1 Uptake of adenine by purine permeases of Coffea canephora 2 ¹Hirofumi Kakegawa, ²Nobukazu Shitan, ¹Hiroaki Kusano, ³Shinjiro Ogita, ¹Kazufumi 3 Yazaki, ¹*Akifumi Sugiyama 4 5 6 ¹Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, 611-0011, Japan, ² Laboratory of Medicinal Cell Biology, Kobe Pharmaceutical 7 University, Kobe, 658-0003, Japan. ³Faculty of Life and Environmental Sciences, 8 9 Prefectural University of Hiroshima, 5562 Nanatsukacho, Shobara, Hiroshima, 10 727-0023, Japan. 11 12 13 *Corresponding author: Akifumi Sugiyama, tel: +81-774-38-3618, fax: 14 +81-774-38-3623, e-mail: akifumi_sugiyama@rish.kyoto-u.ac.jp

15

16	Abstract
17	Purine permeases (PUPs) mediate the proton-coupled uptake of nucleotide bases and
18	their derivatives into cytosol. PUPs facilitate uptake of adenine, cytokinins and nicotine.
19	Caffeine, a purine alkaloid derived from xanthosine, occurs in only a few eudicot
20	species, including coffee, cacao, and tea. Although caffeine is not an endogenous
21	metabolite in Arabidopsis and rice, AtPUP1 and OsPUP7 were suggested to transport
22	caffeine. In this study, we identified 15 PUPs in the genome of Coffea canephora.
23	Direct uptake measurements in yeast demonstrated that CcPUP1 and CcPUP5 facilitate
24	adenine—but not caffeine—transport. Adenine uptake was pH-dependent, with
25	increased activity at pH 3 and 4, and inhibited by nigericin, a potassium-proton
26	ionophore, suggesting that CcPUP1 and CcPUP5 function as proton-symporters.
27	Furthermore, adenine uptake was not competitively inhibited by an excess amount of
28	caffeine, which implies that PUPs of C. canephora have evolved to become
29	caffeine-insensitive to promote efficient uptake of adenine into cytosol.
30	
31	Keywords; adenine, caffeine, Coffea canephora, purine permease
32	
33	
34	

Introduction

Purine permeases (PUPs) constitute a large family of transporter molecules that are localized at the plasma membrane in plants, where they facilitate proton-coupled uptake of nucleotide bases and their derivatives, including adenine, cytokinins, and nicotine [1,2]. The first PUP member, AtPUP1 of Arabidopsis thaliana, was identified as the gene that complemented a yeast mutant in adenine uptake [3]. The protonophore carbonyl cyanide m-chlorophenyl hydrazine inhibits the adenine uptake activity of AtPUP1, suggesting that this PUP functions as a proton symporter [4]. In addition, the adenine uptake activity of AtPUP1 is competitively inhibited by purine derivatives including cytokinins and caffeine [4], thus suggesting that AtPUP1 mediates the uptake of a broad range of substrates.

Although Arabidopsis contains 23 PUP members in its genome, only four *PUP* genes have been analyzed to date. Of these, both AtPUP1 and AtPUP2 have similar substrate specificity for the uptake of adenine and cytokinins, but their tissue-specific expression patterns differ: *AtPUP1* is expressed mainly in leaf hydathode tissue and the stigmatic surface, whereas *AtPUP2* in expressed predominantly in vascular tissues [4,5]. Furthermore, AtPUP1 reportedly also facilitates the uptake of pyridoxine [6].

Another of the AtPUPs characterized to date, *AtPUP3*, is expressed in pollen, but the protein did not demonstrate any transport activity in a yeast system [4]. Through its cytokinin uptake activity, AtPUP14 is involved in the spatiotemporal distribution of cytokinin in the meristem and thus in plant morphogenesis [7]. Rice (*Oryza sativa*) contains 12 PUP members in its genome, but only one member, OsPUP7, was characterized as being involved in plant growth and development, possibly mediating cytokinin transport [8]. Although direct transport activity was not measured, OsPUP7 conferred sensitivity to caffeine in yeast, suggesting that OsPUP7 may take up the caffeine [8].

