1	Pathotyping of Escherichia coli isolated from community toilet wastewater and stored
2	drinking water in a slum in Bangladesh
3	Hidenori Harada ^{a,*} , Yuji Fujimori ^a , Ryota Gomi ^b , Md. Nazmul Ahsan ^c , Shigeo Fujii ^a , Akira
4	Sakai ^d , Tomonari Matsuda ^e
5	^a Graduate School of Global Environmental Studies, Kyoto University, Yoshida-honmachi,
6	Sakyo-ku 606-8501, Kyoto, Japan
7	^b Department of Environmental Engineering, Graduate School of Engineering, Kyoto University,
8	Katsura, Nishikyo-ku 615-8540, Kyoto, Japan
9	^c Life Science School, Khulna University, Gallamari, Khulna 9208, Bangladesh
10	^d University of Marketing and Distribution Sciences, 3-1 Gakuen-Nishimachi, Nishi-ku, Kobe
11	651-2188, Japan
12	^e Research Center for Environmental Quality Management, Kyoto University, 1-2 Yumihama,
13	Otsu 520-0811, Shiga, Japan
14	* Corresponding author:

15 Hidenori Harada, Graduate School of Global Environmental Studies, Kyoto University,

16 Yoshida-honmachi, Sakyo-ku 606-8501, Kyoto, Japan

17 Tel: +81-75-753-5169; Fax: +81-75-753-3335; E-mail: harada.hidenori.8v@kyoto-u.ac.jp

18

19 **RUNNING HEADLINE:** *E. coli* pathotyping in a slum

20

21 SIGNIFICANCE AND IMPACT OF STUDY

22 Sanitary wastewater from an urban slum was heavily contaminated with pathogenic Escherichia 23 coli. It is worth noting a great health risk of accidental exposure to pathogenically contaminated 24 wastewater improperly discharged in and around urban slums. The distinct difference in 25 pathotypes between wastewater and drinking water and the significantly smaller positive 26 proportion of the human-specific E. coli genetic biomarker (H8) in drinking water indicate that 27 drinking water contamination could be derived from not only human but also other sources. This 28 highlights that pathotyping in association with the H8 marker provides an indication of pathogen 29 contamination sources of environmental transmission media.

30

31 ABSTRACT

32 This study investigated the occurrence of *Escherichia coli* pathotypes in sanitary wastewater and

33	drinking water in a Bangladeshi urban slum and the potential associations between these sources.
34	We examined 621 E. coli isolates from sanitary wastewater and stored drinking water by
35	multiplex PCR and dual index sequencing, classifying them into eight pathotypes based on 14
36	virulence genes and additionally evaluating the possession of the human-specific E. coli genetic
37	biomarker H8. The proportions of pathogenic E. coli were significantly different ($P < 0.001$)
38	between wastewater (18.6%) and drinking water (1.7%). StIb-positive enterotoxigenic E. coli
39	(ETEC) were predominant in wastewater, indicating that people in the site carried ETEC. In
40	contrast, no ETEC was present in drinking water and the proportion of H8-positive isolates was
41	significantly smaller (7.8%) than that in wastewater (16.3%) ($P = 0.001$). Our findings indicate
42	that sanitary wastewater from the slum was heavily contaminated with pathogenic E. coli, posing
43	a great health risk. Furthermore, E. coli contamination of drinking water could be derived from
44	not only human but also other sources.

KEYWORDS: *E.coli* pathotype; multiplex PCR; urban slum; microbial source tracking;
47 biomarker; environmental transmission; Bangladesh

49 **INTRODUCTION**

50 Diarrhea is a leading health burden in developing countries and is responsible for an estimated 51 1.87 million deaths annually among children aged under five years, accounting for 52 approximately 19% of total child deaths (Boschi-Pinto 2008). Although most Escherichia coli 53 strains are commensal, certain strains are pathogenic. O'Ryan et al. (2005) reported that 54 intestinal pathogenic/diarrheagenic E. coli (InPEC/DEC) accounts for 30-40% of acute diarrhea 55 cases in developing countries. Owing to its widespread association with human disease, various 56 studies have focused on pathogenic E. coli detection from stool samples of diarrhea patients in 57 urban slums (Aminul et al., 2007; Kyobutungi et al., 2008; Mondal et al., 2012). 58 However, limited studies exist on the various *E. coli* pathotypes and their occurrence in the 59 living environment of urban slums, where human excreta are typically not disposed of 60 appropriately and drinking water is also typically contaminated (UNWWAP, 2017). Thus, 61 understanding the occurrence of pathogenic E. coli in sanitary wastewater and drinking water 62 and comparing the pathotypes between these sources will improve the current knowledge of the 63 role of environmental transmission media to humans and will provide crucial information on

64 pathogenic *E. coli* discharge to the environment.

A previous study classified *E. coli* strains into the eight pathotypes—enterohemorrhagic *E. coli* (EHEC), enteropathogenic *E. coli* (EPEC), Shiga toxin (Stx)-producing but

67	non-enterohemorrhagic E. coli (STEC), enteroinvasive E. coli (EIEC), enteroaggregative E. coli
68	(EAEC), enterotoxigenic E. coli (ETEC), diffusely adherent E. coli (DAEC), and extra-intestinal
69	pathogenic E. coli (ExPEC)—based on the presence of 14 virulence genes: stx1, stx2, eaeA, ipaH,
70	aggR, StIb, LtI, daaE, afa/dra, kpsMT II, iutA, papA, papC, and sfa/foc (Gomi et al., 2015).
71	Using this approach, we analyzed the pathotypes of E. coli strains isolated from sanitary
72	wastewater and drinking water in a slum of Khulna city, Bangladesh. In addition, we used a
73	microbial source-tracking technique with the H8 human-specific E. coli genetic biomarker
74	(Gomi et al., 2014; Warish et al., 2015) to gain a better understanding of the potential sources of
75	the pathogenic E. coli.
76	
77	RESULTS AND DISCUSSION
78	E. coli detection from water sources
79	Two types of daily water sources were analyzed for E. coli concentration. E. coli was not
80	detected in samples from deep tube well water used for drinking (0/4). However, 17/18 (94.4%)
81	samples of stored drinking water that were originally collected from the deep tube wells tested
82	positive for <i>E. coli</i> (median = 6 cfu 100ml ⁻¹ , max=100 cfu 100ml ⁻¹). These results suggest that
83	the stored drinking water was contaminated during storage.

85 Assay performance

86 The presence of 14 virulence genes was examined in the 621 E. coli isolates through multiplex 87 PCR and dual-index sequencing. Each isolate was then classified into one of the eight 88 aforementioned pathotypes according to the associated target genes for each pathotype (Table 1). 89 Numbers of sequence reads mapped against the target genes are summarized in Supporting 90 Information Table S1. All target genes of positive control strains were appropriately detected. 91 Additionally, we examined the presence of the H8 marker in 264 E. coli isolates 92 obtained from wastewater samples from a community toilet. Among them, 43 (16.3%) tested 93 positive, which was relatively low considering that H8 host sensitivity was previously found to 94 be 30% and 45% in sanitary wastewater samples from Japan (Gomi et al., 2015) and Australia 95 (Warish et al., 2015), respectively. Although we cannot exclude the possibility of accidental 96 inclusion of the small animals' excreta (e.g. mice) into the community toilet, the toilet was 97 basically closed and majority of excreta should be derived from human. This relatively low 98 positive proportion may be attributable to differences in human distal gut microbiota between 99 Bangladesh and other countries.

100

101 Pathotypes of *E. coli* isolates from sanitary wastewater

102 Tables 2 and 3 summarize the presence of virulence genes in and pathotypes of the 621 E. coli

103	isolates. Among the wastewater isolates, pathogenic E. coli accounted for 18.6% (95%
104	confidence interval (CI): 14.2-23.9). This proportion was significantly higher than that in a
105	previous study on river water in Japan using the same analytical method (13.1%, Gomi et al.
106	(2015)) ($P = 0.046$). Out of 264 wastewater isolates, 62 (23.5%) possessed at least one of
107	virulence genes. These result indicated that sanitary wastewater from the slum was heavily
108	contaminated with pathogenic E. coli. Furthermore, these findings highlight that in places where
109	a large amount of sanitary wastewater is discharged without proper treatment, a great health risk
110	exists.
111	Stlb was the most frequently detected (16.3%; 95% CI: 12.2-21.4) and its prevalence
112	was significantly greater than that of other virulence genes ($p < 0.001$). Accordingly,
113	Stlb-positive ETEC was the dominant pathotype (16.3%; 95% CI: 12.2-21.4). ETEC was
114	defined by the presence of heat-stable enterotoxin (StIb) and/or heat-labile enterotoxin (LtI). In
115	the present study, all ETEC strains were StIb-positive (Table 2 and 3). StIb-positive ETEC strains
116	are commonly associated with symptomatic cases of diarrhea, whereas Ltl-only ETEC strains are
117	not (Croxen, 2013). Because the community toilet was shared among approximately 30% of the
118	total households, <i>StIb</i> -positive ETEC was probably carried by a significant population in the site,
119	underscoring the need for increased attention to the prevalence of this pathotype.
120	ETEC is a major E. coli pathotype causing diarrhea in developing countries and has

121	been isolated from both symptomatic and asymptomatic carriers (Wennerås and Erling, 2004;
122	Croxen, 2013). A review study reported ETEC isolates in 2-36% of specimens from diarrhea
123	patients among 19 studies in low- and medium-income countries (Gupta et al., 2008). Two
124	studies of urban slums in Dhaka, Bangladesh detected ETEC in 17% of specimens from children
125	with symptomatic diarrhea (Mondal et al., 2012) and in 8% and 3% from symptomatic and
126	asymptomatic children, respectively (Stanton et al., 1989). Similar to these previous studies
127	using human specimens, the present study using sanitary wastewater from a community toilet
128	also reported high prevalence of ETEC in sanitary wastewater, indicating that a number of
129	people in the community carry ETEC.
130	Two isolates possessed Stx genes ($stx1$ or $stx2$), which are associated with EHEC or
131	STEC. Owing to the absence of <i>eaeA</i> , which is associated with bacterial attachment, these two
132	isolates were determined as STEC (refer to Table 1). In developing countries, $stx1$ and $stx2$ are
133	rarely isolated from diarrhea patients (World Health Organization, 1999). For example, studies in
134	India (Khan et al., 2002) and Bangladesh (Islam, 2007) reported that <i>stx1</i> and <i>stx2</i> were present
135	in 0.8% and 2.2% of diarrhea patients, respectively. Although the present study detected Stx
136	genes in isolates from sanitary wastewater from a community toilet, similarly to diarrhea patient
137	specimens, these genes were rare in sanitary wastewater from the urban slum.
138	Some ExPEC-associated genes, such as <i>knsMT II</i> and <i>jutA</i> , were detected at relatively

