Curves whose automorphism groups are \mathfrak{A}_6	
Yusuke Yoshida (Hiroshima University)	
Introduction	Smooth invariant curves
We study automorphism groups of projective plane curves over \mathbb{C} . Recently, Harui gave a classification of automorphism groups of smooth curves $C \subset \mathbb{P}^2$ of degree ≥ 4 ([1]). Roughly, the classification is as follows: Harui's classification of automorphism groups Let $d \geq 4$. $C :$ smooth projective plane curve $/\mathbb{C}$ of degree d	Let $\mathfrak{d}_d := \mathbb{C}[F, \Phi, \Psi]_d = \langle F^i \Phi^j \Psi^k 6i + 12j + 30k = d \rangle$. By Bertini's theorem, we have only to care about singularities on the base p \mathfrak{d}_d to find nonsingular curves of degree d . The base points of \mathfrak{d}_d are on one of the six sets $V(F), V(\Phi), V(\Psi), V(F) \cap V(\Phi), V(F) \cap V(\Psi)$ and $V(\Phi) \cap V(\Psi)$ We obtain the following facts about F, Φ and Ψ by explicit calculation.
 (a) Aut C fixes a point on P², (b) (C, Aut C) is a "descendant" of a Fermat curve or a Klein curve, (c) Aut C is a finite "primitive" subgroup of PGL(3, C). 	Curves defined by F, Φ, Ψ • $V(F, \Phi, \Psi) = \emptyset$, • $V(F)$ is nonsingular, • $V(\Phi)$ is nonsingular,
Note that an automorphism of such a curve C extends uniquely to an automorphism of \mathbb{D}^2	• $V(\Psi)$ is nonsingular at least on $V(\Psi) \cap (V(F) \cup V(\Phi))$.
If $G < PGL(3, \mathbb{C})$ is primitive , then $G \cong \mathfrak{A}_6$, $PSL(2, \mathbb{F}_7)$, \mathfrak{A}_5 , H_{216} , H_{72} or H_{36} . We consider the case $G \cong \mathfrak{A}_6$ in this poster.	Smoothness at each of the six sets can be translated to a condition on degr Conditions on degrees for nonsingularity
Question For which degree does there exist a smooth curve C such that $\operatorname{Aut} C \cong \mathfrak{A}_6$?	Assume $d \ge 30$. A general element of \mathfrak{d}_d is nonsingular if and only if d satisfies the following (1) $\exists (j,k) \text{ s.t. } d = 12j + 30k$, $(\longleftrightarrow \text{ (base locus)} \not\supseteq V(F))$
Valentiner Group We give a definition to the "Valentiner group" \mathcal{V} according to [2]. Let \mathcal{V} be the subgroup of PGL(3, \mathbb{C}) generated by the equivalence classes of $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ 1 $\begin{pmatrix} 1 & \tau^{-1} & -\tau \end{pmatrix}$	$ \begin{array}{ll} \textbf{(2)} \exists (i,k) \text{ s.t. } d = 6i + 30k, \\ \textbf{(3)} \exists (i,j) \text{ s.t. } d = 6i + 12j, \\ \textbf{(4)} d \equiv 0, 6, 12 \mod 30, \\ \textbf{(5)} d \equiv 0, 6, 30 \mod 12, \\ \textbf{(6)} d \equiv 0, 12, 30 \mod 6. \end{array} \\ \begin{array}{ll} (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Phi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longleftrightarrow \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longmapsto \text{ (base locus)} \not\supseteq V(\Psi)) \\ (\longmapsto (base lo$
$Z := \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, T := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, Q := \begin{pmatrix} 0 & 0 & \rho \\ 0 & -r^2 & 0 \end{pmatrix}, P := \frac{1}{2} \begin{pmatrix} \tau^{-1} & \tau & 1 \\ \tau^{-1} & \tau^{-1} & \tau^{-1} \end{pmatrix}$	Simplifying the conditions (1) - (6) , we obtain the following.
where $\rho = e^{\frac{2}{3}\pi i} = \frac{-1+\sqrt{3}i}{2}$ and $\tau = \frac{1+\sqrt{5}}{2}$.	Main result on smooth curves
\mathcal{V} is called the Valentiner group and is isomorphic to \mathfrak{A}_6 .	There exists a smooth curve C of degree d such that $\operatorname{Aut} C \cong \mathfrak{A}_6$
There is an extension $\mathcal{V} < SU(3, \mathbb{C})$ of \mathcal{V} by $\mathbb{Z}/3\mathbb{Z}$. We have the following facts:	$d \equiv 0, 6, 12 \mod 30.$
The Poincaré series of $\overline{\mathcal{V}}$ is $P(t) = \frac{1 - t^{90}}{(1 - t^6)(1 - t^{12})(1 - t^{30})(1 - t^{45})}$,	Note that the automorphism group of a smooth curve which is invariant units is isomorphic to \mathfrak{A}_6 by Harui's theorem since it is primitive.
and the invariant ring of V is generated by homogeneous polynomials of degrees $6, 12, 30, 45$.	Irreducible invariant curves
Since \mathfrak{A}_6 is simple, a \mathcal{V} -invariant curves is defined by a homogeneous element of $\mathbb{C}[x, y, z]^{\overline{\mathcal{V}}}$.	In addition to nonsingular curves, we also study irreducible curves in \mathfrak{d}_d .

