Curves whose automorphism groups are \mathfrak{A}_{6}

Yusuke Yoshida (Hiroshima University)

Introduction

We study automorphism groups of projective plane curves over \mathbb{C}.
Recently, Harui gave a classification of automorphism groups of smooth curves
$C \subset \mathbb{P}^{2}$ of degree ≥ 4 ([1]). Roughly, the classification is as follows:
Harui's classification of automorphism groups
Let $d \geq 4$.
C : smooth projective plane curve $/ \mathbb{C}$ of degree d
Then C satisfies one of the following:
(a) Aut C fixes a point on \mathbb{P}^{2},
(b) $(C$, Aut $C)$ is a "descendant" of a Fermat curve or a Klein curve,
(c) Aut C is a finite "primitive" subgroup of $\operatorname{PGL}(3, \mathbb{C})$.

Note that an automorphism of such a curve C extends uniquely to an automorphism of \mathbb{P}^{2}.
If $G<\operatorname{PGL}(3, \mathbb{C})$ is primitive, then $G \cong \mathfrak{A}_{6}, \operatorname{PSL}\left(2, \mathbb{F}_{7}\right), \mathfrak{A}_{5}, H_{216}, H_{72}$ or H_{36}. We consider the case $G \cong \mathfrak{A}_{6}$ in this poster.

Question

For which degree does there exist a smooth curve C such that Aut $C \cong \mathfrak{A}_{6}$?

Valentiner Group

We give a definition to the "Valentiner group" \mathcal{V} according to [2].
Let \mathcal{V} be the subgroup of $\operatorname{PGL}(3, \mathbb{C})$ generated by the equivalence classes of
$Z:=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right), T:=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), Q:=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & \rho \\ 0 & -\rho^{2} & 0\end{array}\right), P:=\frac{1}{2}\left(\begin{array}{ccc}1 & \tau^{-1} & -\tau \\ \tau^{-1} & \tau & 1 \\ \tau & -1 & \tau^{-1}\end{array}\right)$
where $\rho=e^{\frac{2}{3} \pi i}=\frac{-1+\sqrt{3} i}{2}$ and $\tau=\frac{1+\sqrt{5}}{2}$.
\mathcal{V} is called the Valentiner group and is isomorphic to \mathfrak{A}_{6}.
There is an extension $\overline{\mathcal{V}}<\operatorname{SU}(3, \mathbb{C})$ of \mathcal{V} by $\mathbb{Z} / 3 \mathbb{Z}$.
We have the following facts:

- The Poincaré series of $\overline{\mathcal{V}}$ is $P(t)=\frac{1-t^{90}}{\left(1-t^{6}\right)\left(1-t^{12}\right)\left(1-t^{30}\right)\left(1-t^{45}\right)}$, and the invariant ring of $\overline{\mathcal{V}}$ is generated by homogeneous polynomials of degrees $6,12,30,45$.
■ Since \mathfrak{A}_{6} is simple, a \mathcal{V}-invariant curves is defined by a homogeneous element of $\mathbb{C}[x, y, z]^{\bar{\nu}}$.

Invariant polynomials

The icosahedral group $\mathcal{I}:=\langle[Z],[T],[P]\rangle\left(\cong \mathfrak{A}_{5}\right)$ fixes the conic defined by $c_{1}(x, y, z):=x^{2}+y^{2}+z^{2}$.
We define five conics invariant under \mathcal{V} :

$$
\begin{aligned}
& c_{2}(x, y, z):=c_{1}\left(Q^{-1} \boldsymbol{x}\right), c_{3}(x, y, z):=c_{2}\left(P^{-4} \boldsymbol{x}\right), c_{4}(x, y, z):=c_{2}\left(P^{-3} \boldsymbol{x}\right) \\
& c_{5}(x, y, z):=c_{1}\left(P^{-2} \boldsymbol{x}\right), c_{6}(x, y, z):=c_{2}\left(P^{-1} \boldsymbol{x}\right)
\end{aligned}
$$

where $\boldsymbol{x}={ }^{t}(x, y, z)$.
We define \mathcal{V}-invariant homogeneous polynomials F, Φ, Ψ, X by

$$
F(x, y, z):=\sum_{i=1}^{6} c_{i}(x, y, z)^{3}
$$

$\Phi(x, y, z):=\operatorname{det} H(F)(x, y, z):=$

$X(x, y, z):=\operatorname{det} J(F, \Phi, \Psi):=$
$\left|\begin{array}{ll}\frac{\partial F}{\partial x} & \frac{\partial F}{\partial} \\ \frac{\partial F}{\partial z} \\ \frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial \Psi}{\partial z} \\ \frac{\partial \Psi}{\partial x} & \frac{\partial \Psi}{\partial y}\end{array} \frac{\partial \Psi}{\partial z}\right|$.

Invariant ring of the Valentiner group

The invariant ring of $\overline{\mathcal{V}}$ is $\mathbb{C}[x, y, z]^{\overline{\mathcal{V}}}=\mathbb{C}[F, \Phi, \Psi, X]$.
We may drop X by the following remark.
Remark on X
■ $V(X)$ consists of 45-lines.

- $X^{2} \in \mathbb{C}[F, \Phi, \Psi]$.

Hence, irreducible homogeneous invariant polynomials belong to $\mathbb{C}[F, \Phi, \Psi]$.