In addition to adenine and cytokinins, derivatives of nucleotide bases include the alkaloids nicotine and caffeine. The ability of a PUP to take up nicotine was first identified in *Nicotiana tabacum* [9,10], in which NtNUP1 acquires nicotine from the apoplast, particularly in root tips. The suppression of *NtNUP1* expression in tobacco hairy roots decreased the nicotine content in the tissue [10], and measurement of direct

66	uptake activity in yeast showed that NtNUP1 is an uptake transporter of—in addition to
67	nicotine—pyridoxamine, pyridoxine, and anatabine [9]. Although the results of
68	competitive inhibition and yeast growth assays have suggested that PUPs in Arabidopsis,
69	and rice potentially transport caffeine [3,4,8], their caffeine uptake activity has not been
70	measured directly, nor have the PUPs in any caffeine-synthesizing species been
71	characterized. Caffeine is synthesized by only a few eudicot plants, such as coffee
72	(Coffea spp.), cacao (Theobroma cacao), and tea (Camellia sinensis) [11,12]. Coffee is
73	an important cash crop and is cultivated across more than 11 million hectares [13]. Two
74	species (C. arabica and C. canephora) account for nearly all coffee bean production. C.
75	arabica is an autogamous allotetraploid species originating from a cross between C.
76	canephora and C. eugenioides [14]. In this report we identified 15 PUP members from
77	C. canephora, and characterized the transport activity of CcPUPs in yeast.
78	
79	Materials and Methods
80	Chemicals
81	Chemicals were obtained from Wako Pure Chemical Industries (Osaka, Japan) or
82	Nacalai Tesque (Kyoto, Japan), unless otherwise stated.
83	
84	Identification and sequence analysis of PUP homologs in C. canephora
85	We used the predicted amino acid sequence of AtPUP1 as a query sequence in a
86	BLASTP search of the publicly available database Coffee Genome Hub
87	(http://coffee-genome.org/) to find the PUP genes in C. canephora. Using default search
88	parameters, we identified 15 CcPUPs, which we named CcPUP1 to CcPUP15 in order
89	of their loci in the genome.
90	
91	Construction of plasmids and transformation of yeast
92	The coding sequences of CcPUP1 and CcPUP5 were amplified in 25-µL reaction
93	mixtures containing cDNA of cultured C. canephora cells, 0.5 μL of PrimeSTAR GXL
94	DNA Polymerase (Takara, Japan), 5 μL of 5×PrimeSTAR GXL buffer, 16 μL of distilled
95	water, 2 μ L of dNTPs (2.5 mM), and 5 pmol of each appropriate primer ($\it CcPUP1$,
96	5'-CACCATGCCAGTCAATGAGGAACC-3' and

97	5'-TCAGCACAACGAGTCATTAGTAG-3'; CcPUP5,
98	5'-CACCATGGAGAATACTACTCAAGAAATGG-3' and
99	5'-TCAAGAAGTCCCTAGGAAAGAA-3'). PCR amplification conditions were:
100	denaturation at 98 °C for 1 min; 30 cycles of 98 °C for 10 s, 60 °C for 15 s, and 68 °C
101	for 1 min. A final extension was conducted for 5 minutes at 58°C. PCR amplicons were
102	purified by using the Wizard SV Gel and PCR Clean-Up System (Promega, San Luis
103	Obispo, CA) according to the manufacturer's protocol. CcPUP1 and CcPUP5 cDNAs
104	were ligated into pENTR/D-TOPO vector (Invitrogen, Carlsbad, CA). DNA sequence of
105	CcPUP7 was synthesized by Genewiz (Kawaguchi, Japan), and ligated into
106	pENTR/D-TOPO. These were then transferred into pYES-DEST52 (Invitrogen) by
107	using Gateway cloning technology (Invitrogen) according to the manufacturer's
108	instructions. The cDNA-carrying pYES-DEST52 vectors were used to transduce an
109	$FCY2$ -deleted yeast strain (BY4741, Mata, $his3\Delta 1$, $leu2\Delta 0$, $met15\Delta 0$, $ura3\Delta 0$,
110	YER056C::kanMX4; Invitrogen) according to the manufacturer's protocol;
111	pYES-DEST52 lacking a CcPUP cDNA insert was used as a negative control.
112	
113	Growth assay
114	Gene expression in pYES-DEST52-transduced yeast cells can be induced by galactose
115	and repressed by glucose. The basic (control) medium for the growth assays was
116	minimal medium (lacking uracil and glucose); 2% galactose and 1% raffinose were
117	added as carbon sources to induce gene expression. Basic medium containing 2%
118	glucose was used to repress gene expression. Transduced yeast cells were pre-incubated
119	in the inducing medium or repression medium for 2 days at 30 $^{\circ}\text{C},$ and then were diluted
120	to an OD_{600} of 0.002 by adding sterile water. Then 40 μl of each diluted solution was
121	applied to an agar plate containing caffeine, which was incubated at 30 °C for 5 days,
122	according to the literatures [4, 8].
123	
124	Measurement of transport of purine derivatives in yeast
125	For caffeine uptake assays, transduced yeast cells were pre-incubated in repression
126	medium for 2 days at 30 °C. Cells were harvested by centrifugation, washed, and
127	resuspended in inducing medium to a final OD_{600} of 0.2. Yeast cells were incubated at