139	high frequencies among the wastewater isolates. At least one ExPEC-associated gene was
140	detected in 8.3% of isolates from sanitary wastewater samples; however, only two isolates
141	(0.8%) were determined to be ExPEC on the basis of the required detection of two or more
142	ExPEC-associated genes (refer to Table 1). Furthermore, although EAEC is recognized as a
143	major cause of persistent diarrhea in developing countries, only two isolates were classified as
144	such (0.8%).
145	
146	Pathotypes of E. coli isolates from stored drinking water
147	Of 357 isolates from stored drinking water, six (1.7%; 95% CI: 0.7–3.8) were pathogenic. EPEC
148	accounted for the largest proportion (1.1%; 95% CI: 0.4-3.0), followed by ExPEC (0.3%; 95%
149	CI: 0.0–1.8) and EIEC (0.3%; 95% CI: 0.0–1.8); however, the pathogenic proportions of the last
150	two pathotypes were not significant. As the stored drinking water in the present study was
151	consumed without any further treatment, this finding is indicative of a high infection risk,
152	especially caused by EPEC.
153	In contrast, no isolates from sanitary wastewater were identified as EPEC, although
154	people in the community were ingesting water contaminated with EPEC. Because of the lack of a
155	clear association between the wastewater and drinking water samples, no unambiguous
156	explanation could be obtained for this inconsistency. It was not confirmed whether the

157 households using water contaminated by pathogenic *E. coli* used the community toilet on the 158 sampling date or not; they possibly use another community toilet in the site or any toilet outside 159 the community.

160

161 Comparison of *E. coli* pathotypes and H8-positive proportion

162 The occurrence of some virulence genes was significantly different between isolates from

163 wastewater and those from drinking water: *StIb* (p < 0.001), *LtI* (p = 0.001), *kpsMT II* (p < 0.001),

and *iutA* (p < 0.001) (Table 2). Pathogenic *E. coli* ratios were also significantly different between

- 165 the two sample types (p < 0.001). These differences primarily stem from differences among E.
- 166 *coli* pathotypes in different transmission media, even in a small community.

Notably, although ETEC constituted 16.3% (CI = 12.2 - 21.4) of the isolates from sanitary wastewater, it was not detected among any of 357 isolates from the 18 stored drinking water samples. Although die-off rates of *E. coli* are possibly different in strains and under storage conditions (Michael et al., 2011; Van Elsas et al., 2011), the absence of ETEC in drinking water imply that a source other than sanitary wastewater is the major contamination pathway for the stored drinking water.

173 This implication is supported by the results of microbial source tracking shown in Table
174 4. Although the proportion of *E. coli* isolates positive for the H8 marker among pathogenic *E.*

175	coli was not significantly different between drinking water and wastewater due to the limited
176	sample size, that proportion among all E. coli, including pathogenic and non-pathogenic ones,
177	was significantly smaller for the stored water (7.8%) than for the wastewater (16.3%) ($P = 0.001$).
178	This result suggests that together with humans, other E. coli sources significantly contributed to
179	the contamination of the stored drinking water. Regarding potential sources of drinking water
180	contamination, goats and ducks were notably widespread in the community. Harris et al. (2016)
181	reported the significant contribution of ruminants to the fecal contamination of urban household
182	environments in Dhaka. Thus, animals living in this community may be a source of the E. coli
183	contamination in drinking water.
184	Furthermore, although stored water was sampled from a limited number of households
184 185	Furthermore, although stored water was sampled from a limited number of households $(n = 18)$, the present results suggest that the drinking water was probably not a major exposure
184 185 186	Furthermore, although stored water was sampled from a limited number of households $(n = 18)$, the present results suggest that the drinking water was probably not a major exposure route of ETEC, which was likely carried by a significant fraction of the population. It is widely
184 185 186 187	Furthermore, although stored water was sampled from a limited number of households $(n = 18)$, the present results suggest that the drinking water was probably not a major exposure route of ETEC, which was likely carried by a significant fraction of the population. It is widely recognized that ETEC exposure is typically from contaminated food and drinking water (Croxen
184 185 186 187 188	Furthermore, although stored water was sampled from a limited number of households (<i>n</i> = 18), the present results suggest that the drinking water was probably not a major exposure route of ETEC, which was likely carried by a significant fraction of the population. It is widely recognized that ETEC exposure is typically from contaminated food and drinking water (Croxen et al., 2013). Considering the absence of ETEC from all 18 stored drinking water samples,
184 185 186 187 188 188	Furthermore, although stored water was sampled from a limited number of households (<i>n</i> = 18), the present results suggest that the drinking water was probably not a major exposure route of ETEC, which was likely carried by a significant fraction of the population. It is widely recognized that ETEC exposure is typically from contaminated food and drinking water (Croxen et al., 2013). Considering the absence of ETEC from all 18 stored drinking water samples, ingestion of contaminated food is suspected to be a major route of ETEC exposure. In addition,
184 185 186 187 188 189 190	Furthermore, although stored water was sampled from a limited number of households (<i>n</i> = 18), the present results suggest that the drinking water was probably not a major exposure route of ETEC, which was likely carried by a significant fraction of the population. It is widely recognized that ETEC exposure is typically from contaminated food and drinking water (Croxen et al., 2013). Considering the absence of ETEC from all 18 stored drinking water samples, ingestion of contaminated food is suspected to be a major route of ETEC exposure. In addition, high ETEC prevalence has been observed in surface water samples from rural and urban areas of
184 185 186 187 188 189 190 191	Furthermore, although stored water was sampled from a limited number of households (<i>n</i> = 18), the present results suggest that the drinking water was probably not a major exposure route of ETEC, which was likely carried by a significant fraction of the population. It is widely recognized that ETEC exposure is typically from contaminated food and drinking water (Croxen et al., 2013). Considering the absence of ETEC from all 18 stored drinking water samples, ingestion of contaminated food is suspected to be a major route of ETEC exposure. In addition, high ETEC prevalence has been observed in surface water samples from rural and urban areas of Bangladesh (Begum, 2005). Because there were two heavily contaminated ponds located at 220

193 accidental ingestion of contaminated surface water is a possible route of ETEC exposure.

194	Thus, the present study successfully characterized and compared pathotypes of E. coli
195	isolates obtained from sanitary wastewater and stored drinking water and provided an indication
196	of the sources of drinking water contamination. Our findings provide essential insights into the
197	occurrence of pathogenic E. coli in the living environment of a slum. It was found that the
198	sanitary wastewater was heavily contaminated by pathogenic E. coli, especially ETEC,
199	highlighting the great health risk due to improper wastewater management in slums, where a
200	large fraction of the population carries pathogenic E. coli. We also showed that E. coli
201	pathotyping enables the identification of pathotypes to be prioritized in an area, thereby
202	facilitating better preparedness/countermeasure for potential infection since vulnerable groups
203	and typical infection pathways are different in pathotypes. Furthermore, our results indicate the
204	potential relevance of pathotype comparison across environmental transmission media for
205	identification of contamination sources and transmission routes in cooperation with a
206	human-specific source tracking biomarker of E. coli. However, sound associations between
207	samples are required to allow clear associations among contamination sources and transmission
208	media; other sources, such as animal excreta, foods, and surface water, should be analyzed in
209	future studies to enable a more holistic understanding of the occurrence and potential sources of
210	various pathogenic E. coli.

212 MATERIALS AND METHODS

213 Study area

214	The study site is located in Khulna city, Bangladesh, which is the country's third most populous
215	city, with approximately 1.5 million people. The current study focused on a small urban slum
216	community called the Camp No. 1 slum in Khalishpur, Khulna (22°51'7.11"N, 89°32'37.15"E), a
217	densely populated area (1.4 ha; 2,500 inhabitants; 460 households; Supporting Information
218	Figure S1). The community uses two community toilets (one in the north part and another in the
219	south part of the community) with 36 toilet pans in total, shared by approximately 350
220	households. Water for drinking and cooking is sourced from deep-tube wells (seven community
221	and five private wells) and is temporarily stored in water pots (Supporting Information Figure
222	S2) in each house before use. Overall, the sanitary conditions were poor in the slum.

223

224 E. coli strain isolation

Approximately 100 ml of sanitary wastewater settled as slurry in the outlet pipe of a community toilet located in the south part of the community was sampled with a ladle on September 3, 4, and 7, 2014. The sampled community toilet served approximately 30% of the population (140 households) in the site. Approximately 2 liters of stored drinking water was sampled from water pots of 18 households during September 1–26, 2014. These sanitary wastewater and stored drinking water samples were used for isolation of *E. coli* for pathotyping. In addition, 1-liter water samples were collected from four community deep tube wells on August 14 and October 21-23, 2014 to investigate the concentration of *E. coli*. All samples were placed on ice in the dark and processed within 6 h.

234 Each of the three sanitary wastewater samples was mixed carefully, and 1 ml of each was 235 used to make a 1,000-fold dilution in PBS. The dilution was streaked onto XM-G agar (Nissui, 236 Tokyo, Japan). After an overnight incubation at 37°C, 264 E. coli colonies with the appropriate 237 color profile were isolated for pathotyping. The 18 stored drinking water samples were collected 238 at the households located in the south part of the community and within distance between 10 m 239 and 80 m from the sampled community toilet. Similarly to sanitary wastewater, the drinking 240 water samples were filtered through 0.45-µm membrane filters and cultured on XM-G agar. After 241 counting of the colonies for determining E. coli concentration, 357 isolates were obtained. E. coli 242 concentrations in the samples of the four deep-tube wells located in the south part of the 243 community were measured through the same procedure.

