Periods of tropical Calabi-Yau hypersurfaces

IBS Center for Geometry and Physics Yuto Yamamoto

1. Background

- $K := \mathbb{C}\{t\}$: the convergent Laurent series field
- $f = \sum_m k_m x^m \in K[x_1^{\pm}, \cdots, x_{d+1}^{\pm}]$

Definition

• The tropicalization of f is the piecewise affine function $\operatorname{trop}(f)\colon \mathbb{R}^{d+1} \to \mathbb{R}$ defined by

 $\operatorname{trop}(f)(X) := \max_{m} {\operatorname{val}(k_m) + m \cdot X}.$

• The tropical hypersurface $V(\operatorname{trop}(f)) \subset \mathbb{R}^{d+1}$ is the corner locus of $\operatorname{trop}(f)$.

Conjecture (Gross-Wilson, Kontsevich-Soibelman)

Maximally degenerating families of Calabi–Yau manifolds with Ricci-flat Kähler metrics converge to *d*-spheres with integral affine structures with singularities in the Gromov–Hausdorff topology.

In Gross–Siebert program, an integral affine manifold with singularities B is constructed as the dual intersection complex of a toric degeneration [2]. In the case of hypersurfaces, it coincides with the central part of a tropical Calabi–Yau hypersurface $V(\operatorname{trop}(f))$ [1].

2. Goal

To describe the asymptotics of Hodge structure of a degenerating family of Calabi–Yau hypersurfaces by use of the tropical Calabi–Yau hypersurface $V(\operatorname{trop}(f)) \simeq B$.

3. Radiance obstructions

- B: an integral affine manifold with singularities
- $\iota : B_0 \hookrightarrow B$: the smooth part
- ullet $\mathcal{T}_{\mathbb{Z}}$: the sheaf of integral tangent vectors on B_0
- $\mathcal{T}_Q := \mathcal{T}_{\mathbb{Z}} \otimes_{\mathbb{Z}} Q$ for $Q = \mathbb{R}, \mathbb{C}$
- $\{U_i\}_i$: a sufficiently fine open covering of B
- $\{s_i \in \Gamma(U_i \cap B_0, T^{\mathrm{aff}}B_0)\}$

Definition (Goldman-Hirsch '84)

The radiance obstruction $c_B \in H^1(B, \iota_* \mathcal{T}_{\mathbb{R}})$ is defined by

$$c_B((U_i, U_i)) := s_i - s_i$$

for each 1-simplex (U_i, U_i) of $\{U_i\}_i$.

4. Main results

- $\Delta \subset M_{\mathbb{R}}, \check{\Delta} \subset N_{\mathbb{R}}$: reflexive polytopes dual to each other
- $f = \sum_{m \in \Delta \cap M} k_m x^m \in K[x_1^{\pm}, \cdots, x_{d+1}^{\pm}]$
- B: an integral affine d-sphere obtained by contracting the tropical hypersurface $V(\operatorname{trop}(f))$
- $H^{\bullet}(B, \iota_* \bigwedge^{\bullet} \mathcal{T}_{\mathbb{Z}}) := \bigoplus_{i=0}^{d} H^{i}(B, \iota_* \bigwedge^{i} \mathcal{T}_{\mathbb{Z}})$

- $\check{\Sigma} \subset M_{\mathbb{R}}$: a subdivision of the normal fan of $\check{\Delta}$ that gives rise to a crepant resolution
- $X_{\check{\Sigma}}$: the complex toric variety associated with $\check{\Sigma}$
- D_{ρ} : the toric divisor on $X_{\check{\Sigma}}$ corresponding to $\rho \in \check{\Sigma}(1)$
- $Y \subset X_{\check{\Sigma}}$: an anti-canonical hypersurface
- $\bullet \ H^{2i}_{amb}(Y,\mathbb{Z}) := \operatorname{Im} \left\{ \iota^* \colon H^{2i}(X_{\check{\Sigma}},\mathbb{Z}) \to H^{2i}(Y,\mathbb{Z}) \right\}$
- $H^{\bullet}_{amb}(Y,\mathbb{Z}) := \bigoplus_{i=0}^{d} H^{2i}_{amb}(Y,\mathbb{Z})$

Theorem 1 (Y.)

