The universal cover of hypertoric varieties and Bogomolov's decomposition

Takahiro Nagaoka (Kyoto university) Background and Motivation

Definition ((conical) symplectic variety)

 (Y,ω) is a *(conical) symplectic variety* if Y is normal and satisfies

(1) $\omega \in \Omega^2_{Y_{\text{reg}}}$ is symplectic and extends to a 2-form on any resolution.

((2) Y is affine, and $\exists \mathbb{C}^* \cap Y$ s.t. positive weight and $s^*\omega = s^{\ell}\omega$.)

Example

(1) ADE type surface singularity

(3) (affine) Nakajima quiver variety

(2) Nilpotent orbit closures $\overline{\mathcal{O}} \subset \mathcal{N} \subset \mathfrak{g}$ (4) (affine) Hypertoric variety

Consider $\pi_1(Y_{reg})$ of conical symplectic varieties (Y, ω) .

For a conical symplectic variety (Y, ω) , $|\pi_1^{\text{alg}}(Y_{\text{reg}})| < \infty$.

It is expected but not known that $|\pi_1(Y_{reg})| < \infty$.

 $\overline{(1) \ Y} = \mathbb{C}^n/\Gamma$: isolated quotient singularity, $\pi_1(Y_{\text{reg}}) = \Gamma$.

(2) (Beauville) $Y = \overline{\mathcal{O}}_{A_n}^{\min} \subset \mathfrak{sl}_{n+1}$: min nilpotent orbit closure, $\pi_1(Y_{\text{reg}}) = 0$.

Proposition (The universal coverings of conical symplectic varieties)

Assume $|\pi_1(Y_{reg})| < \infty$. Then, $\exists!$ a conical symplectic variety $(\overline{Y}, \overline{\omega})$ s.t.

$$\begin{array}{ccc} (\overline{Y},\overline{\omega}) & \supset & \varphi^{-1}(Y_{\mathrm{reg}}) \\ & & & \downarrow^{\varphi_0:=\varphi}: \text{universal cover} \\ (Y,\omega) & \supset & Y_{\mathrm{reg}} \end{array}$$

Problem (Namikawa, Analogue of Bogomolov's decomposition)

Assume $|\pi_1(Y_{reg})| < \infty$. Is \overline{Y} (uniquely) decomposed into *irreducible* ones as $(\overline{Y}, \overline{\omega}) \cong (Y_1, \omega_1) \times \cdots \times (Y_r, \omega_r)$?

(That is, any conical symplectic form Y_m is ω_m up to scalar.)

- Describe $\pi_1(Y_A(0)_{reg})$ and $\overline{Y_A(0)}$ for affine hypertoric varieties $Y_A(0)$.
- Establish Bogomolov's decomposition of $Y_A(0)$.

§2 Hypertoric variety $Y_A(\alpha)$

Principle in (hyper)toric geometry : Combinatorics \leftrightarrow Geometry

Polytope (eg. \triangle) \leftrightarrow (projective) Toric variety (eg. \mathbb{P}^2)

Hyperplane arrangement $\mathcal{H}_{B}^{\alpha} \leftrightarrow$ Hypertoric variety $Y_A(\alpha)$

Ingredients of hypertoric variety $Y_A(\alpha)$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^{n} \xrightarrow{A} \mathbb{Z}^{d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{A} \mathbb{Z}^{n-d} \xrightarrow{A} \mathbb{Z}^{n-d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{A} \mathbb{Z}^{n-d} \xrightarrow{A} \mathbb{Z}^{n-d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{A} \mathbb{Z}^{n-d} \xrightarrow{A} \mathbb{Z}^{n-d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{A} \mathbb{Z}^{n-d} \to 0$$

$$0 \to \mathbb{Z}^{n-d} \to 0$$

Construction of $Y_A(\alpha) = \mu_A^{-1}(0)^{\alpha-ss} // \mathbb{T}_{\mathbb{C}}^d$

$$\mathbb{T}^d_{\mathbb{C}} \overset{A^T}{\hookrightarrow} \mathbb{T}^n_{\mathbb{C}} \xrightarrow{} (\mathbb{C}^{2n}, \omega_{\mathbb{C}}) \qquad \boldsymbol{t} \cdot (z_i, w_i) := (\boldsymbol{t}^{\boldsymbol{a}_i} z_i, \boldsymbol{t}^{-\boldsymbol{a}_i} w_i)$$

$$\downarrow^{\mu_A : \text{ moment map}}$$

$$\mathbb{C}^d = \operatorname{Lie}(\mathbb{T}^d_{\mathbb{C}})^*$$

Definition (Hypertoric variety)