244

245 **Detection of virulence genes**

246 Virulence genes were detected in each isolate by multiplex PCR and dual index sequencing as

247	described by Gomi et al. (2015). Briefly, multiplex PCR was performed with 14 primer sets to
248	simultaneously amplify and add adapter sequences to the 14 virulence genes (stx1, stx2, eaeA,
249	ipaH, aggR, StIb, LtI, daaE, afa/dra, kpsMT II, iutA, papA, papC, sfa/foc). All PCRs were carried
250	out in a 96-well Hi-Plate for Real Time (Takara, Otsu, Japan) using the Thermal Cycler Dice
251	Real Time System 2 (Takara). The PCR products were diluted 100-fold in ultrapure water for use
252	as the template in a subsequent PCR to add P5 and P7 amplification primer sequences with dual
253	indices (Index1 and Index2) to the adapters. After the second PCR, 2 μ l of each PCR product
254	was pooled in a single tube. After electrophoresis of the mixture (15 μ l), agarose slices
255	containing the target DNA fragments (250-1000 bp) were excised using a sterile razor blade and
256	purified with Quantum Prep Freeze 'N Squeeze DNA Gel Extraction Spin Columns (Bio-Rad,
257	Hercules, CA, USA) and AMPure XP beads (Beckman Coulter, Brea, CA, USA). The purified
258	product was sequenced on the MiSeq platform (Illumina, San Diego, CA, USA) for 500 cycles
259	and the generated reads were analyzed with the CLC Genomics Workbench (CLC Bio, Aarhus,
260	Denmark). Reads were initially sorted for each sample based on the Index1 and Index2
261	sequences and trimmed to remove short or low-quality reads. Trimmed reads were mapped
262	against reference sequences of the 14 virulence genes. The average number of mapped reads
263	(ANMR) was determined for each gene using the data from positive controls. The number of
264	mapped reads was determined for each sample. As some sequence reads were incorrectly

265 mapped to genes not harbored by control strains, a read count >ANMR/10 was determined to be
266 positive for the target gene (Gomi et al. 2015). *E. coli* pathotypes were defined as shown in
267 Table 1.

268

269 H8 marker analysis

270	Real-time PCR assays were performed on each isolate to detect the human-specific E. coli
271	marker H8 (Gomi et al. 2014). The PCR mixture (15 μ l) comprised 7.5 μ l of 2× QuantiFast
272	SYBR Green PCR MasterMix (Qiagen, Hilden, Germany), 0.3 µl each of forward
273	(5'-ACAGTCAGCGAGATTCTTC-3') and reverse (5'-GAACGTCAGCACCACCAA-3')
274	primers (50 μ mol l ⁻¹), and 6.9 μ l of cell suspension. The reactions were initiated by incubation at
275	95°C for 5 min, followed by 40 cycles of 95°C for 10 s and 60°C for 30 s. Melting curve analysis
276	following PCR amplification was conducted to confirm the correct real-time PCR products.
277	

278 Statistical analysis

The 95% CI of the proportions of virulence genes and pathotypes and H8-positive isolates were calculated using the one-sample proportions test. Differences in proportions of virulence genes, pathotypes, and H8-positive isolates among sample types. P < 0.05 was determined as statistically significant.

284	ACKNOWLEDGEMENTS
-----	-------------------------

- 285 This study was supported by grants from the Japan Society for the Promotion of Science
- 286 KAKENHI (No. JP16H04436 and No. JP16H02748), funds from the River Foundation of Japan,
- and funds from the Research Institute for Humanity and Nature (No.14200107).

288

289 CONFLICT OF INTEREST

- 290 No conflict of interest declared.
- 291

292 **REFERENCES**

- 293 Aminul, I.M., Heuvelink, A.E., de Boer, E., Sturm, P.D., Beumer, R.R., Zwietering, M.H.,
- 294 Talukder, K.A. (2007). Shiga toxin-producing Escherichia coli isolated from patients with
- diarrhoea in Bangladesh. *J Med Microbiol* **56**, 380-385.
- 296 Begum, Y.A., Talukder, K.A., Nair, G.B., Qadri, F., Sack, R.B., Svennerholm, A.M. (2005).
- 297 Enterotoxigenic Escherichia coli isolated from surface water in urban and rural areas of
- Bangladesh. J Clin Microbiol 43, 3582-3583.
- Boschi-Pinto, C. (2008). Estimating child mortality due to diarrhoea in developing countries.

- 300 Bull World Health Organ 86, 710-717.
- 301 Croxen, M.A., Law, R.J., Scholz, R., Keeney, K.M., Wlodarska, M., Finlay, B.B. (2013). Recent
- 302 advances in understanding enteric pathogenic *Escherichia coli*. *Clin Microbiol Rev* **26**, 822-880.
- 303 Gomi, R., Matsuda, T., Fujimori, Y., Harada, H., Matsui, Y., Yoneda, M. (2015). Characterization
- 304 of pathogenic Escherichia coli in river water by simultaneous detection and sequencing of 14
- 305 virulence genes. *Environ Sci Technol* **49**, 6800-6807.
- 306 Gomi, R., Matsuda, T., Matsui, Y., Yoneda, M. (2014). Fecal source tracking in water by
- 307 next-generation sequencing technologies using host-specific *Escherichia coli* genetic markers.
 308 *Environ Sci Technol* 48, 9616-9623.
- 309 Gupta, S.K., Kech, J., Ram, P.K., Crump, J.A., Miller, M.A., Mintz, E.D. (2008). Part III.
- 310 Analysis of data gaps pertaining to enterotoxigenic *Escherichia coli* in low and medium human
- development index countries, 1984-2005. *Epidemiol Infect* **136**, 721-738.
- 312 Harris, A., Pickering, A.J., Harris, M., Doza, S., Islam, M.S., Unicomb, L., et al. (2016).
- 313 Ruminants contribute fecal contamination to the urban household environment in Dhaka,
- 314 Bangladesh. *Environ Sci Technol* **50**, 4642-4649.
- 315 Islam, M.A., Heuvelink, A.E., de Boer, E., Sturm, P.D., Beumer, R.R., Zwietering, M.H., et al.

- 316 (2007). Shiga toxin-producing *Escherichia coli* isolated from patients with diarrhoea in
 317 Bangladesh. *J Med Microbiol* 56, 380-385.
- Jenkins, M. B., Fisher, D. S., Endale, D. M., & Adams, P. (2011). Comparative die-off of
 escherichia coli 0157:H7 and fecal indicator bacteria in pond water. *Environ Sci Technol* 45,
 1853–1858.
- 321 Khan, A., Yamasaki, S., Sato, T., Ramamurthy, T., Pal, A., Datta, S., et al. (2002). Prevalence and
- 322 genetic profiling of virulence determinants of non-O157 Shiga toxin-producing Escherichia coli
- 323 isolated from cattle, beef, and humans, Calcutta, India. *Emerg Infect Dis* 8, 54-62.
- 324 Kyobutungi, C., Ziraba, A.K., Ezeh, A., Yé, Y. (2008). The burden of disease profile of residents
- 325 of Nairobi's slums: results from a demographic surveillance system. *Popul Health Metr* **6**, 1.
- 326 Mondal, D., Minak, J., Alam, M., Liu, Y., Dai, J., Korpe, P., et al. (2012). Contribution of enteric
- 327 infection, altered intestinal barrier function, and maternal malnutrition to infant malnutrition in
- 328 Bangladesh. Clin Infect Dis 54, 185-192.
- 329 O'Ryan, M., Prado, V., Pickering, L.K. (2005). A millennium update on pediatric diarrheal illness
- in the developing world. Semin. *Pediatr Infect Dis* **16**, 125-136.
- 331 Stanton, B., Silimperi, D.R., Khatun, K., Kay, B., Ahmed, S., Khatun, J., et al. (1989). Parasitic,

- bacterial and viral pathogens isolated from diarrhoeal and routine stool specimens of urban
 Bangladeshi children. *J Trop Med Hyg* 92, 46-55.
- United Nations World Water Assessment Program (UNWWAP). (2017). Wastewater: The
 Untapped Resources, The United Nations World Water Development Report, UNWWAP.
 Colombella (Italy).
- 337 Van Elsas, J. D., Semenov, A. V., Costa, R., & Trevors, J. T. (2011). Survival of Escherichia coli
- in the environment: Fundamental and public health aspects. *ISME J* **5**(2), 173–183.
- 339 Warish, A., Triplett, C., Gomi, R., Gyawali, P., Hodgers, L., Toze, S. (2015). Assessment of
- 340 genetic markers for tracking the sources of human wastewater associated *Escherichia coli* in
- 341 environmental waters. *Environ Sci Technol* **49**, 9341-9346.
- 342 Wennerås, C., Erling, V. (2004). Prevalence of enterotoxigenic Escherichia coli-associated
- 343 diarrhoea and carrier state in the developing world. *J Health Popul Nutr* **22**, 370-382.
- World Health Organization (1999). New frontiers in the development of vaccines against enterotoxinogenic (ETEC) and enterohaemorrhagic (EHEC) *E. coli* infections: Part II. *Wkly Epidemiol Rec* **74**, 105-110.
- 347

348 SUPPORTING INFORMATION

350 Table S1. Counts of sequence reads mapped against each target virulence gene and the H8351 marker.

Figure S1 The selected study site. This map was developed on the basis of GIS data from
thematicmapping.org and data from a survey conducted in 2013 by Michiya Kodera, Kyoto
University.
Figure S2 An example of a drinking water storage pot (photo credit: Shotaro Goto). Water pots
are sometimes covered with a dish.

TABLES

Table 1. Target virulence genes and pathotypes

E. coli pathotype	Combinations of target virulence genes to define each pathotype
EHEC	stx1 and/or stx2 and eaeA
EPEC	eaeA without stx1 or stx2
STEC	stx1 or/and stx2
EIEC	ipaH
EAEC	aggR
ETEC	StIb and/or LtI
DAEC	daaE
ExPEC	Two or more of papA and/or papC; afa/dra; kpsMT II; iutA; and sfa/foc

Gene	Sanitary wa	astewater ((n = 264)	Stored drink	ing water	(<i>n</i> = 357)	<i>P</i> -value		
	no.	%	95% CI	no.	%	95% CI	_		
stx1	1	0.4	0.0–2.4	0	0.0	0.0–1.3	n.s.		
stx2	1	0.4	0.0–2.4	0	0.0	0.0–1.3	n.s.		
eaeA	0	0.0	0.0–1.8	4	1.1	0.3–3.0	n.s.		
ipaH	0	0.0	0.0–1.8	1	0.3	0.0–1.8	n.s.		
aggR	2	0.8	0. –3.0	0	0.0	0.0–1.3	n.s.		
StIb	43	16.3	12.2–21.4	0	0.0	0.0–1.3	< 0.001		
LtI	8	3.0	1.4–6.1	0	0.0	0.0–1.3	0.001		
StIb and LtI	8	3.0	1.4–6.1	0	0.0	0.0–1.3	n.s.		
daaE	0	0.0	0.0–1.8	0	0.0	0.0–1.3	n.s.		
afa/dra	0	0.0	0.0–1.8	0	0.0	0.0–1.3	n.s.		
kpsMT II	12	4.5	2.5-8.0	1	0.3	0.0–1.8	< 0.001		
iutA	11	4.2	2.2–7.5	0	0.0	0.0–1.3	< 0.001		
papA	1	0.4	0.0–2.4	0	0.0	0.0–1.3	n.s.		
papC	1	0.4	0.0–2.4	1	0.3	0.0–1.8	n.s.		

