Duality for Witt sheaves Niklas Lemcke

Waseda University

Vanishing in positive characteristic	Duality	Duality applied to Tanaka's vanishing
Motivation	Duality Theorem	Theorem: ω -duality eliminates torsion
Kodaira vanishing can fail if $\operatorname{char}(k) = p > 0$. Is there a similar result which holds when $\operatorname{char}(k) = p > 0$? Tanaka proved Kodaira-like vanishing of ample invertible sheaves using the Witt–canonical sheaf $W\Omega_X^N$: Theorem (Tanaka [Tan18]). $\bullet H^j(X, \mathcal{A}^{-s}) = 0$ for any $s \gg 0, j < N$, $ H^j(X, \mathcal{A}^{-1})_Q = 0$ for any $s \gg 0, j < N$, $ H^j(X, \mathcal{A}^{-1})_Q = 0$ for any $j < N$, $\bullet H^i(X, W\Omega_X^N \bigotimes_{W\mathcal{O}_X} \mathcal{A}) = H^i(X, W\Omega_X^N \bigotimes_{W\mathcal{O}_X} \mathcal{A}^s)$ for any $s > 0$, $ H^i(X, W\Omega_X^N \bigotimes_{W\mathcal{O}_X} \mathcal{A}) = 0$ for any $i > 0$. $\bullet A$: ample invertible sheaf on X $\bullet X$: N -dimensional smooth projective variety / $k = k^p, \operatorname{char}(k) = p > 0$ $\bullet \mathcal{A}$: Teichmueller–lift of \mathcal{A} , invertible sheaf of $W\mathcal{O}_X$ -modules (cf. [Tan18]) $\bullet W\mathcal{O}_X$: $W\mathcal{O}_X(U) := W(\mathcal{O}_X(U))$ $\bullet W(\mathcal{A})$: for a ring $\mathcal{A}, W(\mathcal{A})$ is the ring of Witt–vectors over \mathcal{A} $\bullet W\Omega_X^N$: top term of de Rham–Witt complex Remark.	$R\Gamma(W\Omega_X^N \underset{W\mathcal{O}_X}{\otimes} \mathcal{E}) \cong R\mathcal{H}om_{\omega}(R\Gamma(\mathcal{E}^{\vee}), \check{\omega}[-N])$ • \mathcal{F} : invertible sheaf on X • ω : non-commutative W -algebra gen. by V s.t. $aV = VF(a)$, for any $a \in W$, emulating the relation V(F(a)b) = aV(b) of the maps V, F on $W := W(k)• F: Frobenius map on W, induced by Frobenius on k• V: shift map on W• \check{\omega}: V-adic completion of \omega• [-N]: shift in complex degreeBoth results rest on the definition of \omega.Key steps of proofLet X \xrightarrow{\phi} S = \operatorname{Spec} k.Step 1. Truncated case (using results from Ekedahl [Eke84])):H^i(W_n \Omega_{X_{W_n \mathcal{O}_X}}^N \mathcal{E}_{\leq n}) \cong \operatorname{Hom}_{W_n \mathcal{O}_X}(H^{N-i}(\mathcal{E}_{\leq n}^{\vee}), W_n \Omega_X^N)for any i \geq 0, n > 0.Step 2. Key proposition:\omega_n \overset{k}{\otimes} R\Gamma(\mathcal{E}) \cong R\Gamma(\mathcal{E}_{\leq n})$	$\begin{split} R^{i}\operatorname{Hom}_{\omega}(H^{\bullet},\check{\omega}) &\cong \bigoplus_{\substack{-i=p+q \\ i=p+q}} R^{p}\operatorname{Hom}_{\omega}(H^{q},\check{\omega}) \\ &\cong \operatorname{Hom}_{\omega}(H^{-i},\check{\omega}) \oplus \operatorname{Ext}_{\omega}^{1}(H^{-i-1},\check{\omega}) \\ \text{If } H^{i} \text{ is } p\text{-torsion, then} \\ &\operatorname{Ext}_{\omega}^{1}(H^{i},\check{\omega}) = 0. \end{split}$ $\bullet H^{\bullet} = \text{bounded complex of left-}\omega\text{-modules for which} \\ p = VF \text{ (or at least } p\text{-torsion} = V\text{-torsion), with} \\ H^{i} = 0 \text{ for any } i < 0. \end{split}$ $Key \text{ steps of proof} \\ \text{Write } \check{\omega}_{\mathbb{Q}} := \Pi_{0 \leq i} W_{\mathbb{Q}} V^{i}. \\ \text{Step 1. Take SES:} \\ 0 \longrightarrow \check{\omega} \longrightarrow \check{\omega}_{\mathbb{Q}} [V^{-1}] \longrightarrow \check{\omega}_{\mathbb{Q}} [V^{-1}]/\check{\omega} \longrightarrow 0, \\ \text{Step 2. Apply } \operatorname{Hom}_{\omega}(H, \bullet) \text{ to obtain LES} \\ \text{Step 3. } \check{\omega}_{\mathbb{Q}} [V^{-1}] \text{ and } \check{\omega}_{\mathbb{Q}} [V^{-1}]/\check{\omega} \text{ are injective} \\ \\ \text{left-}\omega\text{-modules} \\ \text{Step 4. Suppose } H^{i} \text{ is } p\text{-torsion. Since in } \check{\omega}_{\mathbb{Q}} [V^{-1}]/\check{\omega} p\text{-torsion} \\ \text{ and } V\text{-torsion are disjoint, but in } H^{i} \text{ they are identical,} \\ \end{split}$
Actually, for applications in MMP we need vanishing for nef and big instead of ample invertible sheaves. Remark. The theorem suggests some asymmetric duality property. The proof of (1) is trivial compared to the proof of (2). Thus duality may help us prove the nef and big case.	Step 3. Apply derived pushforward and pass to the limit: $R\phi_*(W\Omega^N_X \underset{W\mathcal{O}_X}{\otimes} \mathcal{E})$ $\cong R \lim_n R \mathcal{H}om_{W_n} o_S(R\phi_* \mathcal{E}_{\leq n}^{\vee}, W_n[-N])$ $\cong R \lim_n R \operatorname{Hom}_{W_n}(\omega_n \underset{\otimes}{\otimes} R\Gamma(\mathcal{E}^{\vee}), W_n[-N])$ $\cong R \lim_n R \operatorname{Hom}_{\omega}(R\Gamma(\mathcal{E}^{\vee}), R \operatorname{Hom}_{W_n}(\omega_n, W_n[-N]))$	Corollary If (1) of Tanaka's vanishing holds for nef and big \mathcal{F} , then so does (2). Open questions
[Tan18] Hiromu Tanaka, <i>Vanishing theorems of Kodaira type for</i> <i>Witt Canonical sheaves</i> , arXiv:1707.04036v2 [math.AG] (2018).	$\cong R \operatorname{Hom}_{\omega}(R\Gamma(\mathcal{F}^{\vee}), R \lim_{n} \operatorname{Hom}_{W_{n}}(\omega_{n}, W_{n}[-N]))$ $\stackrel{\cong}{\operatorname{Step 4.}} R \lim_{n} \operatorname{Hom}_{W_{n}}(\omega_{n}, W_{n}) \cong \check{\omega}$ [Eke84] Torsten Ekedahl, On the multiplicative properties of the	The most obvious next step is to attempt proving (1) of Tanaka's vanishing for nef and big invertible sheaves. Further generalizing the result (say to $X \xrightarrow{\phi} Y =$ finite type over k , as in [Tan18]) may also be of interest.

de Rham-Witt complex. I, Arkiv för Matematik 22 (1984), no. 2,

185-239.

(E-Mail: numberjedi@akane.waseda.jp)

117