128 30 °C for 40 hours and then harvested, washed, and resuspended in 100 mM sodium 129 citrate buffer (pH 3.0) containing 1% glucose to a final OD₆₀₀ of 12. Before initiation of 130 the transport assay, yeast cells (100 µL) were preincubated at 30 °C for 2 min; then 131 assay buffer (105 µL) containing 100 mM citrate buffer, pH 3.0, 1% glucose, 176 Bq 132 μL⁻¹ ¹⁴C-labeled caffeine (American Radiolabeled Chemicals, St Louis, MO) and 133 unlabeled caffeine was added. A 40-µL sample was withdrawn from the reaction tube 134 after 30, 60, 120, and 180 s; each sample was transferred to 4 mL of ice-cold water, 135 filtered onto glass-fiber filters (GE Healthcare, Chicago, IL), and then washed with 4 136 mL of water in a manifold (Merck Millipore, Burlington, MA). For adenine uptake 137 assays, the incubation was initiated by adding 103 µL of assay buffer containing 100 mM citrate buffer, pH 3.0, 1% glucose, 718 Bq μ L⁻¹ ³H-labeled adenine (Moravek 138 139 Biochemicals, Brea, CA) and unlabeled adenine at the final concentration of 100 μM, 140 according to the literature [4]. 141

To vary the pH of the assay, yeast cells were grown at 30 °C for 40 hours, washed, and resuspended in 100 mM sodium citrate buffer for which the pH was adjusted. For assays involving nigericin, a reaction buffer containing 4.0 mM nigericin was used. For competitive inhibition assays, 94 μL of buffer containing 540 μM caffeine, adenine, or sucrose was added 2 min before the start of the reaction, after preincubation, reactions were initiated by adding 9 μL of buffer containing 8.2 kBq μL^{-1} ³H-labeled adenine.

148

149

142

143

144

145

146

147

Results

- 150 Identification and expression analysis of purine permeases of C. canephora
- In this study, we used AtPUP1 as a query in a BLASTP search of the genomic sequence
- of *C. canephora* in the public database Coffee Genome Hub (http://coffee-genome.org/)
- to identify PUPs in this species. We named the 15 PUPs that we obtained as CcPUP1
- through CcPUP15, in order of their genomic loci, as follows: CcPUP1, Cc02g25680;
- 155 CcPUP2, Cc03g11350; CcPUP3, Cc03g13540; CcPUP4, Cc06g15040; CcPUP5,
- 156 Cc08g01780; CcPUP6, Cc08g11780; CcPUP7, Cc09g04610; CcPUP8, Cc09g08430;
- 157 CcPUP9, Cc09g09080; CcPUP10, Cc09g09090; CcPUP11, Cc09g09160; CcPUP12,
- 158 Cc10g06500; CcPUP13, Cc10g06800; CcPUP14, Cc10g15390; CcPUP15, Cc10g15400.