Table 2. Occurrence of virulence genes in 621 *E. coli* isolates

sfa/foc	0	0.0	0.0–1.8	1	0.3	0.0–1.8	n.s.

367	Note: The 95% confidence intervals of the proportions of virulence genes were analyzed using
368	the one-sample proportions test. Differences in proportions of virulence genes between sanitary
369	wastewater and stored drinking water were analyzed using the Fisher's exact test for count data.
370	n.s. indicates non-significant differences ($P \ge 0.05$).
371	

Pathotype	Sanitary wa	astewater	(<i>n</i> = 264)	Stored drin	r (<i>n</i> = 357)	<i>P</i> -value		
	no.	%	95% CI	no.	%	95% CI	-	
ETEC	43	16.3	12.2–21.4	0	0.0	0.0–1.3	< 0.001	
EPEC	0	0.0	0.0–1.8	4	1.1	0.4–3.0	n.s.	
ExPEC	2	0.8	0.13-3.01	1	0.3	0.0–1.8	n.s.	
STEC	2	0.8	0.13-3.01	0	0.0	0.0–1.3	n.s.	
EAEC	2	0.8	0.13-3.01	0	0.0	0.0–1.3	n.s.	
EIEC	0	0.0	0.0–1.8	1	0.3	0.0–1.8	n.s.	
DAEC	0	0.0	0.0–1.8	0	0.0	0.0–1.3	n.s.	
EHEC	0	0.0	0.0–1.8	0	0.0	0.0–1.3	n.s.	
Total	49	18.6	14.2–23.9	6	1.7	0.7–3.8	< 0.001	

Note: The 95% confidence intervals of the proportions of pathotypes were analyzed using 1-sample proportions test. Differences in proportions of pathotypes between sanitary wastewater and stored drinking water were analyzed using the Fisher's exact test for count data. n.s. indicates non-significant differences ($P \ge 0.05$).

378

	Sanit	ary wastew	vater		Store				
		Positive		95%		Positive		95%	<i>P</i> -value
	n	no.	%	CI	no.	no.	%	CI	
All E. coli				12.2 –				7.2 –	
	264	43	16.3	21.4	28	28	7.8	15.1	0.001
Pathogenic E.	10 8			7.8 –					
coli	49	8	16.3	30.2	6	0	0.0	40.2	n.s.

Note: The 95% confidence intervals of the proportions of H8-positive isolates were calculated through the one-sample proportions test. Differences in the proportion of H8-positive isolates between sanitary wastewater and stored drinking water were analyzed using the Fisher's exact test for count data. n.s. indicates non-significant differences ($P \ge 0.05$).

Table S1 Counts of sec	juence reads mapped against	each target virulence ge	ene and H8 marker ^{a, b}

									rea	d count								
Sample ID	Date collected	Sample type°	stx1	stx2	eaeA	ipaH	aggR	StIb	LtI	daaE	afa/ dra	kpsMT II	iutA	papA	papC	sfa/ foc	patho- type	H8
1	1-Sep-14	SW	2	0	0	0	0	0	0	0	0	0	0	0	1	0	-	
2	1-Sep-14	SW	1	0	0	0	0	0	0	0	0	0	0	0	2	0	-	
3	1-Sep-14	SW	2	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
4	1-Sep-14	SW	0	1	0	0	0	0	0	0	0	0	0	0	0	0	-	
5	1-Sep-14	SW	2	0	2	0	0	0	1	0	0	2884	0	1	14279	6816	ExPEC	
5	1-Sep-14	SW	2	0	0	0	0	0	0	0	0	0	0	0	4	0	-	
6	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-	
7	1-Sep-14	SW	0	2	0	0	0	0	0	0	0	0	2	0	0	2	-	
8	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
10	1-Sep-14	SW	4	0	0	0	0	0	0	0	0	1	0	0	0	0	-	
11	1-Sep-14	SW	2	1	0	0	0	0	0	0	0	0	0	0	0	0	-	
12	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
13	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	1	0	0	0	-	
14	I-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
15	1-Sep-14	SW	0	2	0	0	0	2	0	0	0	0	0	0	0	0	-	
16	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
17	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	I	0	-	
18	1-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
19	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
20	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	2	0	0	0	-	
21	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
22	1-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
23	1 Sep 14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
24	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	1	0	0	0		
25	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	0	0	0	0	0	_	
20	1-Sep-14	SW	0	0	0	0	0	9	0	0	0	0	1	0	0	0	_	
28	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
20 29	1-Sep-14	SW	0	0	0	ů 0	0	6	0	0	0	0	0	0	0	0	-	
30	1-Sep-14	SW	0	0	0	0	0	8	0	0	0	0	0	0	0	0	-	
31	1-Sep-14	SW	0	0	0	0	0	7	0	0	0	0	0	0	4	0	-	
32	1-Sep-14	SW	0	0	0	0	0	10	0	0	0	3	0	0	2	0	-	
33	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
34	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
35	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
36	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-	
37	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
38	1-Sep-14	SW	0	0	0	2	0	5	0	0	0	0	2	0	0	0	-	
39	1-Sep-14	SW	0	0	0	2	0	2	0	0	0	0	2	0	0	0	-	
40	1-Sep-14	SW	0	0	0	1	0	4	0	0	0	0	0	0	0	0	-	
41	1-Sep-14	SW	0	0	0	4	0	1	0	0	2	0	0	0	0	0	-	
42	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	2	0	0	0	-	
43	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	2	0	4	0	-	
44	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	1	2	0	1	0	-	
45	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
46	1-Sep-14	SW	0	0	0	2	0	2	0	0	0	0	0	0	0	0	-	
47	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	2	0	0	0	-	
48	1-Sep-14	SW	0	0	0	2	0	3	0	0	0	0	0	0	0	0	-	
49	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
50	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
51	1-Sep-14	SW	0	0	0	0	1	0	0	0	0	0	2	0	0	0	-	
52	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
53	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
54	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-	
55	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
56	1-Sep-14	SW	0	0	0	0	0	1	0	0	0	2	0	0	0	0	-	
5/	1-Sep-14	SW	0	0	0	0	0	1	0	0	0	U	0	0	0	0	-	
58	1-Sep-14	3 10	U	0	0	0	0	0	0	U	0	0	0	0	0	0	-	

59	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	
60	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
61	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	1	0	-	
62	1-Sep-14	SW	0	0	2	0	0	0	0	0	0	0	0	0	0	0	-	
63	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
64	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	1	0	-	
65	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	
66	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	2	0	0	0	0	-	
67	1-Sep-14	SW	0	0	0	0	0	17	1	0	0	8	0	0	0	0	-	
68	1-Sep-14	SW	0	0	0	0	0	7	0	0	0	0	0	0	0	0	-	
69	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	2	0	0	0	0	-	
70	1-Sep-14	SW	0	0	0	0	2	0	0	0	0	0	0	0	0	0	-	
71	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-	
72	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
73	1-Sep-14	SW	0	0	0	0	0	11	0	0	0	0	0	0	0	0	-	
74	1-Sep-14	SW	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
75	1-Sep-14	SW	0	0	0	0	0	8	0	0	0	0	0	0	0	0	-	
76	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
77	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
78	1-Sep-14	SW	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
79	1-Sep-14	SW	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
80	1-Sep-14	SW	0	0	0	0	0	20	0	0	0	0	0	0	1	0	-	
81	1-Sep-14	SW	0	0	ů 0	0	0	4	0	0	0	0	0	0	0	0	-	
82	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
83	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	2	0	0	0	0	_	
84	1-Sep-14	SW	0	0	ů 0	0	0	10	0	0	0	0	1	0	0	0	-	
85	1-Sep-14	SW	0	0	ů 0	0	0	4	0	ů 0	0	0	0	0	0	0	_	
86	1-Sep-14	SW	ů 0	0	ů	0	0	2	0	ů 0	0	0	ů 0	0	0	0		
87	1-Sep-14	SW	0	0	0	0	0	3	0	0	0	0	0	0	0	0	_	
88	1-Sep-14	sw	ů 1	6	0	0	0	3	0	0	0	0	0 0	0	4	0		
89	1-Sep-14	sw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	
90	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0		
91	1-Sep-14	SW	0	0	0	0	0	4	1	0	0	0	1	0	0	0		
02	1-Sep-14	SW	0	0	0	0	0	4	1	0	0	0	0	0	0	0	-	
92	1-Sep-14	SW	0	0	0	0	0	4	1	0	0	0	0	0	0	0	-	
95	1-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
94	1-Sep-14	SW	0	0	08	0	0	9	0	0	0	0	0	0	,	0	-	
95	1-Sep-14	SW	0	0	98	0	0	0	0	0	0	0	0	0	0	0	EPEC	
90	1-Sep-14	SW	0	0	2009	0	0	1	0	0	0	0	0	0	0	0	EPEC	
9/	1-Sep-14	SW	0	0	2412	0	0	1	0	0	0	0	0	0	0	0	EPEC	
98	1-Sep-14	SW	0	0	629	0	0	2	0	0	0	0	0	0	0	0	EPEC	
99	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-	
100	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
101	1-Sep-14	SW	387	90	0	0	0	0	0	0	0	0	0	0	0	0	-	
102	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	22	57	0	0	0	-	
103	1-Sep-14	SW	0	0	0	48	0	1	0	0	0	0	0	0	0	0	EIEC	
104	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-	
105	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
106	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
107	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
108	1-Sep-14	SW	0	0	1	0	0	1	0	0	0	0	0	0	0	0	-	+
109	1-Sep-14	SW	1	0	0	0	0	2	0	0	0	0	0	0	0	0	-	+
110	1-Sep-14	SW	0	0	2	0	0	3	0	0	0	0	0	0	0	0	-	+
111	1-Sep-14	SW	0	1	0	0	0	3	0	0	0	0	0	0	0	0	-	
112	1-Sep-14	SW	0	1	0	0	0	2	0	0	0	0	0	0	0	0	-	
113	1-Sep-14	SW	0	144	14	0	0	0	0	0	0	0	0	0	0	0	-	
114	1-Sep-14	SW	0	0	0	0	0	6	0	0	0	29	0	0	254	13	-	
115	1-Sep-14	SW	0	0	0	0	0	336	0	0	0	0	0	0	0	0	-	+
116	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-	+
117	1-Sep-14	SW	0	2	0	0	0	0	0	0	0	0	0	0	0	0	-	
118	1-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
119	1-Sep-14	SW	0	1	0	0	0	1	0	0	0	0	0	0	0	0	-	
120	1-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-	
121	1-Sep-14	SW	0	0	0	0	0	0	2	0	0	0	0	0	0	0	-	