Hypertoric variety is defined as the GIT quotient $Y_A(\alpha) := \mu_A^{-1}(0)^{\alpha-ss} / |\mathbb{T}_{\mathbb{C}}^d|$ Define the ass. hyperplane arrangement $\mathcal{H}_B^{\alpha} := \{H_i : \langle \boldsymbol{b_i}, - \rangle = \tilde{\alpha}_i\} \subset \mathbb{R}^{n-d}$.

By definition, $\mu_A^{-1}(0)^{\alpha-ss}\subset \mu_A^{-1}(0)$ induces a projective morphism $\pi_{\alpha}: Y_A(\alpha) \to Y_A(0)$

Example (Springer resolution $T^*\mathbb{P}^2 \to \overline{\mathcal{O}}_{A_2}^{\min}$)

Let
$$A = (111)$$
, $B^T = \begin{pmatrix} 10 - 1 \\ 01 - 1 \end{pmatrix} = (\mathbf{b_1 b_2 b_3})$. $\tilde{\alpha} = (1, 1, 1)$

Basic Properties of $Y_A(\alpha)$

Let α be generic. Then, $Y_A(0)$ and $Y_A(\alpha)$ are sympl. var. of dim 2(n-d), and

- (1) $\pi_{\alpha}: Y_A(\alpha) \to Y_A(0)$ gives a crepant (symplectic) resolution.
- (2) Sing($Y_A(0)$) corresponds to the "non-general" locus of \mathcal{H}_B^0 .

translation of the arrangement $\mathcal{H}_{R}^{0} \leftrightarrow$ taking the crepant resolution

Theorem (Classification of 4-dimensional $Y_A(0)$)

Every 4-dim $Y_A(0)$ is isomorphic to one of the following:

- (1) $S_{A_{\ell_1-1}} \times S_{A_{\ell_2-1}}$: the product of A type surface singularities.

$$\overline{\mathcal{O}^{\min}}(\ell_1, \ell_2, \ell_3) := \left\{ \begin{array}{c} \left(u_1 x_1 x_3 \\ y_1 u_2 x_2 \\ y_3 y_2 u_3 \end{array} \right) \in \mathfrak{sl}_3 \ \middle| \ \text{All } 2 \times 2 \text{-minors of} \ \left(\begin{array}{c} u_1^{\ell_1} x_1 x_3 \\ y_1 u_2^{\ell_2} x_2 \\ y_3 y_2 u_3^{\ell_3} \end{array} \right) = 0 \right. \right\}.$$

In general, isomorphism classes of $Y_A(0)$ as conical symplectic varieties are classified by the combinatorial str. of \mathcal{H}_{B}^{0} , i.e., "matroid"

§3 Main result 1 : $\pi_1(Y_A(0)_{\text{reg}})$ and the universal cover

In general, we can assume as $B^T = (\boldsymbol{b^{(1)}} \cdots \boldsymbol{b^{(1)}} \cdots \boldsymbol{b^{(s)}} \cdots \boldsymbol{b^{(s)}})$

It is natural to ask whether the simplification $Y_{\underline{A}}(0)$ gives univ. cover of $Y_{\underline{A}}(0)$.

$$B^{T} = (\boldsymbol{b^{(1)}} \cdots \boldsymbol{b^{(1)}} \cdots \boldsymbol{b^{(s)}} \cdots \boldsymbol{b^{(s)}}) \xrightarrow{} Y_{A}(0)$$

$$\downarrow^{\text{simplification}} \qquad \exists ? \text{ finite} \uparrow$$

$$\overline{B}^{T} = (\boldsymbol{b^{(1)}} \cdots \boldsymbol{b^{(s)}}) \xrightarrow{} Y_{\underline{A}}(0)$$

$$0 \longrightarrow \mathbb{Z}^{n-d} \xrightarrow{\overline{B}} \mathbb{Z}^s \xrightarrow{\underline{A}} \mathbb{Z}^{s-(n-d)} \longrightarrow 0$$