159	A phylogenetic tree constructed by using the amino acid sequences of CcPUPs and
160	characterized PUPs from Arabidopsis, rice, and tobacco showed that AtPUP1 and
161	OsPUP7, which were 34% homologous at the amino acid level, clustered in different
162	clades (Fig. 1A) even though both proteins have been suggested to transport caffeine.
163	We then used the RNA-seq data available in Coffee Genome Hub
164	(http://coffee-genome.org/) to summarize the tissue expression of <i>CcPUPs</i> (Fig. 1B).
165	Whereas CcPUP1, CcPUP4, CcPUP6, and CcPUP12 are expressed in most tissues,
166	CcPUP2 is expressed more specifically in leaves and roots. In addition, CcPUP7 is
167	strongly expressed in perisperm and endosperm, where caffeine is highly accumulated.
168	
169	CcPUP1 and CcPUP5 confer sensitivity to caffeine in yeast
170	Results of yeast sensitivity tests suggest that PUPs transport caffeine [4,8]. We therefore
171	individually cloned CcPUP cDNAs into the pYES-DEST52 vector, in which gene
172	expression is regulated by the GAL1 promoter, and used the plasmids to transform yeast
173	mutant fcy2, which is deficient in adenine uptake [3]. Yeast transformants expressing
174	CcPUP1, CcPUP4, CcPUP5, CcPUP6, CcPUP7, and CcPUP12 were cultured.
175	Compared with that of the vector control, growth of the yeast transformants expressing
176	CcPUP1 and CcPUP5 was suppressed on induction medium containing 0.2% caffeine
177	(Fig. 2). No difference in growth was observed for yeast transformants harboring
178	CcPUP4, CcPUP6, CcPUP7, or CcPUP12 (Supplementary Fig. 1)
179	
180	Transport assays
181	Because the results of the yeast growth assay suggested that CcPUP1 and CcPUP5 have
182	caffeine uptake activity, we analyzed their direct transport activity by determining the
183	caffeine contents in yeast transformants after their incubation on caffeine as a substrate.
184	No uptake activity was observed for transformants expressing either CcPUP1 or
185	CcPUP5 (Fig. 3A). When the pH condition was modified from pH 3 to 7, there was no
186	caffeine uptake activity in these cells (Supplementary Fig. 2). The uptake activity for
187	adenine was then measured using the same transformants. Higher amount of adenine
188	was transported in yeast transformants expressing CcPUP1 or CcPUP5 than the vector
189	control (Fig. 3B). In addition, the adenine uptake activity of CcPUP1 and CcPUP5 was

190 higher at a pH of 3 or 4 and decreased when the pH was increased (Fig. 4). 191 Because *CcPUP7* is highly expressed in the perisperm and endosperm, where 192 caffeine is highly accumulated, the caffeine and adenine uptake were also tested for 193 CcPUP7. The uptake activity was not observed in yeast transformants (Supplementary 194 Fig. 3). 196

195

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

Inhibition of adenine uptake

To analyze whether adenine uptake by CcPUP1 and CcPUP5 utilizes a proton gradient, we measured adenine uptake in the presence of nigericin, an ionophore that exchanges K⁺ for H⁺ across membranes and thus abolishes a pH gradient. Adenine uptake by CcPUP1 and CcPUP5 was decreased by about 42% and 51%, respectively, in the presence of nigericin compared with control values (Fig. 5). Nigericin also reduced the adenine uptake of AtPUP1 (Fig. 5C).

Caffeine was suggested to competitively inhibit the ability of AtPUP1 to take up adenine [3]. To investigate whether caffeine competitively inhibits adenine uptake by CcPUP1 and CcPUP5, we conducted a transport assay under which the incubation media contained 10-fold more caffeine than adenine; controls for this assay included 10-fold increased amounts of adenine and sucrose. For both CcPUP1 and CcPUP5, the uptake of radioactive adenine was decreased in the presence of excess adenine but was unaffected under conditions of excess caffeine or sucrose (Fig. 5). In contrast to findings for CcPUP1 and CcPUP5, addition of an excess of caffeine diminished the uptake of adenine by AtPUP1 (Fig. 5F), in line with a previous report [3].

212 213

Discussion

214 Purine bases such as adenine and guanine are ubiquitous metabolites that are found in 215 all organisms. In addition to purine nucleotides, several plants synthesize purine 216 alkaloids, including caffeine and theobromine [15]. The caffeine synthesized by Coffea 217 spp. accumulates predominantly in seeds and leaves, where caffeine restricts 218 development and growth of other organisms [16] and also stimulates plant defense 219 response by affecting signaling pathways [17,18]. In addition, caffeine is secreted from 220 the roots during germination, when it is thought to modulate interactions with pathogens 221 and mycoparasites [19,20].