Smooth invariant curves

Let $\mathfrak{d}_{d}:=\mathbb{C}[F, \Phi, \Psi]_{d}=\left\langle F^{i} \Phi^{j} \Psi^{k} \mid 6 i+12 j+30 k=d\right\rangle$.
By Bertini's theorem, we have only to care about singularities on the base points of \mathfrak{d}_{d} to find nonsingular curves of degree d.
The base points of \mathfrak{d}_{d} are on one of the six sets

$$
V(F), V(\Phi), V(\Psi), V(F) \cap V(\Phi), V(F) \cap V(\Psi) \text { and } V(\Phi) \cap V(\Psi)
$$

We obtain the following facts about F, Φ and Ψ by explicit calculation.
Curves defined by F, Φ, Ψ

- $V(F, \Phi, \Psi)=\emptyset$,
- $V(F)$ is nonsingular,
- $V(\Phi)$ is nonsingular,
- $V(\Psi)$ is nonsingular at least on $V(\Psi) \cap(V(F) \cup V(\Phi))$.

Smoothness at each of the six sets can be translated to a condition on degrees. Conditions on degrees for nonsingularity

Assume $d \geq 30$.

A general element of \mathfrak{o}_{d} is nonsingular if and only if d satisfies the following:
(1) $\exists(j, k)$ s.t. $d=12 j+30 k, \quad(\longleftrightarrow$ (base locus) $\nsupseteq V(F))$
(2) $\exists(i, k)$ s.t. $d=6 i+30 k, \quad(\longleftrightarrow$ (base locus) $\nsupseteq V(\Phi))$
(3) $\exists(i, j)$ s.t. $d=6 i+12 j, \quad(\longleftrightarrow$ (base locus) $\nsupseteq V(\Psi))$
(4) $d \equiv 0,6,12 \bmod 30, \quad(\longleftrightarrow$ smoothness at $V(F) \cap V(\Phi))$
(5) $d \equiv 0,6,30 \bmod 12, \quad(\longleftrightarrow$ smoothness at $V(F) \cap V(\Psi))$
(6) $d \equiv 0,12,30 \bmod 6 . \quad(\longleftrightarrow$ smoothness at $V(\Phi) \cap V(\Psi))$

Simplifying the conditions (1)-(6), we obtain the following.

Main result on smooth curves

There exists a smooth curve C of degree d such that Aut $C \cong \mathfrak{A}_{6}$

$$
d \equiv 0,6,12 \bmod 30 .
$$

Note that the automorphism group of a smooth curve which is invariant under \mathfrak{A}_{6} is isomorphic to \mathfrak{A}_{6} by Harui's theorem since it is primitive.

Irreducible invariant curves

In addition to nonsingular curves, we also study irreducible curves in \mathfrak{d}_{d}.
First, from conditions on nonsingularity, if a general element of \mathfrak{d}_{d} is singular,
then it is singular only on $V(F) \cap V(\Phi)$.
Furthermore, we know the following fact about $V(F)$ and $V(\Phi)$.
Intersection of $V(F)$ and $V(\Phi)$
$V(F)$ and $V(\Phi)$ meet transversally at 72 -points.
Thus F and Φ can be considered as two independent variables in a neighborhood of each point of $V(F) \cap V(\Phi)$. Note that Ψ is nonzero on $V(F) \cap V(\Phi)$.
Singularity on $V(F) \cap V(\Phi)$
Assume $d \equiv 18,24 \bmod 30$.
A general element $C \in \mathfrak{d}_{d}$ is singular only at $V(F) \cap V(\Phi)$.

Moreover,

■ $d \equiv 18 \bmod 30 \Rightarrow$ the singularities of a general element $C \in \mathfrak{d}_{d}$ are nodes.
■ $d \equiv 24 \bmod 30 \Rightarrow$ the singularities of a general element $C \in \mathfrak{d}_{d}$ are tacnodes.
We assume that a general element C of \mathfrak{d}_{d} is reducible.
Let C_{1}, \cdots, C_{n} be the irreducible component of C.
For example, if $d=78$, then their degrees satisfy

$$
\sum_{i<j} \operatorname{deg} C_{i} \operatorname{deg} C_{j} \geq \operatorname{deg} C_{1} \sum_{j=2}^{n} \operatorname{deg} C_{j}=\operatorname{deg} C_{1}\left(78-\operatorname{deg} C_{1}\right)
$$

However, the left hand side is $72(=\#(V(F) \cap V(\Phi)))$.
There is no such positive integer $\operatorname{deg} C_{1}$, a contradiction.
Main result on irreducible curves
there exists an irreducible curve of degree d invariant under \mathfrak{A}_{6}
$6 \mid d$ and $d \neq 18$ and $d \neq 24$.
We also determined the degrees of smooth (or irreducible) curves invariant under $\operatorname{PSL}\left(2, \mathbb{F}_{7}\right)$ and \mathfrak{A}_{5} in a similar way.
[1] Harui, Takeshi, Automorphism groups of smooth plane curves. Kodai Math. J. 42(2019), no. 2, 308-331, 2019.
2] Crass, Scott, Solving the sextic by iteration: a study in complex geometry and dynamics. Experiment. Math. 8 (1999), no. 3, 209-240, 1999