 \exists finite $\varphi: Y_A(0) \to Y_A(0) \cong Y_A(0)/G$: universal cover, and we have

$$G \cong \pi_1(Y_A(0)_{\text{reg}}) \cong \Gamma/\Gamma \cap \mathbb{T}_{\mathbb{C}}^{s-(n-d)} = \Gamma/(\text{Ker }\widetilde{B}^T)\Gamma,$$

where $\Gamma := \prod_{k=1}^{s} \mathbb{Z}/\ell_{i}\mathbb{Z} \hookrightarrow \mathbb{T}_{\mathbb{C}}^{s} \stackrel{A^{T}}{\longleftrightarrow} \mathbb{T}_{\mathbb{C}}^{d-(n-s)}$ and $\widetilde{B}^{T} := (m_{1}b^{(1)} \cdots m_{s}b^{(s)})$ $(m_k := \ell_1 \cdots \ell_s / \ell_k).$

simplification of the arrangement $\mathcal{H}_B^0 \leftrightarrow \text{taking the universal covering}$

$$\pi_1(Y_A(0)_{\text{reg}}) = 0 \iff \ell_1 = \dots = \ell_s = 1, \text{i.e.}, \mathcal{H}_B^0 \text{ is simple.}$$

$$\widetilde{B}^T = \begin{pmatrix} \ell_2 \ell_3 & 0 & -\ell_1 \ell_2 \\ 0 & \ell_1 \ell_3 & -\ell_1 \ell_2 \end{pmatrix}$$
, and $g := \gcd(\ell_1, \ell_2, \ell_3)$. Then,

$$\pi_1(\overline{\mathcal{O}^{\min}}(\ell_1, \ell_2, \ell_3)_{reg}) \cong \frac{\prod_{k=1}^3 \mathbb{Z}/\ell_k \mathbb{Z}}{\mathbb{Z}\langle \left(\frac{\ell_1}{g}, \frac{\ell_2}{g}, \frac{\ell_3}{g}\right) \rangle}$$

§4 Main result 2: Bogomolov's decomposition for $Y_A(0)$

If $A=A_1\oplus\cdots\oplus A_r$, then $Y_A(0)\cong\prod_{m=1}^rY_{A_m}(0)$. So, we can expect as follows.

 $Y_A(0)$ is irreducible $\Leftrightarrow A$ is indecomposable as a matrix.

[Key of the proof]

- (1) Reduce to the simple and smooth case $Y_A(\alpha)$.
- (2) $\mu_{\underline{A}}^{-1}(0)$ is C.I. & codim 3 smooth. $\leadsto \Omega_{\mu_{\underline{A}}^{-1}(0)}^{2}$ is reflexive. (3) Consider which $\sigma \in \Omega_{\mu_{\underline{A}}^{-1}(0)}^{2}$ descends to a $\overline{\sigma} \in \Omega_{Y_{\underline{A}}(\alpha)}^{2}$.

For any two smooth hypertoric varieties $Y_A(\alpha)$ and $Y_{A'}(\alpha')$, TFAE:

- (1) $Y_A(\alpha) \cong Y_{A'}(\alpha') : \mathbb{C}^*$ -equivariant isomorphic. (2) $Y_A(\alpha) \cong Y_{A'}(\alpha') : \mathbb{C}^* \times \mathbb{T}^{n-d}$ -equivariant isomorphic as symplectic varieties.

The same statement will hold for any two affine hypertoric varieties.

[Nag] T. Nagaoka, The universal covers of hypertoric varieties and Bogomolov's decomposition, arXiv. [Nam1] Y. Namikawa, Equivalence of symplectic singularities. Kyoto J. Math. 53 (2013), no. 2, 483–514.

[Nam2] Y. Namikawa, Fundamental groups of symplectic singularities. Higher dimensional algebraic geometry,

321-334, Adv. Stud. Pure Math., 74, Math. Soc. Japan, Tokyo, 2017.