The moduli space of polynomial maps and their fixed-point multipliers

Toshi Sugiyama (Gifu Pharmaceutical University, sugiyama.toshi@gmail.com)

1 Setting of the Problem

$$\begin{aligned} \operatorname{Poly}_d &:= \{ f(z) \in \mathbb{C}[z] \mid \deg f = d \} \quad \text{for} \quad d \geq 2 \\ \operatorname{Fix}(f) &:= \{ \zeta \in \mathbb{C} \mid f(\zeta) = \zeta \} \quad \text{for} \quad f \in \operatorname{Poly}_d \end{aligned}$$

Then $\#\text{Fix}(f) = \deg f$ holds counted with multiplicity. For $\zeta \in \text{Fix}(f)$, we call $f'(\zeta)$ the multiplier of f at ζ .

Putting $MP_d := Poly_d/(Affine conj.)$, one can define the map

$$MP_d \to \mathbb{C}^d/\mathfrak{S}_d$$
 by $[f] \mapsto (f'(\zeta))_{\zeta \in Fix(f)}$,

where $\mathbb{C}^d/\mathfrak{S}_d$ is the set of unordered collections of d complex numbers.

Proposition (fixed point theorem). Let $f \in \operatorname{Poly}_d$ and suppose $f'(\zeta) \neq 1$ for every $\zeta \in \operatorname{Fix}(f)$, then

$$\sum_{\zeta \in \mathrm{Fix}(f)} \frac{1}{1 - f'(\zeta)} = 0.$$

Hence putting

$$\Lambda_d := \left\{ (\lambda_1, \dots, \lambda_d) \in \mathbb{C}^d \; \middle| \; \sum_{i=1}^d \prod_{j \neq i} (1 - \lambda_j) = 0 \right\},\,$$

one can define the map

$$\Phi_d: \mathrm{MP}_d \to \Lambda_d/\mathfrak{S}_d =: \widetilde{\Lambda}_d \quad \mathrm{by} \quad [f] \mapsto (f'(\zeta))_{\zeta \in \mathrm{Fix}(f)}$$

Our aim is to analyze the map Φ_d as precisely as possible.

2 Results

We consider the map $\Phi_d : \mathrm{MP}_d \to \widetilde{\Lambda}_d$ on the domain where $[f] \in \mathrm{MP}_d$ has no multiple fixed point. Put

- $V_d := \{(\lambda_1, \dots, \lambda_d) \in \Lambda_d \mid \lambda_i \neq 1 \text{ for every } i\}$
- $\widetilde{V}_d := V_d/\mathfrak{S}_d \subset \widetilde{\Lambda}_d$.

Theorem 1 (S. [1]). $d \geq 4$ and $\lambda = (\lambda_1, \ldots, \lambda_d) \in V_d$, $\bar{\lambda} = \{\lambda_1, \ldots, \lambda_d\} \in \tilde{V}_d$. Then

- (1) $0 \le \#\Phi_d^{-1}(\bar{\lambda}) \le (d-2)!$
- (2) $\#\Phi_d^{-1}(\bar{\lambda})$ is a function of

$$\mathfrak{I}(\lambda) := \left\{ \{I_1, \dots, I_\ell\} \middle| \begin{array}{l} \ell \geq 2, & \emptyset \neq I_u \subset \{1, \dots, d\}, \\ I_1 \coprod \dots \coprod I_\ell = \{1, \dots, d\}, \\ \sum_{i \in I_u} 1/(1 - \lambda_i) = 0 \text{ for every } u \end{array} \right\}$$

and

$$\mathcal{K}(\lambda) := \left\{ K \subset \{1, \dots, d\} \middle| \begin{array}{c} K \neq \emptyset \\ i, j \in K \Longrightarrow \lambda_i = \lambda_j \\ i \in K, \ j \notin K \Longrightarrow \lambda_i \neq \lambda_j \end{array} \right\}.$$

- (3) $\Im(\lambda) \subseteq \Im(\lambda')$ and " $\mathcal{K}(\lambda)$ is a refinement of $\mathcal{K}(\lambda')$ " for $\lambda, \lambda' \in V_d \implies \#\Phi_d^{-1}(\bar{\lambda}) \ge \#\Phi_d^{-1}(\bar{\lambda'})$
- (4) $\#\Phi_d^{-1}(\bar{\lambda}) = (d-2)!$ $\iff \Im(\lambda) = \emptyset, \ \mathcal{K}(\lambda) = \{\{1\}, \dots, \{d\}\}\}$