122	14-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-	
123	14-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	6	1	-	
124	14-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
125	14-Sep-14	SW	0	0	0	0	74	1	0	0	0	0	0	0	0	0	-	
126	14-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
127	14-Sep-14	SW	0	0	0	0	0	0	40	0	0	0	0	0	0	0	-	
128	16-Sep-14	SW	0	0	0	0	0	0	2	0	0	0	0	0	2	0	-	
129	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	2	0	0	0	-	
130	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	+
131	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
132	16-Sep-14	SW	0	0	2	0	0	8	2	0	0	0	0	0	0	0	-	
133	16-Sep-14	SW	0	0	0	0	0	4	0	1	0	0	4	0	0	0	-	+
134	16-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	1	0	0	0	-	
135	16-Sep-14	SW	0	0	0	0	0	3	2	0	0	0	0	0	0	0	-	
136	16-Sep-14	SW	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
137	16-Sep-14	SW	0	0	0	0	0	7	0	0	6	0	118	0	0	0	-	
138	16-Sep-14	SW	2	0	0	0	0	3	2	0	0	0	2	0	0	0	-	
139	16-Sep-14	SW	0	0	0	0	0	2	0	14	0	1	0	0	0	0	-	
140	16-Sep-14	SW	0	0	0	0	0	8	0	0	0	2	0	0	0	0	-	
141	16-Sep-14	SW	0	1	0	0	0	3	0	0	0	0	0	0	0	0	-	
142	16-Sep-14	SW	0	0	0	0	0	7	0	0	0	0	0	0	0	0	-	
143	16-Sep-14	SW	ů 0	0	0	ů 0	0	4	ů	0	0	0	ů	ů 0	0	ů 0		
144	16-Sep-14	sw	0	0	0	0	0	5	ů 0	0	0	0	ů 0	0	0	ů 0		+
145	16-Sep-14	sw	0	0	0	0	0	5	ů 0	0	0	1	ů 0	0	0	ů 0		
146	16-Sep-14	SW	0	0	0	0	0	1	ů 0	0	0	0	0	0	0	0		
147	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
148	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
140	16 Sep 14	SW	0	0	0	0	0	2	2	0	0	1	0	0	0	0	-	
149	16 Sep 14	SW	0	0	0	0	0	2	2	0	0	0	0	0	0	0	-	
151	16 Sep 14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	+
151	16 Sop 14	SW	0	0	0	0	0	248	0	0	0	0	0	0	0	0	-	т
152	16-Sep-14	SW	0	0	0	0	0	548	0	0	0	0	0	0	0	0	-	
155	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
154	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
155	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
156	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	
157	16-Sep-14	SW	0	0	1	0	0	3	1	0	0	2	0	0	0	0	-	
158	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
159	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	1	0	-	
160	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
161	16-Sep-14	SW	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	+
162	16-Sep-14	SW	0	0	0	l	0	2	0	0	0	0	1	0	0	0	-	
163	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	+
164	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-	
165	16-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	+
166	16-Sep-14	SW	U	U	0	U	0	0	0	0	0	0	0	0	0	U	-	
167	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
168	16-Sep-14	SW	0	U	0	U	0	0	0	0	0	0	0	0	0	U	-	
169	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	4	0	0	0	0	-	
170	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	2	0	0	0	0	-	
171	16-Sep-14	SW	0	0	0	0	0	4	0	0	0	2	0	0	0	0	-	
172	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
173	16-Sep-14	SW	0	0	0	0	0	6	0	0	0	4	0	0	0	0	-	
174	16-Sep-14	SW	0	0	0	0	0	11	0	0	0	2	0	0	0	0	-	
175	16-Sep-14	SW	0	0	0	0	0	7	0	0	0	6	0	0	0	0	-	
176	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
177	16-Sep-14	SW	0	0	0	0	0	3	0	0	0	4	0	0	0	0	-	+
178	16-Sep-14	SW	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
179	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
180	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
181	16-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	1	0	0	0	-	
182	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
183	16-Sep-14	SW	0	0	0	0	0	4	0	0	0	1	0	0	0	0	-	
184	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	

185	16-Sep-14	SW	1	0	0	0	0	2	1	0	0	0	0	0	0	0	-	
186	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
187	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
188	16-Sep-14	SW	0	0	0	0	0	3	0	0	0	1	0	0	0	0	-	+
189	16-Sep-14	SW	0	1	0	0	0	5	0	0	0	0	0	0	0	0	_	
190	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	
191	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	
102	16 Sep 14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
192	16 Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
193	16-Sep-14	SW	0	0	0	0	6	1	0	0	0	0	2	0	0	0	-	
194	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-	
195	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
196	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
197	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
198	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
199	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
200	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	2	0	0	0	-	+
201	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
202	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	+
203	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	_	
204	16-Sep-14	SW	0	ů 0	ů 0	0	0	-	0	0	0	ů O	2	ů 0	0	0	_	
204	16 Sep 14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	4		+
205	10-3cp-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	7	-	
206	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	2	0	0	0	-	
207	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	0	0	1	0	-	+
208	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-	
209	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	
210	16-Sep-14	SW	0	0	0	0	0	1	1	0	0	0	2	0	0	0	-	
211	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	
212	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	
213	16-Sep-14	SW	0	0	0	0	0	1	2	0	0	0	4	0	0	0	-	
214	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	2	0	0	0	-	
215	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
216	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
217	16-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
218	16-Sep-14	SW	0	0	0	0	0	0	1	0	0	0	0	0	0	0	_	
210	16-Sep-14	SW	0	ů 0	ů 0	0	0	ů 0	0	0	0	ů O	ů 0	ů O	0	0	_	
21)	16 Sap 14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
220	10-3cp-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
221	16-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
222	16-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-	
223	17-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-	
224	17-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
225	17-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
226	17-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
227	17-Sep-14	SW	0	2	0	0	0	0	0	0	0	0	0	0	0	0	-	
228	17-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	1	0	0	0	-	
229	17-Sep-14	SW	0	4	1	0	0	0	0	0	0	0	0	0	0	0	-	
230	17-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
231	17-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
232	17-Sep-14	SW	0	0	1	0	0	1	0	0	0	0	0	0	0	0	-	+
233	17-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
234	17-Sep-14	SW	0	2	0	0	0	3	0	0	0	0	0	0	0	0	-	+
235	17-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	_	
236	17-Sep-14	SW	0	0	0	0	0	0	0	0	0	ů O	0	ů O	0	0	_	
230	26 San 14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	+
237	20-Sep-14	SW	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	Ŧ
230	20-Sep-14	S W	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
239	26-Sep-14	SW	0	0	0	0	U	6	U	0	0	U	3	U	U	U	-	+
240	26-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	2	0	0	0	-	
241	26-Sep-14	SW	0	0	0	1	0	2	1	0	0	0	0	0	0	0	-	
242	26-Sep-14	SW	0	0	0	0	0	4	0	0	0	2	0	0	0	0	-	+
243	26-Sep-14	SW	4	0	0	0	0	2	0	0	0	1	0	0	0	0	-	
244	26-Sep-14	SW	0	1	0	0	0	2	0	0	0	1	1	0	0	0	-	+
245	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
246	26-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	1	0	0	0	-	
247	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	

248	26-Sep-14	SW	4	0	0	0	0	2	0	0	0	0	0	0	0	0	-
249	26-Sep-14	SW	4	0	0	0	0	5	0	0	0	0	0	0	0	0	-
250	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-
251	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-
252	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-
253	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-
254	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	4	0	0	0	0	-
255	26-Sep-14	SW	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-
256	26-Sep-14	SW	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-
257	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
258	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-
259	26-Sep-14	SW	0	0	0	0	0	0	2	0	0	0	0	0	0	0	-
260	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
261	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-
262	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	2	0	0	0	0	-
263	26-Sep-14	SW	0	0	2	0	0	1	0	0	0	0	2	0	0	0	-
264	26-Sep-14	SW	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-
265	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	- +
266	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	5	0	0	0	0	-
267	26-Sep-14	sw	0	0	ů 0	0	0	2	ů 0	0	0	2	0	0	0	0	-
268	26-Sep-14	SW	0	0	0	0	0	5	0	0	0	8	0	0	0	0	-
269	26-Sep-14	sw	0	0	ů 0	0	0	7	ů 0	ů 0	0	2	0	0	ů 0	0	
270	26-Sep-14	sw	0	0	0	0	1	,	0	0	0	0	0	0	0	0	
271	26-Sep-14	sw	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
271	26-Sep-14	sw	0	0	0	0	0	0	0	0	0	4	0	0	0	0	- +
272	26-Sep-14	sw	0	0	0	0	0	3	2	0	0	- 0	0	0	0	0	
273	26-Sep-14	sw	0	0	0	0	0	0	0	0	0	0	2	0	0	0	- +
275	26 Sep 14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	
275	26 Sep 14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-
270	26 Sep 14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
277	20-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
278	20-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
279	20-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	1	0	0	0	-
280	20-Sep-14	SW	0	0	0	0	0	2	1	0	0	0	1	0	0	0	-
281	26-Sep-14	SW	0	0	0	0	0	0	1	0	0	2	0	0	0	0	-
282	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-
283	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	1	0	0	0	- +
284	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
285	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-
286	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
287	26-Sep-14	SW	0	1	0	0	0	2	0	0	0	0	0	0	0	0	-
288	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
289	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-
290	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-
291	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	2	0	0	0	0	-
292	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
293	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
294	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	1	2	0	0	0	-
295	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
296	26-Sep-14	SW	1	0	0	0	0	0	0	0	0	2	0	0	0	0	-
297	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	3	0	0	0	0	-
298	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-
299	26-Sep-14	SW	0	0	0	0	0	0	2	0	0	2	0	0	4	0	-
300	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
301	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	1	2	0	1	0	-
302	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
303	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-
304	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	6	0	0	0	0	-
305	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	2	0	0	0	1	-
306	26-Sep-14	SW	0	0	0	1	0	2	0	0	0	4	0	0	0	0	-
307	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
308	26-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-
309	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-
310	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-