Invariant polynomials

The icosahedral group $\mathcal{I} := \langle [Z], [T], [P] \rangle (\cong \mathfrak{A}_5)$ fixes the conic defined by $c_1(x, y, z) := x^2 + y^2 + z^2.$

We define five conics invariant under $\mathcal{V}{:}$

 $c_2(x,y,z):=c_1(Q^{-1}\pmb{x}),\,c_3(x,y,z):=c_2(P^{-4}\pmb{x}),\,c_4(x,y,z):=c_2(P^{-3}\pmb{x}),$ $c_5(x,y,z) := c_1(P^{-2} \boldsymbol{x}), c_6(x,y,z) := c_2(P^{-1} \boldsymbol{x})$

where $\boldsymbol{x} = t(x, y, z)$.

We define $\mathcal V\text{-invariant}$ homogeneous polynomials F,Φ,Ψ,X by

$$\begin{split} F(x,y,z) &:= \sum_{i=1}^{6} c_i(x,y,z)^3, \\ \Phi(x,y,z) &:= \det H(F)(x,y,z) := \left| \begin{array}{c} \frac{\partial^2 F}{\partial x^2} & \frac{\partial^2 F}{\partial x \partial y} & \frac{\partial^2 F}{\partial z \partial z} \\ \frac{\partial^2 F}{\partial y \partial x} & \frac{\partial^2 F}{\partial y \partial z} & \frac{\partial^2 F}{\partial z^2} \\ \frac{\partial^2 F}{\partial z \partial x} & \frac{\partial^2 F}{\partial z \partial y} & \frac{\partial^2 F}{\partial z^2} \end{array} \right|, \\ \Psi(x,y,z) &:= \det BH(F,\Phi) := \left| \begin{array}{c} H(\Phi) & \left| \frac{\partial F}{\partial x} \\ \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial x} & \frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\ \end{array} \right|. \end{split}$$

Invariant ring of the Valentiner group

The invariant ring of $\overline{\mathcal{V}}$ is $\mathbb{C}[x, y, z]^{\overline{\mathcal{V}}} = \mathbb{C}[F, \Phi, \Psi, X].$

We may drop X by the following remark.

Remark on X

• V(X) consists of 45-lines.

• $X^2 \in \mathbb{C}[F, \Phi, \Psi].$

Hence, irreducible homogeneous invariant polynomials belong to $\mathbb{C}[F,\Phi,\Psi]$

oints of

rees.

der \mathfrak{A}_6

First, from conditions on nonsingularity, if a general element of \mathfrak{d}_d is singular, then it is singular only on $V(F) \cap V(\Phi)$.

Furthermore, we know the following fact about V(F) and $V(\Phi)$.

Intersection of V(F) and $V(\Phi)$

V(F) and $V(\Phi)$ meet transversally at 72-points.

Thus F and Φ can be considered as two independent variables in a neighborhood of each point of $V(F) \cap V(\Phi)$. Note that Ψ is nonzero on $V(F) \cap V(\Phi)$. Singularity on $V(F) \cap V(\Phi)$

Assume $d \equiv 18, 24 \mod 30$.

A general element $C \in \mathfrak{d}_d$ is singular only at $V(F) \cap V(\Phi)$. Moreover.

- $d \equiv 18 \mod 30 \Rightarrow$ the singularities of a general element $C \in \mathfrak{d}_d$ are nodes.
- $d \equiv 24 \mod 30 \Rightarrow$ the singularities of a general element $C \in \mathfrak{d}_d$ are tacnodes.

We assume that a general element C of \mathfrak{d}_d is reducible. Let C_1, \dots, C_n be the irreducible component of C.

For example, if
$$d = 78$$
, then their degrees satisfy n

$$\sum_{\langle j} \deg C_i \deg C_j \ge \deg C_1 \sum_{j=2} \deg C_j = \deg C_1(78 - \deg C_1).$$

However, the left hand side is $72(= \#(V(F) \cap V(\Phi)))$. There is no such positive integer $\deg C_1$, a contradiction.

Main result on irreducible curves

there exists an irreducible curve of degree d invariant under \mathfrak{A}_6

$$6|d \text{ and } d \neq 18 \text{ and } d \neq 24.$$

We also determined the degrees of smooth (or irreducible) curves invariant under $PSL(2, \mathbb{F}_7)$ and \mathfrak{A}_5 in a similar way.

- [1] Harui, Takeshi, Automorphism groups of smooth plane curves. Kodai Math. J. 42(2019), no. 2, 308-331, 2019.
- 110 [2] Crass, Scott, Solving the sextic by iteration: a study in complex geometry and dynamics. Experiment. Math. 8 (1999), no. 3, 209-240, 1999