Generalized Zariski cancellation problem and principal \mathbb{G}_a -bundles over prevarieties

Riku Kudou Waseda University

Introduction

Generalized Zariski cancellation problem

V, W: varieties over k ($k = \overline{k}$, chark = 0). Then $V \times \mathbb{A}^1 \simeq W \times \mathbb{A}^1 \Rightarrow V \simeq W$?

 \blacksquare \exists counterexamples constructed as principal \mathbb{G}_a -bundles \longrightarrow

Fact (Danielewski [1])

X: a k-scheme, V, W: affine k-schemes equiped with principal \mathbb{G}_a -bundle structures over X. Then $V \times_k \mathbb{A}^1 \simeq W \times_k \mathbb{A}^1$.

Main Problem

X: a prevariety

V: an affine variety with a principal \mathbb{G}_a -bundle structure over X

W: an affine variety

 $V \times \mathbb{A}^1 \simeq W \times \mathbb{A}^1 \iff W$: a principal \mathbb{G}_a -bundle over X?

Counterexamples for GZCP have been constructed by Danielewski [1], Fieseler [4], Dubouloz [3] and Dryło [2] as principal \mathbb{G}_a -bundles over prevarieties X'_+rZ .

Definition

 $\begin{array}{l} X': \text{ a variety, } Z: \text{ a closed subvariety of } X', \ r \in \mathbb{N}. \ \text{Then} \\ X'_+ r Z := X' \sqcup_{X' \setminus Z} \underbrace{X' \sqcup_{X' \setminus Z} \cdots \sqcup_{X' \setminus Z} X'}_r \end{array}$

Especially Drylo's counterexamples were constructed in the case X' is a non \mathbb{A}^1 -uniruled affine variety. Counterexample (Drylo [2])

X': a non \mathbb{A}^1 -uniruled affine variety, Z: a principal hypersurface. Then \exists counter examples for GZCP as principal \mathbb{G}_a -bundles over $X = X'_+Z$.

Main Result

Main Theorem

X: a prevariety with $\exists f \colon X \to X'$: quasi-finite dominant morphism X': either ① a non \mathbb{A}^1 -uniruled affine variety or

② a variety with $\overline{\kappa}(X') \ge 0$

V: an affine variety with a principal \mathbb{G}_a -bundle structure over *X W*: an affine variety

 $V \times \mathbb{A}^1 \simeq W \times \mathbb{A}^1 \iff W$: a principal \mathbb{G}_a -bundle over X.

Remark

- prevariety = integral scheme of finite type over k
- $X': \mathbb{A}^1$ -uniruled $\Leftrightarrow \exists Y \times \mathbb{A}^1 \to X':$ a dominant morphism of same dimensional varieties
- $X = X'_+ rZ$ satisfies the assumption of X in Theorem if X' is non \mathbb{A}^1 -uniruled affine variety or $\overline{\kappa}(X') \ge 0$.
 - \rightarrow Theorem can be applied to Dryło's counterexamples

Proof of Theorem

Step 1: W: an \mathbb{A}^1 -bundle over X

it is enouch to show the existence of $q: W \to X$.

Case ①

Case (2)

2-1: $\exists Y \times \mathbb{A}^1 \simeq U \subseteq W$:open subset

- 2-2: $\exists \psi : Y \to X$ $(\leftarrow \overline{\kappa}(X') \ge 0)$
- 2-3: $U \simeq Y \times \mathbb{A}^1 \to Y \to X \to X'$ extends to $q' : W \to X'$ 2-4: q' lifts to $q : W \to X$ ($\leftarrow f$: quasi-finite)

Step 2: W: a principal \mathbb{G}_a -bundle over X

 L_V , L_W : the line bundles associated to \mathbb{A}^1 -bundles V, WLemma

W: a principal \mathbb{G}_a -bundle over $X \iff L_W$: trivial.

Lemma

Suppose $V \times \mathbb{A}^m \simeq W \times \mathbb{A}^m$ and the following diagram is commutative.

Then $L_V \simeq L_W$ as line bundles over X.

115

Remark: The case V and W: line bundles \longrightarrow proved by Dryło [2].

• Two lemmas $\longrightarrow W$: a principal \mathbb{G}_a -bundle over X

References
[1] W. Danielewski, On a cancellation problem and automorphism groups of affine algebraic varieties, preprint, Warsaw (1989).
[2] R. Dryło, Non-uniruledness and the cancellation problem. II, Ann. Polon. Math. **92** (2007), no. 1, 41–48. MR2318509

[3] A Dubouloz, Additive group actions on Danielewski varieties and the cancellation problem, Math. Z. 255 (2007), no. 1, 77–93.

[4] K. H. Fieseler, On complex affine surfaces with C⁺-action, Comment. Math. Helv. 69 (1994), no. 1, 5-27.