311	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
312	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
313	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
314	26-Sep-14	SW	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-	
315	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
316	26-Sep-14	SW	0	0	0	0	0	0	2	0	0	0	0	0	0	0	-	
317	26-Sep-14	SW	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-	
318	26-Sep-14	SW	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
319	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
320	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
321	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	2	0	0	0	-	
322	26-Sep-14	SW	0	2	0	0	0	0	0	0	0	0	0	0	0	0	-	
323	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
324	26-Sep-14	SW	0	0	1	0	1	1	0	0	0	0	0	0	0	0	-	
325	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	
326	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	
327	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
328	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
329	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	0	0	0	0	-	
330	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
331	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
332	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	_	
333	26-Sep-14	SW	0	0	0	0	0	3	1	0	0	0	0	0	ů 0	0		
334	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	2	0	0	ů 0	0	_	
335	26-Sep-14	SW	0	0	0	0	0	2	0	0	0	0	0	0	ů 0	0		
336	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	1	0	0	0	0		
337	26-Sep-14	SW	0	0	0	0	0	3	1	0	0	2	0	0	0	0		
228	26 Sep 14	SW	1	0	0	0	0	5	0	0	0	0	0	0	0	0	_	
220	26 Sep 14	SW	0	0	0	0	0	3	0	0	0	2	0	0	0	0	-	
340	26 Sep 14	SW	0	0	0	0	0	0	0	0	0	2	0	0	0	1	-	
241	26 Sop 14	SW	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
242	20-Sep-14	SW	0	0	0	0	0	0	0	0	0	4	2	0	0	0	-	
342	20-Sep-14	SW	0	0	0	0	0	0	0	0	0	4	2	0	0	0	-	
243	20-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
344	26-Sep-14	SW	1	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
345	26-Sep-14	SW	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
346	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
347	26-Sep-14	SW	0	0	0	0	0	3	1	0	0	0	0	0	0	0	-	
348	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
349	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
350	26-Sep-14	SW	0	2	0	0	0	0	0	0	0	1	0	0	0	0	-	
351	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	
352	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
353	26-Sep-14	SW	0	0	0	0	0	0	2	0	0	0	0	0	0	0	-	
354	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
355	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
356	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	4	0	1	0	-	
357	26-Sep-14	SW	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
358	3-Sep-14	EX	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
359	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-	
360	3-Sep-14	EX	0	0	0	0	0	2	2	0	0	0	0	0	0	0	-	
361	3-Sep-14	EX	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	+
362	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
363	3-Sep-14	EX	0	1	2	0	0	0	0	0	0	2	0	0	0	0	-	+
364	3-Sep-14	EX	2	0	0	0	0	14396	992	0	0	0	0	0	0	0	ETEC	
365	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
366	3-Sep-14	EX	0	0	2	1	0	3	0	0	0	0	0	0	0	0	-	
367	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	1	0	0	0	-	
368	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
369	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
370	3-Sep-14	EX	0	0	0	0	0	1061	0	0	0	2	0	0	0	0	ETEC	
371	3-Sep-14	EX	0	0	0	0	0	3	0	0	0	2	0	0	0	0	-	
372	3-Sep-14	EX	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-	
373	3-Sep-14	EX	0	0	0	0	0	4	0	0	0	22	0	0	0	0	-	

374	3-Sep-14	EX	0	0	0	0	0	9	0	0	0	8	0	0	0	0	-	
375	3-Sep-14	EX	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
376	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	1	0	0	0	0	-	
377	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
378	3-Sep-14	EX	0	0	0	0	0	6	0	0	0	3	1	0	0	0	-	
379	3-Sep-14	EX	0	0	0	0	0	9533	3	0	0	0	0	0	0	0	ETEC	
380	3-Sep-14	EX	0	0	0	0	0	12	0	0	0	0	0	0	0	0		
281	3 Sep 14	EY	0	Ň	Ô	0	Ő	21102	0	0	ů	0	0	0	ů	Õ	ETEC	+
202	2 Sop 14	EX	0	0	0	0	0	51105	0	0	0	0	2	0	0	0	LIEC	+
202	3-Sep-14	EA	0	0	0	0	0	5	0	0	0	0	2	0	0	0	-	т ,
204	3-Sep-14	EA	0	0	0	0	0	1	0	0	0	2002	22.46	0	0	0	-	Ŧ
384	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	2093	2346	0	0	0	EXPEC	
385	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	+
386	3-Sep-14	EX	0	0	0	0	0	4	2	0	0	0	1	0	2	0	-	
387	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-	
388	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	
389	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	1112	0	0	0	-	+
390	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	0	0	1	0	-	+
391	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
392	3-Sep-14	EX	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-	
393	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	2	0	0	0	-	
394	3-Sep-14	EX	0	0	0	0	0	8	4	0	0	0	2	0	0	0	-	
395	3-Sep-14	EX	0	0	0	0	1	46213	11790	0	0	1	0	0	0	0	ETEC	
396	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	1	0	0	0	-	
397	3-Sep-14	EX	0	0	0	0	0	5	3	0	0	0	2	0	0	0	-	
398	3-Sep-14	EX	0	0	0	0	0	2870	0	0	0	1	3	0	0	0	ETEC	
399	3-Sep-14	FX	0	ů 0	0	0	ů 0	4	0	0	ů	0	0	0	ů	0 0		
400	3-Sep-14	EX	0	2	0	0	0	11	0	0	ů 0	1	5675	0	ů 0	0	_	
401	2 Sop 14	EV	0	2	0	0	0	11	0	0	0	0	3202	0	0	0	-	
401	3-Sep-14	EA	0	0	0	1	0	11	2	0	0	0	3202	0	0	0	-	
402	3-Sep-14	EA	0	0	0	1	0	15	2	1	0	0	1	0	0	0	-	
403	5-Sep-14	EA	0	0	0	0	0	17	9	1	0	1	8	0	0	0	-	
404	3-Sep-14	EX	0	0	0	0	0	8	0	0	0	90	0	0	0	0	-	
405	3-Sep-14	EX	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
406	3-Sep-14	EX	0	0	0	0	0	26362	5	0	0	0	0	0	1	1	ETEC	+
407	3-Sep-14	EX	0	0	0	0	0	229	2	0	0	0	0	0	0	0	-	
408	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	38	8	0	0	0	-	
409	3-Sep-14	EX	0	0	0	0	0	31	0	0	0	0	1	0	0	0	-	
410	3-Sep-14	EX	0	0	0	0	0	17	0	0	0	0	0	0	0	0	-	+
411	3-Sep-14	EX	0	0	0	0	0	3	0	0	0	0	0	0	0	0	-	
412	3-Sep-14	EX	0	0	0	0	0	17	0	0	0	0	0	0	0	0	-	
413	3-Sep-14	EX	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
414	3-Sep-14	EX	0	0	0	0	0	7	0	0	0	0	0	0	0	0	-	
415	3-Sep-14	EX	0	0	0	0	0	36277	6633	0	0	0	0	0	0	0	ETEC	
416	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
417	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	1	0	0	0	-	
418	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	+
419	3-Sep-14	EX	0	0	0	0	0	9	0	0	0	0	0	0	0	0	-	
420	3-Sep-14	EX	0	0	0	0	0	21797	0	0	0	2	2	0	2	0	ETEC	
421	3-Sep-14	EX	0	ů 0	0	0	0 0	1	0	0	ů 0	0	0	0	0	0 0	-	
422	3-Sep-14	EX	0	0	0	0	0	5	0	0	ů 0	37	2	0	ů 0	0	_	
423	3-Sep-14	EX	0	2	0	0	0	0	0	0	0	2	2	0	0	0		
423	3 Sep 14	EX	0	2	0	0	0	2	0	0	0	2	2	0	0	0	-	
424	3-Sep-14	EA	0	0	0	0	0	2	0	0	0	000	0	0	0	0	-	
425	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	906	0	0	0	0	-	
426	3-Sep-14	EA	0	0	U	1	0	0	0	0	0	0	0	U	U	0	-	
427	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	2	463	0	0	0	-	
428	3-Sep-14	EX	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
429	3-Sep-14	EX	0	0	2	0	0	1	0	0	0	0	0	0	0	0	-	
430	3-Sep-14	EX	0	0	0	0	0	2	2	0	0	3	2202	0	0	0	-	
431	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	8	0	0	0	0	-	
432	3-Sep-14	EX	0	0	0	0	0	11	0	0	0	3	0	0	0	0	-	
433	3-Sep-14	EX	0	0	0	0	0	12	1	0	0	5	0	0	0	0	-	
434	3-Sep-14	EX	0	0	0	0	0	32978	5366	0	0	10267	1	0	0	0	ETEC	
435	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	6319	0	0	0	0	-	
436	3-Sep-14	EX	0	0	0	0	0	31445	0	0	0	2	0	0	0	0	ETEC	

