TITLE:
Periods of tropical Calabi-Yau hypersurfaces

AUTHOR(S):
Yamamoto, Yuto

CITATION:
Yamamoto, Yuto. Periods of tropical Calabi-Yau hypersurfaces. 代数幾何学シンポジウム記録 2019, 2019: 121-121

ISSUE DATE:
2019

URL:
http://hdl.handle.net/2433/245738

RIGHT:
1. Background

- \(K := \mathbb{C}(t) \): the convergent Laurent series field
- \(f = \sum_{\alpha} k_{\alpha} t^{\alpha} \in K[x_1, \ldots, x_n] \)

Definition

- The **tropicalization** of \(f \) is the piecewise affine function \(\text{trop}(f) : \mathbb{R}^{d+1} \to \mathbb{R} \) defined by \(\text{trop}(f)(X) := \max_{\alpha} \{ \text{val}(k_{\alpha}) + m \cdot X \} \).
- The **tropical hypersurface** \(\mathcal{V}(\text{trop}(f)) \subset \mathbb{R}^{d+1} \) is the corner locus of \(\text{trop}(f) \).

Conjecture (Gross–Wilson, Kontsevich–Soibelman)

Maximally degenerating families of Calabi–Yau manifolds with Ricci-flat Kähler metrics converge to \(\mathcal{A} \)-spheres with integral affine structures with singularities in the Gromov–Hausdorff topology.

In Gross–Siebert program, an integral affine manifold with singularities \(B \) is constructed as the dual intersection complex of a toric degeneration \([2]\). In the case of hypersurfaces, it coincides with the central part of a tropical Calabi–Yau hypersurface \(\mathcal{V}(\text{trop}(f)) \) \([1]\).

2. Goal

To describe the asymptotics of Hodge structure of a degenerating family of Calabi–Yau hypersurfaces by use of the tropical Calabi–Yau hypersurface \(\mathcal{V}(\text{trop}(f)) \equiv B \).

3. Radiance obstructions

- \(B \): an integral affine manifold with singularities
- \(t : B_0 \hookrightarrow B \): the smooth part
- \(T_\mathbb{E} \): the sheaf of integral tangent vectors on \(B_0 \)
- \(T_0 \equiv T_{\mathbb{E}} \otimes \mathbb{Q} \) for \(\mathbb{Q} = \mathbb{R}, \mathbb{C} \)
- \(\{U_i\} \): a sufficiently fine open covering of \(B \)
- \(\{ s_i \in \Gamma(U_i \cap B_0, T_{\mathbb{E}} B_0) \} \)

Definition (Goldman–Hirsch ’84)

The **radiance obstruction** \(c_B \in H^1(B, t^* T_\mathbb{E}) \) is defined by

\[
 c_B(U_i, U_j) := s_j - s_i
\]

for each 1-simplex \((U_i, U_j)\) of \(\{U_i\} \).

4. Main results

- \(\Delta \subset M_\mathbb{R}, \Lambda \subset N_\mathbb{R} \): reflexive polytopes dual to each other
- \(f = \sum_{\alpha} k_{\alpha} t^{\alpha} \in K[x_1, \ldots, x_n] \)
- \(B \): an integral affine \(d \)-sphere obtained by contracting the tropical hypersurface \(\mathcal{V}(\text{trop}(f)) \)
- \(H^* (B, t^* T_\mathbb{E}) := \bigoplus_{m=0}^d H^m(B, t^* T_\mathbb{E}) \)

Definition

- \(\Sigma \subset M_{\mathbb{R}} \): a subdivision of the normal fan of \(\Lambda \) that gives rise to a crepant resolution
- \(X_\mathbb{E} \): the complex toric variety associated with \(\Sigma \)
- \(D_{\rho} \): the toric divisor on \(X_\mathbb{E} \) corresponding to \(\rho \in \Sigma \)
- \(Y \subset X_\mathbb{E} \): an anti-canonical hypersurface
- \(H^0_{\text{amb}} (Y, \mathbb{Z}) := \text{Im} \left[\mathcal{V} : H^0(X_\mathbb{E}, \mathbb{Z}) \to H^0(Y, \mathbb{Z}) \right] \)
- \(H^*_{\text{amb}} (Y, \mathbb{Z}) := \bigoplus_{m=0}^d H^m_{\text{amb}} (Y, \mathbb{Z}) \)

Theorem 1 (Y.)

1. There is an injective graded ring homomorphism

\[
 \psi : H^*_{\text{amb}} (Y, \mathbb{Z}) \hookrightarrow H^* (B, t^* \Lambda^* T_\mathbb{E}).
\]

2. The radiance obstruction \(c_B \) is given by

\[
 c_B = \sum_{\rho \in \Sigma} \left[h(\rho) - h(0) \right] \psi(D_{\rho}).
\]

Theorem 2 (Y.)

The **radiance obstruction** \(c_B \) is isomorphic to \(H^* (B, t^* T_\mathbb{E}) \) and the monodromy is given by the cup product with \(\exp(-2\pi \sqrt{-1} c_1) \).

Definition

The **tropical period** of \(B \) is the following polarized logarithmic Hodge structure \((H_\mathbb{E}, Q, F)\) on the standard log point \(\{0\} \):

- the locally constant sheaf \(H_\mathbb{E} \) on \(\{0\} \) isomorphic to \(\mathbb{S} \) whose stalk is
- the \((-1)^d\) symmetric pairing
- the decreasing filtration \((F^p)_{p=1}^d\) of

\[
 F^p := \bigoplus_{q=p+1}^d H^q (B, t^* \Lambda^* T_\mathbb{E}).
\]

Theorem 2 (Y.)

The restriction of this logarithmic VPH to \(\{0\} \) is isomorphic to the tropical period of \(B \).

References