- (5) $\exists c_1, \dots, c_d \in \mathbb{Z} \text{ with } c_1 : \dots : c_d = \frac{1}{1 \lambda_1} : \dots : \frac{1}{1 \lambda_d}$ and $\sum |c_i| \le 2(d - 2) \Longrightarrow \Phi_d^{-1}(\bar{\lambda}) = \emptyset$
- (6) $d \le 7 \implies converse \ of \ (5) \ holds.$
- (7) For $\lambda \in V_d$, if $\exists c_1, \ldots, c_d \in \mathbb{Z}$ such that
 - $c_1:\cdots:c_d=\frac{1}{1-\lambda_1}:\cdots:\frac{1}{1-\lambda_d}$
 - $\sum |c_i| = 2(d-1)$
 - $|c_i| \leq 2$ for every $i \in \{1, \ldots, d\}$,

then
$$\#\Phi_d^{-1}(\bar{\lambda}) = 1$$
.

Theorem 2 (S. [1], (roughly)). The local fiber structure of $\Phi_d: \Phi_d^{-1}(\widetilde{V}_d) \to \widetilde{V}_d$ is also determined by $\Im(\lambda)$ and $\mathcal{K}(\lambda)$. Moreover

- $\Im(\lambda)$ stands for the configuration of 'holes' of Φ_d .
- $\mathcal{K}(\lambda)$ stands for the configuration of 'branches' of Φ_d .

Theorem 3 (S. [1]). For $\lambda \in V_d$, $\#\Phi_d^{-1}(\bar{\lambda})$ is calculated by the following steps:

• we define the non-negative integers $s_d(\lambda)$ for each $\lambda \in V_d$ and $e_{\mathbb{I}}(\lambda)$ for each $\mathbb{I} \in \mathfrak{I}(\lambda)$ satisfying the equalities

$$\bullet \ e_{\mathbb{I}}(\lambda) = \prod_{I \in \mathbb{I}} (\#I - 1) \cdot s_{\#I} (\lambda_I),$$

$$where \ \lambda_I := (\lambda_i)_{i \in I} \in V_{\#I} \ for \ I \in \mathbb{I} \in \mathfrak{I}(\lambda).$$

• Then in most cases (omit precise description),

$$\#\Phi_d^{-1}\left(\bar{\lambda}\right) = s_d(\lambda) / \prod_{K \in \mathcal{K}(\lambda)} (\#K)!.$$

Theorem 4 (S. [2]). $s_d(\lambda)$ defined in Theorem 3 is also obtained from the equality

$$s_d(\lambda) = (d-2)! - \sum_{\mathbb{I} \in \Im(\lambda)} \left[\{ -(d-1) \}^{\#\mathbb{I}-2} \cdot \prod_{I \in \mathbb{I}} (\#I - 1)! \right].$$

Put $MC_d := \left\{ f(z) = z^d + \sum_{k=0}^{d-2} a_k z^k \middle| a_k \in \mathbb{C} \right\}$. The natural map $p : MC_d \to MP_d$ is generically (d-1)-to-one. $\widehat{\Phi}_d := \Phi_d \circ p : MC_d \to \widetilde{\Lambda}_d$ is defined by $f \mapsto (f'(\zeta))_{\zeta \in \operatorname{Fix}(f)}$.

Theorem 5 (S. [2]). For $d \geq 2$ and $\lambda \in V_d$, we always have

$$\#\widehat{\Phi}_d^{-1}(\bar{\lambda}) = \frac{(d-1)s_d(\lambda)}{\prod\limits_{K \in \mathcal{K}(\lambda)} (\#K)!}.$$

References

111

- [1] T. Sugiyama, The moduli space of polynomial maps and their fixed-point multipliers. Adv. Math. 322 (2017), 132–185
- [2] Toshi Sugiyama, The Moduli Space of Polynomial Maps and Their Fixed-Point Multipliers: II. Improvement to the Algorithm and Monic Centered Polynomials. *submitted* (arXiv:1802.07474, 1-18)