437	3-Sep-14	EX	0	0	0	0	0	6	0	0	0	2	0	0	0	0	-	
438	3-Sep-14	EX	0	0	0	0	0	19	2	0	0	2	0	0	0	0	-	
439	3-Sep-14	EX	0	0	0	0	0	27	1	0	0	6	0	0	0	0	-	+
440	3-Sep-14	EX	0	0	0	0	0	10	0	0	0	0	2	0	0	0	-	
441	3-Sep-14	EX	0	0	0	0	0	19402	0	0	0	6	0	0	0	0	ETEC	
442	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
443	3-Sep-14	EX	0	0	0	0	0	10	0	0	0	0	0	0	0	0	-	
444	3-Sep-14	EX	0	0	0	0	0	8	0	0	0	1	0	0	0	0	-	
445	3-Sep-14	EX	0	0	0	0	0	4	2	0	0	0	0	0	0	0	-	
446	3-Sep-14	EX	0	0	0	0	0	10	0	0	0	0	0	0	0	0	-	
447	3-Sep-14	FX	8	0	0	0	ů 0	2	2	0	ů	3	0	ů 0	14	0	_	
448	3-Sep-14	EX	0	0	0	0	ů 0	2	-	0	ů 0	0	0	0 0	0	0	_	
440	3-Sep-14	EX	6	0	0	0	0	0	0	0	0	0	0	0	0	0		+
450	2 Sop 14	EN	0	0	0	2	0	24219	0	0	0	0	0	0	0	0	ETEC	+
450	3-Sep-14	EA	0	0	0	2	0	24318	0	0	0	0	0	0	0	0	EIEC	+
451	3-Sep-14	EX	0	0	0	0	0	18	0	0	0	0	0	0	0	0	-	+
452	3-Sep-14	EX	0	0	0	0	0	6597	384	0	0	0	0	0	0	0	ETEC	
453	3-Sep-14	EX	0	0	0	0	0	18477	0	0	0	0	5	0	0	0	ETEC	+
454	3-Sep-14	EX	0	0	0	0	0	4	0	0	0	0	2	0	0	0	-	
455	3-Sep-14	EX	0	0	0	0	12351	0	0	0	0	1	65	0	0	0	EAEC	
456	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	1	4	0	4	0	-	
457	3-Sep-14	EX	0	0	0	0	0	3	0	0	0	0	6	0	0	0	-	
458	3-Sep-14	EX	0	0	0	0	0	4	0	0	0	2	857	0	0	0	-	
459	3-Sep-14	EX	0	0	0	0	2	0	0	0	0	0	2	0	0	0	-	
460	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	23	0	0	0	-	
461	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	2	0	0	0	-	+
462	3-Sep-14	EX	0	0	0	1	0	3	0	0	0	0	4	0	0	0	-	+
463	3-Sep-14	EX	0	0	0	0	2	0	0	0	0	0	0	0	0	0	-	+
464	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
465	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	19640	0	0	0	-	
466	3-Sep-14	EX	0	0	0	0	1	2	0	0	0	0	2	0	0	0	-	
467	3-Sep-14	EX	0	0	0	0	0	3	1	0	0	2	0	0	0	0	-	
468	3-Sep-14	EX	0	0	0	0	0	1	1	0	0	0	2	0	0	0	-	+
469	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	
470	3-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
471	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	1	0	0	0	-	
472	3-Sep-14	EX	0	0	0	0	0	4	0	0	0	0	5	0	0	0	-	
473	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	16661	0	0	0	_	
474	3-Sep-14	FX	0	0	0	0	ů 0	4	ů 0	0	ů 0	0	2	0 0	1	0	_	
475	3-Sep-14	FX	0	0	0	0	ů 0		ů 0	0	ů 0	0	2	0 0	0	0	_	
476	3 Sep 14	EX	0	0	0	0	0	2	0	0	0	1	2	0	0	0		
470	3-Sep-14	EX	0	0	0	0	0	2	1	0	0	0	2	0	0	0	-	
470	2 Sop 14	EX	0	1	0	0	0	1	1	0	0	0	2	0	0	0	-	
470	3-Sep-14	EA	0	1	0	0	0	1	0	0	0	50	0	0	0	0	-	
4/9	3-Sep-14	EA	0	0	0	0	2	4	0	0	0	56	0	0	0	0	-	
460	5-Sep-14	EA	1	0	0	0	0	2	0	U	0	2	0	U	0	U	-	
481	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	1	1	0	0	0	-	+
482	3-Sep-14	EA	0	0	U	0	0	4	1	U	U	3	0	0	U	0	-	
483	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
484	3-Sep-14	EX	U	0	0	0	0	1	0	0	0	0	0	U	0	0	-	
485	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
486	3-Sep-14	EX	0	0	0	1	0	1	0	0	0	0	0	0	1	0	-	
487	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	2	0	0	0	-	
488	3-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	+
489	3-Sep-14	EX	0	0	0	0	0	0	0	0	1	12	0	0	0	0	-	
490	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-	+
491	3-Sep-14	EX	0	4	0	0	0	5	0	0	0	0	0	0	0	0	-	
492	3-Sep-14	EX	0	2	0	0	0	1	0	0	0	0	0	0	0	0	-	
493	3-Sep-14	EX	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	
494	3-Sep-14	EX	0	2	0	0	0	3	0	0	0	0	0	0	0	0	-	+
495	3-Sep-14	EX	0	6565	0	0	0	0	0	0	0	0	0	0	0	0	STEC	
496	3-Sep-14	EX	0	2	0	0	0	3	0	0	0	0	0	0	0	0	-	
497	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
498	3-Sep-14	EX	2	0	0	2	0	0	0	0	0	0	0	0	3	0	-	
499	3-Sep-14	EX	0	0	0	0	0	1277	2	0	0	1	0	0	0	0	ETEC	+

500	3-Sep-14	EX	0	0	0	0	0	1	0	0	0	1	0	0	0	0	-	
501	3-Sen-14	EX	0	1	0	0	0	5	0	0	0	0	0	0	0	0	-	
502	2 S 14	EV	0	0	0	0	0	5	0	0	0	0	0	0	0	0		
502	3-Sep-14	EA	2	0	0	0	0	3	0	0	0	0	0	0	0	0	-	
503	3-Sep-14	EX	10760	0	0	0	0	2	1	0	0	66	5447	0	0	0	STEC	
504	4-Sep-14	EX	2	0	0	0	0	8	0	0	0	1	1	0	0	0	-	
505	4-Sep-14	EX	0	0	0	0	0	7	0	0	0	1	0	0	0	0	-	
506	4-Sep-14	EX	2	0	0	0	0	13540	0	0	0	3	0	0	0	0	ETEC	+
507	4.0 14	EV	2	0	0	0	ő	100.10	ő	ő	ő	0	õ	0	0	0	Line	
507	4-Sep-14	EA	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	+
508	4-Sep-14	EX	0	0	0	0	0	4	1	0	0	0	0	0	0	0	-	
509	4-Sep-14	EX	0	0	0	0	0	25039	0	0	0	0	2	0	0	0	ETEC	
510	4-Sep-14	EX	0	0	0	0	0	9	0	0	0	0	0	0	0	0	-	
511	4-Sen-14	FY	0	0	0	0	0	17	2	0	0	0	0	0	0	0		
510	4-5cp-14	EA	0	0	0	0	0	5226	2	0	0	0	0	0	0	0	ETEC	
512	4-Sep-14	EX	0	0	0	0	0	5326	0	0	0	0	0	0	1	0	ETEC	+
513	4-Sep-14	EX	5	0	0	0	0	10	2	0	0	0	0	0	0	0	-	+
514	4-Sep-14	EX	0	0	0	0	0	9	0	0	0	0	0	0	0	0	-	
515	4-Sep-14	EX	0	0	0	0	0	9705	1	0	0	4	0	0	0	0	ETEC	
516	4 Sep 14	EV	0	0	0	0	0	6	0	0	0	0	0	0	0	0		
510	4-5cp-14	EA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
517	4-Sep-14	EX	0	0	0	0	0	5	0	0	0	27	0	0	0	0	-	
518	4-Sep-14	EX	0	0	0	0	0	9229	1	0	0	0	0	0	0	0	ETEC	
519	4-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
520	4-Sep-14	EX	0	0	0	0	0	4	0	0	0	1	0	0	0	0	-	
521	4 San 14	EV	0	0	0	0	0	1	0	0	0	0	0	0	0	0		
521	4-Sep-14	EA	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
522	4-Sep-14	EX	0	0	0	1	0	5	2	0	0	1	0	0	2	0	-	
523	4-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	2	0	0	0	-	
524	4-Sep-14	EX	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
525	4-Sep-14	EX	0	0	0	0	0	3	0	0	0	10	4	0	0	0	-	
526	4-Sen-14	FY	0	0	0	0	0	8	0	0	0	2	0	0	0	0		
520	4-3cp-14	LA	0	0	0	0	0	0	0	0	0	2	0	0	0	0	-	
527	4-Sep-14	EX	0	0	0	0	0	7	0	0	0	9556	0	0	0	0	-	
528	4-Sep-14	EX	0	0	0	0	0	22129	1086	0	0	4	0	0	0	0	ETEC	
529	4-Sep-14	EX	0	0	0	0	0	14306	594	0	0	2513	0	0	0	0	ETEC	
530	4-Sep-14	EX	0	0	0	0	0	15	0	0	0	1	0	0	0	0	-	
521	4 Sep 14	EV	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
533	4-50p-14	EX	0	0	0	0	0	0	0	0	0	(72)		0	0	0	-	
532	4-Sep-14	EX	0	0	0	0	0	8	1	0	0	673	1	0	0	0	-	
533	4-Sep-14	EX	0	0	0	0	0	4	0	0	0	0	0	0	0	0	-	
534	4-Sep-14	EX	0	0	0	0	0	1	0	0	0	1	0	0	0	0	-	
535	4-Sep-14	EX	0	0	0	0	0	9	0	0	0	4	0	0	0	0	-	+
536	4-Sen-14	FY	0	0	0	0	0	3	0	0	0	0	0	0	0	0		
550	4-50p-14	EX	0	0	0	0	0	-	0	0	0	0	0	0	0	0	-	
537	4-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	2	0	0	0	-	
538	4-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
539	4-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
540	4-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
541	4-Sep-14	EX	0	0	0	0	0	0	0	0	0	1	82	0	0	0	-	
540	1000011	EX	0	0	0	0	0	9(2)	1.00	0	0	(00	02	0	0	0	ETEC	
542	4-Sep-14	EA	0	0	0	0	0	8636	168	0	0	699	0	0	0	0	ETEC	
543	4-Sep-14	EX	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	
544	4-Sep-14	EX	0	0	0	0	0	3	0	0	0	0	0	0	4	0	-	
545	4-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
546	4-Sen-14	EX	0	0	0	0	0	6	0	0	0	0	0	0	0	0	-	
547	4 Sap 14	EV	0	0	0	Õ	0	6	Ő	Ő	0	2	0	0	1	Õ		
547	4-Sep-14	EA	0	0	0	0	0	0	0	0	0	5	0	0	1	0	-	
548	4-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
549	4-Sep-14	EX	0	0	0	0	0	2	0	0	0	1	0	0	0	0	-	
550	4-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	
551	4-Sep-14	FX	0	0	0	0	1792	4	0	0	0	2883	20	0	0	0	FAFC	
557	4 S-n 14	EV	0	0	ò	0	0	2	0	0	0	2005	20	0	0	0	LILLO	
332	4-Sep-14	EA	0	0	2		0	2	0	0	0	4	2	0	0	0	-	
553	4-Sep-14	EX	0	0	0	0	0	0	2	0	0	1	0	0	0	0	-	
554	4-Sep-14	EX	0	0	0	0	2	5	0	0	0	6	3003	0	0	0	-	
555	4-Sep-14	EX	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	
556	4-Sep-14	EX	0	0	0	0	2	1804	30	0	0	0	0	0	0	0	ETEC	
550	1000-14	EX	0	0	0	0	2	2414		0	0	0	0	0	0	0	ETEC	
551	4-5ep-14	EX	0	U	U	U	0	3414	44	U	U	0	0	0	0	U	EIEC	
558	4-Sep-14	EX	0	0	0	1	0	18574	566	0	0	3	0	0	1	0	ETEC	
559	4-Sep-14	EX	0	0	0	0	0	8	0	0	0	2	0	0	0	0	-	
560	4-Sep-14	EX	0	0	2	0	2	1653	6	0	0	3	2	0	0	0	ETEC	
561	4-Sen-14	EX	0	0	0	0	Ο	4	0	0	0	1	0	0	0	0	-	+
560	1 Cor 14	EV	0	'n	0	0	0	,	0	0	0	2	0	0	0	0		
502	4-3ep-14	ЕÅ	0	7	0	0	0	4	0	0	U	5	0	0	U	U	-	