Several lines of evidence support the importance of membrane transport in the
function of metabolites [21,22], and various families of transporters for nucleotide bases
and their derivatives have been characterized [1,23]. In the current study, we analyzed
the purine permease family members, which are uptake transporters for various purine
bases and their derivatives [2], in C. canephora, for which genomic and transcriptomic
data are publicly available [11,24]. Among the 15 PUP genes that we discovered in the
genome of C. canephora, two (CcPUP1 and CcPUP5) were identified as encoding
candidate uptake transporters, according to growth assays using caffeine-containing
media. Using radioactive substrates in a yeast-based system, we showed that both
CcPUP1 and CcPUP5 uptake adenine, possibly in a proton-symport manner. Even
though growth assay results suggested that both CcPUP1 and CcPUP5 can uptake
caffeine, neither transporter recognized caffeine as a substrate. The apparent sensitivity
of CcPUP1 and CcPUP5 transformants to caffeine might merely reflect the growth
retardation of yeast expressing a membrane transporter. Even in liquid media without
caffeine, the growth of the CcPUP1 and CcPUP5 transformants was suppressed
compared with vector controls (Supplementary Fig. 4).

In conclusion, among the 15 PUPs that we identified in *C. canephora*, we found that CcPUP1 and CcPUP5, which are adenine transporters, not inhibited by caffeine. The insensitivity of CcPUPs to caffeine may be physiologically important in *C. canephora*, where these proteins need to distinguish adenine from caffeine to efficiently take up adenine in various cells. We surmise that purine permeases in *C. canephora* have evolved to differentiate adenine from caffeine.

Acknowledgements

We thank Ms. Shuka Nagayama for technical assistance in maintaining tissue cultures.

Author Contributions

- 249 HK, NS, SO, KY, and AS conceived and designed the experiments; HK and AS
- performed the experiments; HK, NS, HK*, KY, and AS analyzed the data; and HK and
- AS wrote the paper with input from all coauthors.
- 252 HK*: Hiroaki Kusano

253	
254	Disclosure Statement
255	No potential conflict of interest was reported by the authors.
256	
257	Funding
258	This study was supported in part by grants from JSPS KAKENHI ($16K14901$ and
259	18H02313 to AS) and from the Research Institute for Sustainable Humanosphere
260	(Mission research and Mission 5-1) and by the Research Unit for Development of
261	Global Sustainability, Kyoto University.
262	
263	

264 **Figure Legends** 265 Figure 1. Phylogenetic analysis of purine permease (PUP) proteins in Arabidopsis (At), 266 rice (Os) and Coffea canephora (Cc) and their gene expression levels. (a) A 267 phylogenetic tree was generated by using MEGA 7.0 software [25]. The amino acid 268 sequences of PUPs were aligned by using the MUSCLE program. The maximum 269 likelihood method was used to construct a phylogenetic tree with 1000 bootstrap 270 replications. Bootstrap values (maximum, 100) are shown at nodes generating clades. 271 (b) Heat map according to the number of reads per kilobase per million mapped reads 272 (RPKM) for each gene. 273 274 Figure 2. Growth of *CcPUP*-transformed yeast on media containing 0.2% caffeine after 275 incubation at 30 °C for 5 days. 276 277 Figure 3. Transport assay using CcPUP1 and CcPUP5-expressing yeast. (a) 278 Time-dependent uptake of caffeine in yeast expressing CcPUP1 and CcPUP5. The final 279 concentration of caffeine was 100 µM. (b) Time-dependent uptake of adenine in yeast 280 transformants expressing CcPUP1 and CcPUP5. The final concentration of adenine was 281 100 μ M. Data are presented as mean \pm SD (n = 3); different letters indicate values that 282 are significantly different (P < 0.05) according to Tukey's Honestly Significant 283 Difference test. 284 Figure 4. Effect of pH on adenine uptake by CcPUP1 and CcPUP5. Adenine uptake was 285 286 determined after 3 min of incubation in sodium citrate buffer; the final concentration of 287 adenine was 100 μ M. Data are presented as mean \pm SD of three replicates; different 288 letters indicated values that are significantly different (P < 0.05) according to Tukey's 289 Honestly Significant Difference test. 290 291 Figure 5. Inhibition of adenine uptake. Adenine uptake by (a) CcPUP1, (b) CcPUP5, 292 and (b) AtPUP1 after 3 min of incubation in the presence of nigericin. Adenine uptake 293 by (d) CcPUP1, (e) CcPUP5, and (f) AtPUP1 after 3 min of incubation in the presence 294 of excess amounts of adenine, caffeine, and sucrose. The final concentration of each

