On the geometry of singular K3 surfaces with discriminant 3, 4 and 7

AUTHOR(S): Takatsu, Taiki

CITATION: Takatsu, Taiki. On the geometry of singular K3 surfaces with discriminant 3, 4 and 7. 代数幾何学シンポジウム記録 2019, 2019: 120-120

ISSUE DATE: 2019

URL: http://hdl.handle.net/2433/245737

RIGHT:
Introduction

We consider only algebraic K3 surfaces defined over \mathbb{C}.

Definition

A K3 surface X is said to be singular if its Picard rank is 20.

Shioda and Inose showed that any singular K3 surface admits infinitely many automorphisms. In spite of their significance, there are only eleven such K3 surfaces where the automorphism groups are actually calculated, as shown in the following table:

<table>
<thead>
<tr>
<th>No.</th>
<th>$[a,b,c]$</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$[2,1,2]$</td>
<td>Vinberg</td>
</tr>
<tr>
<td>2</td>
<td>$[2,0,2]$</td>
<td>Vinberg</td>
</tr>
<tr>
<td>3</td>
<td>$[2,1,4]$</td>
<td>Ujikawa</td>
</tr>
<tr>
<td>4</td>
<td>$[2,0,4]$</td>
<td>Shimada</td>
</tr>
<tr>
<td>5</td>
<td>$[2,1,6]$</td>
<td>Shimada</td>
</tr>
<tr>
<td>6</td>
<td>$[2,0,6]$</td>
<td>Shimada</td>
</tr>
<tr>
<td>7</td>
<td>$[4,2,4]$</td>
<td>Keum and Kondo</td>
</tr>
<tr>
<td>8</td>
<td>$[2,1,8]$</td>
<td>Shimada</td>
</tr>
<tr>
<td>9</td>
<td>$[4,1,4]$</td>
<td>Shimada</td>
</tr>
<tr>
<td>10</td>
<td>$[2,0,8]$</td>
<td>Shimada</td>
</tr>
<tr>
<td>11</td>
<td>$[4,0,4]$</td>
<td>Keum and Kondo</td>
</tr>
</tbody>
</table>

Here, each of the K3 surfaces X is specified by a triple $[a, b, c]$, which indicates the Gram matrix

\[
\begin{bmatrix}
 a & b \\
 b & c
\end{bmatrix}
\]

of the transcendental lattice T_X. We denote by X_d three K3 surfaces with discriminant d ($d=3, 4, 7$) which correspond to No.1, 2 and 3, respectively.

In the case of No.1 and 2, Vinberg found "good" hyperbolic geometry in their Néron-Severi groups and calculated the automorphism groups of X_3 and X_4. In the case of No.3, Ujikawa calculated automorphism group of X_7 using Borcherds method. In this study, we focus on these three K3 surfaces and aim at finding common properties among them, which should give us clue to understand the geometry of these surfaces more in depth.

Known Result

X_T can be constructed by the double covering.

A branching locus of X_T is given by the equation

\[
(x_0^2x_1 + x_1^2x_2 + x_2^2x_0 - 3x_0x_1x_2)^2 - 4x_0x_1x_2(x_0 - x_1)(x_1 - x_2)(x_2 - x_0) = 0.
\]

Proposition

$X_5 (d = 3, 4)$ can be constructed by the double covering.

(i) A branching locus of X_5 is given by the equation

\[
(x_0 - x_1)(x_1 - x_2)(x_2 - x_0)(x_0 + x_1 + x_2)^2 + x_0(1-x_1)(1-x_2)(x_2 - x_0) = 0,
\]

which has a D_4 singularity at $(1,1,1)$ and A_1 singularities at the intersections of lines and elliptic curve of components of C_4. In particular, $NS(X_5)$ has a sublattice of finite index isomorphic to $U \oplus E_8^{(3)}$

(ii) A branching locus of X_5 is given by the equation

\[
x_0(x_1x_2(x_0 - x_1)(x_1 - x_2)(x_2 - x_0) = 0,
\]

which has D_4 singularities at intersections of six lines. In particular, $NS(X_5)$ has a sublattice of finite index isomorphic to $U \oplus D_6^{(3)}$.

Notation

Let T be a lattice of sign $(2,3)$ satisfying $q_T = -q_U \oplus A_1^{(3)}$, and define a period domain B, H_0 and H as follows.

\[
B := \{ \omega \in P(T \otimes \mathbb{C}) \mid (\omega, \omega) = 0, (\omega, \overline{\omega}) > 0 \}, \\
H_0 := \{ \omega \in B \mid (\omega, \delta) = 0 \text{ for } \delta \in T, \} \\
H := \cup H_0.
\]

Main Results

Theorem 1

Let (X, ω_X) be a marked K3 surface and ω_X be a nowhere vanishing holomorphic 2-form of X. Then the following conditions are equivalent.

(i) C has a D_4 singularity at q (resp. p_i), and is smooth elsewhere.

(ii) $\{p_i, q\}$ is in general position.

(iii) $\omega_X |_{\delta}$ is smooth elsewhere.

(iv) C has an elliptic fibration $f : X \to \mathbb{P}^1$ such that f has three singular fibres of types I_0, and others are I_1, I_2, I_3, I_4.

$\omega_X(t) \in B \backslash H$.

Theorem 2

Let $\omega_X (d = 3, 4, 7)$ be a nowhere vanishing holomorphic 2-forms of X_5.

Then $\omega_X \in H \subset B$.

Figure 1

\[
\begin{array}{cccc}
A_3 & A_3 & D_4 & \mathbb{P}^2 \\
\end{array}
\]