KKa001		-	0	0	0	0	0	2	0	2	3446	0	17567	0	2	0	ExPEC	
KGu002		-	0	0	0	0	2581	4	0	0	0	0	0	0	16	0	EAEC	
KcCo002		-	0	3458	378	0	0	0	0	0	0	0	0	0	1	0	EHEC	
KCo003		-	21063	8980	0	0	0	2	0	0	0	0	1	0	4	0	STEC	
621	7-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
620	7-Sep-14	EX	0	0	0	0	0	2	0	0	0	1	2102	0	0	0	-	
619	7-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	0	0	2	0	-	
618	/-Sep-14	EX	0	0	0	1	0	2	0	0	0	0	2115	60	22/19	0	EXPEC	
610	7 Sep 14	EA EV	0	0	0	1	0	1	0	0	0	0	2775	60	22710	0	- ExDEC	Ŧ
617	7_Sep_14	EX	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-	+
616	7-Sep-14	EX	ů 0	Ő	Ő	Ő	Ő	- 5	1	Ő	Ő	-	ů 0	Ő	1	Ő	-	
615	7-Sep-14	EX	0	0	0	0	0	2	0	0	0	2	0	0	0	0	-	+
614	7-Sep-14	EX	0	0	0	0	0	2	2	0	0	0	2	0	1	0	-	
613	7-Sep-14	EX	0	0	0	0	0	2377	26	0	0	0	0	0	0	0	ETEC	
612	7-Sep-14	EX	0	0	0	0	0	4	0	0	0	0	2	0	1	0	-	
611	7-Sep-14	EX	0	0	0	0	2	0	1	0	0	0	0	0	0	0	-	
610	7-Sep-14	EX	0	0	0	0	0	3	0	0	0	0	1	0	2	0	-	
609	7-Sep-14	EX	0	0	0	0	0	8	0	0	0	1	2	0	0	0	-	
608	7-Sep-14	EX	0	0	0	0	0	1	1	0	0	0	1	0	0	0	-	+
607	7-Sep-14	EX	0	0	0	0	0	2587	1	0	0	0	0	0	0	0	ETEC	+
606	/-Sep-14	EX	0	0	0	0	0	2507	0	0	0	1	0	0	0	0	-	
606	7 Son 14	EV	0	0	0	0	0	5	0	0	0	1	1	0	0	0	-	Ŧ
605	7-Sen-14	FX	ñ	ñ	n	ñ	ñ	0	ñ	ñ	ň	ň	1	ñ	ñ	ñ	_	+
604	7-Sep-14	EX	ů 0	Ő	Ő	Ő	Ő	3	0 0	Ő	Ő	ů 0	1	Ő	ů 0	Ő	-	
603	7-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	+
602	7-Sep-14	EX	0	0	0	0	0	891	10	0	1	2	0	0	0	0	ETEC	
601	7-Sep-14	EX	0	0	0	0	0	2	0	0	0	3	0	0	0	0	-	
600	7-Sep-14	EX	0	0	0	0	0	1044	6	0	0	0	0	0	0	0	ETEC	
599	7-Sep-14	EX	0	0	0	0	0	1200	14	0	0	0	1	0	0	0	ETEC	
598	7-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	2	0	-	
597	7-Sep-14	EX	0	0	0	0	0	645	18	0	0	2	2	0	0	2	-	
596	7-Sep-14	EX	0	0	0	0	0	1	0	0	0	2	0	0	0	0	-	+
595	7-Sep-14	EX	0	0	0	0	0	4	0	0	0	-	0	0	0	-	-	
594	/-Sep-14	EX	0	0	0	1	0	3	0	0	0	0	0	0	0	0	-	+
593	7 S 14	EX	0	0	0	0	0	3022	40	0	0	0	0	0	0	0	EIEU	
502	7-Sen-14	FX	ñ	ñ	n	ñ	ň	3622	40	ñ	ň	0		ñ	ñ	ñ	FTFC	
592	7-Sep-14	EX	0	0	0	0	0	5	1	0	0	1	4	0	0	0	-	+
591	7-Sep-14	EX	0	0	0	0	0	987	4	0	0	0	0	0	0	0	ETEC	
590	7-Sep-14	EX	0	0	0	0	0	5	0	0	0	1	0	0	0	0	-	
589	7-Sep-14	EX	0	0	0	0	0	6	1	0	0	2	0	0	0	0	-	+
588	7-Sep-14	EX	0	0	0	0	0	2823	39	0	0	0	0	0	0	0	ETEC	
587	7-Sep-14	EX	0	0	0	0	1	1931	20	0	0	0	0	0	0	0	ETEC	
586	7-Sep-14	EX	0	0	0	0	0	613	6	0	0	0	2	0	0	0	-	
585	7-Sep-14	EX	0	0	0	0	0	5	0	0	0	0	0	0	0	0	-	
584	7-Sep-14	EX	0	0	0	0	0	1752	56	0	0	194	0	0	0	0	ETEC	
504	7-Sep-14	EA	U	0	0	0	0	1752	10	0	0	104	1	0	0	0	- ETEC	
582	7-Sen-14	FX	0	ñ	n	ñ	ñ	702	10	ñ	ň	ů N	1	ñ	0	ñ	_	
582	7-Sen-14	EX	ů.	ñ	n	ñ	ñ	4	ñ	ñ	ů.	0	ñ	ñ	1	ñ	-	
581	7-Sep-14	EX	0	0	0	0	0	2	0	0	0	0	0	0	0	0	-	
580	4-Sep-14	EX	0	0	0	0	0	38	0	0	0	0	0	0	0	0	-	
579	4-Sep-14	EX	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	+
578	4-Sep-14	EX	0	0	0	0	0	991	42	0	0	0	0	0	0	0	ETEC	
577	4-Sep-14	EX	0	0	0	0	0	634	10	0	0	0	0	0	0	0	-	
576	4-Sep-14	EX	0	0	0	0	0	452	8	0	0	1	2	0	0	0	-	
575	4-Sep-14	EX	0	0	0	0	0	791	4	0	0	2	0	0	0	0	-	
574	4-Sep-14	EX	0	0	0	0	0	545	0	0	0	0	0	0	0	0	-	
573	4-Sep-14	EX	0	0	0	0	0	5	0	0	0	1	0	0	0	0	-	
572	4-Sep-14	ΕX	0	0	0	0	0	5	0	0	0	1	0	0	0	0	-	
571	4-Sep-14	EX	0	0	0	0	0	464	2	0	0	2	0	0	0	0	-	
570	4-3cp-14	EA EV	0	0	0	2	0	4	0	0	0	<i>с</i>	2	0	4	0	-	
570	4 Sen 14	EV	0	0	0	0 2	0	4	0	0	0	2	2	0	4	0	-	
560	4-Sep-14	EX	0	0	0	0	0	0	0	0	0	1	2 0	0	0	0	-	
568	4-Sen-14	FX	0	0	n	0	0	8	0	0	0	2	2	n	0	0	-	+
567	4-Sep-14	EX	0	0	0	0	1 0	1167	14	0	0	0	0	0	0	0	ETEC	
566	4-Sen-14	EX	0	0	0	0	1	5063	72	0	0	1985	0	0	0	0	ETEC	
565	4-Sep-14	FX	ů 0	0	0	0	0	5	.2	0	Ő	7407	ů 0	0	ů 0	Ő		
564	4-Sen-14	FX	0	0	0	0	0	2563	42	0	0	0	0	0	0	0	FTFC	
563	4-Sep-14	EX	0	0	0	0	2	8785	150	0	0	7	3	0	0	0	ETEC	

KH007	-	0	0	0	0	0	0	0	0	0	934	2626	0	1	0	ExPEC
KP003	-	0	0	0	0	0	0	0	0	0	2441	1	14	19112	4251	ExPEC
KP002	-	2	0	0	0	0	7	0	0	0	0	0	0	1	0	-
KP002+ ipaH	-	0	0	0	47	0	0	0	0	0	0	2	0	0	0	EIEC
KP002+ StIb	-	0	0	0	0	0	8337	0	0	2	1	2	0	1	0	ETEC
KP002+ LtI	-	0	2	0	0	0	1	2783	0	0	0	0	0	0	0	ETEC
KP002+ daaE	-	0	0	0	0	0	0	2	868	0	0	0	0	22	0	DAEC
ANMR	-	2106.3	621.9	37.8	4.7	258.1	833.7	278.3	86.8	344.6	168.75	1009.65	1.4	1911.2	425.1	

^a Positive values, which are higher than ANMR/10, are colored by red except for control strains. Expected gene to be positive for control strains are colored by yellow.

^b Seven reference *E. coli* strains were used as controls. *E coli* strains KCo003 (positive for *stx1* and *stx2*), KGu002 (positive for *stx2* and *eaeA*), KKa001 (positive for *afa/dra* and *iutA*), KH007 (positive for *kpsMT II* and *iut A*), and KP003 (positive for *kpsMT II*, *papA*, *papC* and *sfa/foc*) were used for positive controls. KP002 was used as a negative control. Positive controls for *ipaH*, *St1b*, *Lt1*, and *daaE* were prepared by mixing synthesized genes containing target sequences with strain KP002.

° SW and EX indicate stored drinking water and sanitary wastewater, respectively.

Figure S1 The selected study site. This map was developed on the basis of GIS data from thematicmapping.org and data from a survey conducted in 2013 by Michiya Kodera, Kyoto University.

Figure S2 An example of a drinking water storage pot (photo credit: Shotaro Goto). Water pots are sometimes covered with a dish.