295	substra	te was 25 μ M. Data are given as mean \pm SD (n = 3); different letters indicate	
296	values that are significantly different ($P < 0.05$) according to the Student t-Test (A–C)		
297	or Tukey's Honestly Significant Difference test (D–F).		
298			
299	Supplementary Figure 1. Growth of <i>CcPUP</i> -expressing yeast on media containing		
300	caffeine after incubation at 30 °C for 5 days.		
301			
302	Supple	mentary Figure 2. Effect of pH on caffeine uptake by CcPUPs. Caffeine uptake	
303	was determined after 3 min of incubation in sodium citrate buffer. The final		
304	concen	tration of caffeine was 100 μM. Data are presented as mean ±SD of three	
305	replica		
306			
307	Supple	mentary Figure 3. Transport assay using CcPUP7-expressing yeast. (a) Uptake of	
308	caffeine in yeast expressing CcPUP7. The final concentration of caffeine was 100 μM.		
309	(b) Uptake of adenine in yeast transformants expressing CcPUP7. The final		
310	concentration of adenine was 100 µM. Data are presented as mean ±SD of three		
311	replicates.		
312	1		
313	Supple	mentary Figure 4. Growth of yeast in liquid media. The OD ₆₀₀ of each culture	
314	was measured over 24 hours. Data are presented as mean \pm SD of three replicates.		
315			
316	Refere	nces	
317	[1]	Shitan N, Kato K, and Shoji T. Alkaloid transporters in plants. Plant	
318		Biotechnology. 2014;31(5):453-463.	
319	[2]	Jelesko JG. An expanding role for purine uptake permease-like transporters in	
320		plant secondary metabolism. Frontiers in Plant Science. 2012;3:78.	
321	[3]	Gillissen B, Burkle L, Andre B, Kuhn C, Rentsch D, Brandl B, and Frommer	
322		WB. A new family of high-affinity transporters for adenine, cytosine, and purine	
323		derivatives in arabidopsis. Plant Cell. 2000;12:291-300.	
324	[4]	Burkle L, Cedzich A, Dopke C, Stransky H, Okumoto S, Gillissen B, Kuhn C,	
325		and Frommer WB. Transport of cytokinins mediated by purine transporters of	
326		the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis.	
327		Plant J. 2003;34:13-26.	

- [5] Cedzich A, Stransky H, Schulz B, and Frommer WB. Characterization of
 Cytokinin and Adenine Transport in Arabidopsis Cell Cultures. Plant Physiology.
 2008;148:1857-1867.
- 331 [6] Szydlowski N, Buerkle L, Pourcel L, Moulin M, Stolz J, and Fitzpatrick TB.
- Recycling of pyridoxine (vitamin B6) by PUP1 in Arabidopsis. Plant J.
- 333 2013;75:40-52.
- Zurcher E, Liu JC, di Donato M, Geisler M, and Muller B. Plant development regulated by cytokinin sinks. Science. 2016;353:1027-1030.
- 336 [8] Qi ZY, and Xiong LZ. Characterization of a Purine Permease Family Gene
 337 OsPUP7 Involved in Growth and Development Control in Rice. J Integrative
- 338 Plant Biology. 2013;55:1119-1135.
- Kato K, Shitan N, Shoji T, and Hashimoto T. Tobacco NUP1 transports both tobacco alkaloids and vitamin B6. Phytochemistry. 2015;113:33-40.
- 341 [10] Hildreth SB, Gehman EA, Yang HB, Lu RH, Ritesh KC, Harich KC, Yu S, Lin
- JS, Sandoe JL, Okumoto S, Murphy AS, and Jelesko JG. Tobacco nicotine
- 343 uptake permease (NUP1) affects alkaloid metabolism. Proceedings of the
- National Academy of Sciences of the United States of America.
- 345 2011;108:18179-18184.
- 346 [11] Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M,
- Zheng CF, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs
- S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De
- Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V,
- Joet T, Labadie K, Lan TY, Leclercq J, Lepelley M, Leroy T, Li LT, Librado P,
- Lopez L, Munoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono,
- Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q,
- Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ,
- Jayarama, Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA,
- Wincker P, and Lashermes P. The coffee genome provides insight into the
- 356 convergent evolution of caffeine biosynthesis. Science. 2014;345:1181-1184.
- 357 [12] Xia E-H, Zhang H-B, Sheng J, Li K, Zhang Q-J, Kim C, Zhang Y, Liu Y, Zhu T,
- Li W, Huang H, Tong Y, Nan H, Shi C, Shi C, Jiang J-J, Mao S-Y, Jiao J-Y,
- Zhang D, Zhao Y, Zhao Y-J, Zhang L-P, Liu Y-L, Liu B-Y, Yu Y, Shao S-F, Ni
- D-J, Eichler EE, and Gao L-Z. The Tea Tree Genome Provides Insights into Tea
- Flavor and Independent Evolution of Caffeine Biosynthesis. Molecular Plant.
- 362 2017;10:866-877.
- 363 [13] Laderach P, Ramirez-Villegas J, Navarro-Racines C, Zelaya C, Martinez-Valle A,

