<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>期のトロピカルCalabi-Yauhypersurfaces</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Yamamoto, Yuto</td>
</tr>
<tr>
<td>Citation</td>
<td>代数幾何学シンポジウム記録 2019: 121-121</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2019</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/245738</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
1. Background

- $K := \mathbb{C}\{t\}$: the convergent Laurent series field
- $f = \sum_{m} k_m x^m \in K[x_1^0, \ldots, x_n^0]$

Definition

- The **tropicalization** of f is the piecewise affine function $\text{trop}(f) : \mathbb{R}^{d+1} \to \mathbb{R}$ defined by $\text{trop}(f)(X) := \max_{m} \{\text{val}(k_m) + m \cdot X\}$.
- The **tropical hypersurface** $V(\text{trop}(f)) \subset \mathbb{R}^{d+1}$ is the corner locus of $\text{trop}(f)$.

Conjecture (Gross–Wilson, Kontsevich–Soibelman)

Maximally degenerating families of Calabi–Yau manifolds with Ricci-flat Kähler metrics converge to d-spheres with integral affine structures with singularities in the Gromov–Hausdorff topology.

In Gross–Siebert program, an integral affine manifold with singularities B is constructed as the dual intersection complex of a toric degeneration [2]. In the case of hypersurfaces, it coincides with the central part of a tropical Calabi–Yau hypersurface $V(\text{trop}(f))$ [1].

2. Goal

To describe the asymptotics of Hodge structure of a degenerating family of Calabi–Yau hypersurfaces by use of the tropical Calabi–Yau hypersurface $V(\text{trop}(f)) = \mathcal{B}$.

3. Radiance obstructions

- \mathcal{B}: an integral affine manifold with singularities
- $\iota : \mathcal{B} \hookrightarrow \mathcal{B}$: the smooth part
- $\mathcal{T}_\mathcal{B}$: the sheaf of integral tangent vectors on \mathcal{B}
- $\mathcal{T}_0 := \mathcal{T}_\mathcal{B} \otimes \mathbb{Q}$ for $\mathcal{Q} = \mathbb{R}, \mathbb{C}$
- $\{U_i\}$: a sufficiently fine open covering of \mathcal{B}
- $\{s_i \in \Gamma(U_i \cap \mathcal{B}, T^d_{\mathcal{B}})\}$

Definition (Goldman–Hirsch ’84)

The **radiance obstruction** $c_B \in H^i(B, T\mathcal{B})$ is defined by $c_B(U_i, U_j) := s_j - s_i$ for each 1-simplex (U_i, U_j) of $\{U_i\}$.

4. Main results

- $\Delta \subset M_\mathcal{B}, \hat{\Delta} \subset N_\mathcal{B}$: reflexive polytopes dual to each other
- $f = \sum_{m} k_m x^m \in K[x_1^0, \ldots, x_n^0]$
- \mathcal{B}: an integral affine d-sphere obtained by contracting the tropical hypersurface $V(\text{trop}(f))$
- $H^i(B, \Lambda^d \mathcal{B}) := \bigoplus_{n=0}^i H^i(B, \Lambda^n \mathcal{B})$

- $\Sigma \subset M_\mathcal{B}$: a subdivision of the normal fan of $\hat{\Delta}$ that gives rise to a crepant resolution
- X_Σ : the complex toric variety associated with Σ
- D_ρ : the toric divisor on X_Σ corresponding to $\rho \in \Sigma(1)$
- $\mathcal{Y} \subset X_\Sigma$: an anti-canonical hypersurface
- $H^{2i}_{\text{amb}}(\mathcal{Y}, \mathbb{Z}) := \text{Im} \left[\{ r : H^i(X_\Sigma, \mathbb{Z}) \to H^i(\mathcal{Y}, \mathbb{Z}) \} \right]$
- $H^*_{\text{amb}}(\mathcal{Y}, \mathbb{Z}) := \bigoplus_{i=0}^d H^{2i}_{\text{amb}}(\mathcal{Y}, \mathbb{Z})$

Theorem 1 (Y.)

1. There is an injective graded ring homomorphism $\psi : H^*_{\text{amb}}(\mathcal{Y}, \mathbb{Z}) \hookrightarrow H^*_{\text{amb}}(B, \Lambda^d \mathcal{B})$.

2. The radiance obstruction c_B is given by
$$c_B = \sum_{\rho \in \Sigma(1)} \left[\text{val}(\rho) - h(0) \right] \psi(D_\rho).$$

Definition

The **tropical period** of \mathcal{B} is the following polarized logarithmic Hodge structure $(\mathcal{B}, \mathcal{Q}, F)$ on the standard log point (0):

- the locally constant sheaf $\mathcal{H}_\mathcal{B}$ on $(0)_{\text{log}} \cong \mathcal{S}$ whose stalk is isomorphic to $H^*_{\text{amb}}(B, \Lambda^d \mathcal{B})$ and the monodromy is given by the cup product with $\exp(-2\pi \sqrt{-1} \text{deg})$,
- the $(-1)^i$-symmetric pairing $Q : H^i_{\text{amb}}(B, \Lambda^d \mathcal{B}) \times H^i_{\text{amb}}(B, \Lambda^d \mathcal{B}) \to H^d(B, \Lambda^d \mathcal{B})$.

Theorem 2 (Y.)

The restriction of this logarithmic VPH to (0) is isomorphic to the tropical period of \mathcal{B}.

References