1. There is an injective graded ring homomorphism

$$\psi \colon H^{\bullet}_{amb}(Y,\mathbb{Z}) \hookrightarrow H^{\bullet}(B,\iota_* \bigwedge^{\bullet} \mathcal{T}_{\mathbb{Z}}).$$

2. The radiance obstruction c_B is given by

$$c_B = \sum_{\rho \in \Sigma(1)} \left\{ h(m_\rho) - h(0) \right\} \psi(D_\rho).$$

- $H_{A,\mathbb{Z}}^{\mathrm{amb}} := \left\{ \left(2\pi \sqrt{-1} \right)^{-d} \widehat{\Gamma}_{Y} \cup \left(2\pi \sqrt{-1} \right)^{\frac{\deg}{2}} \mathrm{ch}(\iota^{*}\mathcal{E}) \middle| \mathcal{E} \in K(X_{\Sigma}) \right\}$
- $H^{\bullet}_{\psi,\mathbb{Z}}(B,\iota_{*} \bigwedge^{\bullet} \mathcal{T}_{\mathbb{C}})$: the image of $H^{\mathrm{amb}}_{A,\mathbb{Z}}$ by $\psi \otimes_{\mathbb{Z}} \mathrm{id}_{\mathbb{C}} \colon H^{\bullet}_{\mathrm{amb}}(Y,\mathbb{C}) \hookrightarrow H^{\bullet}(B,\iota_{*} \bigwedge^{\bullet} \mathcal{T}_{\mathbb{C}})$

Definition

The tropical period of B is the following polarized logarithmic Hodge structure $(H_{\mathbb{Z}}, Q, F)$ on the standard log point $\{0\}$:

- the locally constant sheaf $H_{\mathbb{Z}}$ on $\{0\}^{\log} \cong S^1$ whose stalk is isomorphic to $H_{\psi,\mathbb{Z}}^{\bullet}(B,\iota_{\bullet} \wedge^{\bullet} \mathcal{T}_{\mathbb{C}})$ and the monodromy is given by the cup product with $\exp\left(-2\pi\sqrt{-1}c_B\right)$,
- the $(-1)^d$ -symmetric pairing

 $Q\colon H^{\bullet}_{\psi,\mathbb{Z}}\left(B,\iota_{*} \bigwedge^{\bullet} \mathcal{T}_{\mathbb{C}}\right) \times H^{\bullet}_{\psi,\mathbb{Z}}\left(B,\iota_{*} \bigwedge^{\bullet} \mathcal{T}_{\mathbb{C}}\right) \to H^{d}\left(B,\iota_{*} \bigwedge^{d} \mathcal{T}_{\mathbb{C}}\right) \cong \mathbb{C}$ induced by the wedge product,

• the decreasing filtration $\{F^p\}_{n=1}^d$ of

$$egin{aligned} O_{\{0\}}^{\log} \otimes_{\mathbb{Z}} H_{\mathbb{Z}} &\cong O_{\{0\}}^{\log} \otimes_{\mathbb{Z}} H_{\psi,\mathbb{Z}}^{ullet}(B, \iota_* igwedge^* \mathcal{T}_{\mathbb{C}}) ext{ given by} \ F^p &:= O_{\{0\}}^{\log} \otimes_{\mathbb{Z}} \Big(igoplus_{i=0}^{d-p} H_{\psi,\mathbb{Z}}^i \Big(B, \iota_* igwedge^i \mathcal{T}_{\mathbb{C}} \Big) \Big). \end{aligned}$$

- $D_{\varepsilon} := \{ z \in \mathbb{C} \mid |z| < \varepsilon \}$
- $q \in D_{\varepsilon} \setminus \{0\}$ \longrightarrow $f_q := f|_{t=q} \in \mathbb{C}[x_1^{\pm}, \cdots, x_{d+1}^{\pm}]$
- $\left\{V_q\right\}_q := \left\{f_q = 0\right\}_q$: a family of Calabi–Yau hypersurfaces \leadsto the residual B-model VHS of Iritani [3] on $D_\varepsilon \setminus \{0\}$ \leadsto the logarithmic VHS of Kato–Usui [4] on D_ε

Theorem 2 (Y.)

The restriction of this logarithmic VPH to $\{0\}$ is isomorphic to the tropical period of B.

References

- [1] Mark Gross, Toric degenerations and Batyrev-Borisov duality, Math. Ann. 333 (2005), no. 3, 645-688.
- [2] Mark Gross and Bernd Siebert, Mirror symmetry via logarithmic degeneration data. I, J. Differential Geom. 72 (2006), no. 2, 169-229
- [3] Hiroshi Iritani, *Quantum cohomology and periods*, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 7, 2909-2958.
- [4] Kazuya Kato and Sampei Usui, Classifying spaces of degenerating polarized Hodge structures, Annals of Mathematics Studies, vol. 169, Princeton University Press, Princeton, NJ, 2009.