to PRP for n implies the affirmative answer to ZCP for n-1.

Proof of Proposition

Suppose that PRP holds true for $n \ge 1$.

Let $X = \operatorname{Spec}(A)$ such that $X \times \mathbb{A}^1_k \cong_k \mathbb{A}^n_k$.

Then $A[t] = k[x_1, \ldots, x_n]$.

Define $\varphi: A[t] \to A$ by $\varphi(f(t)) = f(0)$.

Then A is a retract of $k[x_1, \ldots, x_n]$.

Therefore $A = k[y_1, \ldots, y_{n-1}]$, hence $X \cong_k \mathbb{A}_k^{n-1}$. \square

Main theorem (N. 2019)

k: field of characteristic zero.

 $k[x_1,\ldots,x_n]$: polynomial ring in $n\geq 3$ variables.

 $A \subset k[x_1, \ldots, x_n]$: sub k-algebra.

Assume that A is a retract of $k[x_1, \ldots, x_n]$ of dimension d.

If $0 \le d \le 2$ or d = n, then $A = k[y_1, \dots, y_d]$.

Corollary (the answer to PRP)

k: field of characteristic zero.

Every retract of k[x, y, z] is the polynomial ring.

Outline of the proof

k: field of characteristic zero.

 $B = k[x_1, \ldots, x_n]$: polynomial ring in n variables.

 $A \subset B$: retract of B.

lacktriangledown tr. $\deg_k A = 0, n \Rightarrow$ easy to show that A is the polynomial ring.

• $\operatorname{tr.deg}_k A = 1 \Rightarrow A = k[t]$ (follows from [Cos77]).

Suppose that $\operatorname{tr.deg}_k A = 2$.

Due to [Kam75], we may assume that k is algebraically closed.

By combing results in [Eak72], [Cos77] and [lit77], we have:

- A is a UFD, finitely generated over k, and $A^* = k^*$,
- $X = \operatorname{Spec}(A)$ is a smooth affine surface over k,
- lacksquare the logarithmic Kodaira dimension of X is $-\infty$.

By combing results in [Miy75], [Fuj79] and [MS80], $\sim 10^{-2}$

we have $X \cong_k \mathbb{A}^2_k$.

This implies that A = k[s, t]. \square

[Cos77] D. Costa, J. Algebra, 1977.

[Eak72] P. Eakin, Proc. Amer. Math. Soc., 1972.

[Fuj79] T. Fujita, Proc. Japan Acad., Ser. A, 1979.

[Gup14a] N. Gupta, Invent. Math., 2014.

[Gup14b] N. Gupta, Adv. Math., 2014.

[lit77] S. litaka, Complex Analysis and Algebraic Geometry, 1977.

[Kam75] T. Kambayashi, J. Algebra, 1975.

[Miy75] M. Miyanishi, J. Math. Kyoto Univ., 1975.

[MS80] M. Miyanishi and T. Sugie, J. Math. Kyoto Univ., 1980.

[Nag19] T. Nagamine, J. Algebra, 2019.[Rus81] P. Russell, Math. Ann., 1981.

Takanori Nagamine (長峰 孝典)

Graduate School of Science and Technology, Niigata University,

Japan

 ${\sf Email:}\ t.nagamine 140 m.sc.nii gata-u.ac.jp$

107 Research of the author was partially supported by Grant-in-Aid for JSPS Fellows (No. 18110420) from Japan Society for the Promotion of Science