364		and Jarvis A. Climate change adaptation of coffee production in space and time.
365		Climatic Change. 2017;141:47-62.
366	[14]	Lashermes P, Combes MC, Robert J, Trouslot P, D'Hont A, Anthony F, and
367		Charrier A. Molecular characterisation and origin of the Coffea arabica L.
368		genome. Molecular and General Genetics. 1999;261:259-266.
369	[15]	Ashihara H, Mizuno K, Yokota T, and Crozier A. Xanthine Alkaloids:
370		Occurrence, Biosynthesis, and Function in Plants. "Progress in the Chemistry of
371		Organic Natural Products, Vol 105," eds. Kinghorn AD, Falk H, Gibbons S, and
372		Kobayashi J, pp. 1-88 (2017).
373	[16]	Kim YS, and Sano H. Pathogen resistance of transgenic tobacco plants
374		producing caffeine. Phytochemistry. 2008;69:882-888.
375	[17]	Kim YS, Choi YE, and Sano H. Plant vaccination: Stimulation of defense
376		system by caffeine production in planta. Plant Signaling & Behavior.
377		2010;5:489-493.
378	[18]	Sano H, Kim YS, and Choi YE. Like Cures Like: Caffeine Immunizes Plants
379		Against Biotic Stresses. "New Light on Alkaloid Biosynthesis and Future
380		Prospects," ed. GiglioliGuivarch N, pp. 273-300 (2013).
381	[19]	Baumann TW, and Gabriel H. Metabolism and excretion of caffeine during
382		germination of Coffea arabica L. Plant and Cell Physiology. 1984;25:1431-1436.
383	[20]	Sugiyama A, Sano CM, Yazaki K, and Sano H. Caffeine fostering of
384		mycoparasitic fungi against phytopathogens. Plant Signaling & Behavior.
385		2016;11(1):e1113362.
386	[21]	Larsen B, Xu DY, Halkier BA, and Nour-Eldin HH. Advances in methods for
387		identification and characterization of plant transporter function. J Experimental
388		Botany. 2017;68:4045-4056.
389	[22]	Shitan N. Secondary metabolites in plants: transport and self-tolerance
390		mechanisms. Bioscience Biotechnology and Biochemistry. 2016;80:1283-1293.
391	[23]	Girke C, Daumann M, Niopek-Witz S, and Mohlmann T. Nucleobase and
392		nucleoside transport and integration into plant metabolism. Frontiers in Plant
393		Science. 2014;5:443.
394	[24]	Mondego JMC, Vidal RO, Carazzolle MF, Tokuda EK, Parizzi LP, Costa GGL,
395		Pereira LFP, Andrade AC, Colombo CA, Vieira LGE, Pereira GAG, and
396		Brazilian Coffee Genome Project C. An EST-based analysis identifies new
397		genes and reveals distinctive gene expression features of Coffea arabica and
398		Coffea canephora. Bmc Plant Biology. 2011;11:30.
399	[25]	Kumar S, Stecher G, and Tamura K. MEGA7: Molecular Evolutionary Genetics

400	Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution.
401	2016;33:1870-1874.
402	
403	
404	