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Abstract
We introduce Arakelov theory over a trivially valued field, mainly treat the
volume function of adelic Cartier divisors. We show several properties of the
volume function, for example, the integral formula, continuity, concavity
and so on.

Arakelov geometry
Arakelov geometry is a kind of arithmetic geometry. Beyond scheme the-
ory, it has been developed to study a system of equations with integer
coefficients. In some sense, it is an extension of Diophantine geometry.
An arithmetic variety X is a scheme over SpecZ which is equipped with
a (complex) analytic space X(C) as a fiber of the infinite point.
Hence X consists of two parts, geometric part and analytic part:
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A trivially valued field is a field K equipped with the trivial absolute value.
In Arakelov geometry over a trivially valued field, an “arithmetic variety”
X consists of a scheme over SpecK and an analytic space Xan associ-
ated with the trivial absolute value. This analytic space Xan is given by
Berkovich space.

Berkovich space
Let X be a scheme over a field K and |.| be an absolute value on K. We
assume that (K, |.|) is complete.
Roughly speaking, the Berkovich space associated with X is the set of
pairs (x, |.|x) where x ∈ X and |.|x is an absolute value on κ(x) over |.|.
Let K be a trivially valued field. If X is a regular projective curve over
SpecK, we can illustrate the Berkovich space Xan by an infinite tree as
follows:
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where η is the generic point of X , x is a closed point of X and xan =
(x, |.|0).

Volume function
In algebraic geometry, to determine the set of global sections H0(X,D)
of a Cartier divisor D is difficult in general:

H0(X,D) := {f ∈ K(X)× |D + (f ) ≥ 0} ∪ {0}.
However, to calculate the asymptotic behavior of H0(X,nD) is the easier
problem. Hence the volume function of D is well studied:

vol(D) := lim sup
n→+∞

dimH0(X,nD)

nd/d!
,

where d = dimX .

On the other hand, in Arakelov geometry, we equip a Cartier divisorD with
an analytic object g, which is called a Green function, like an arithmetic
variety:

D := (D, g).

This pair is called an adelic Cartier divisor.
In this setting, we also want to consider the set of “global sections” of D:

H0(X,D) :=
{
f ∈ K(X)×

∣∣∣D + (̂f ) ≥ 0
}
∪ {0}.

What is the relationship between H0(X,D) and H0(X,D) ?

By using a Green function g, we can introduce an ultrametric norm ‖.‖g
on H0(X,D). Then we have the following statement:

H0(X,D) =
{
s ∈ H0(X,D)

∣∣ ‖s‖g ≤ 1
}
.

Hence an element of H0(X,D) is called a small section.

By analogy with vol(D), the volume function v̂ol(D) estimates the asymp-
totic behavior of amounts of small sections:

v̂ol(D) := lim sup
n→+∞

d̂eg+(nD)

nd+1/(d + 1)!
,

where d = dimX .
Here is the definition of d̂eg+(D):

d̂eg+(D) :=

∫ +∞

0
dim

{
s ∈ H0(X,D)

∣∣ ‖s‖g ≤ e−t
}
dt.

Main theorem (O.)

1 (integral formula). v̂ol(D) = (d + 1)

∫ λasymax(D)

0
vol(Dµ(g−t)) dt,

where Dµ(g−t) is an R-Weil divisor associated with (D, g − t).

2 (limit existence). v̂ol(D) = lim
n→+∞

d̂eg+(nD)

nd+1/(d + 1)!
.

3 (continuity). lim
ε→0

v̂ol(D + εE) = v̂ol(D).

4 (homogeneity). ∀a ∈ R>0, v̂ol(aD) = ad+1v̂ol(D).

5 (log concavity). v̂ol(D + E)
1

d+1 ≥ v̂ol(D)
1

d+1 + v̂ol(E)
1

d+1.
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