2		
3 4		
5 6 7	1	Morphological transitions for pore water and pore air during drying and wetting processes
8	2	in partially saturated sand
9 10	4	in partially saturated sand
11		
12	3	Ryunosuke Kido ¹ , Yosuke Higo ² , Fukushi Takamura ² , Ryoichi Morishita ³ , Ghonwa Khaddour ⁴
13 14		
15	4	and Simon Salager ⁴
16	1	und binnon bungor
17 18		
19	5	
20		
21		
23	6	¹ Department of Civil and Earth Resources Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto
24		
25 26	7	615-8540, Japan.
27		
28		
29 30	8	² Department of Urban Management, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
31		
32 22		
34	9	³ Japan Oil, Gas and Metals National Corporation, 1-2-2, Hamada, Mihama-ku, Chiba, 261-0025, Japan.
35		
36 37	10	⁴ Granoble INP Universitá Granoble Alpes, Laboratoire 3SP, E 38000 Granoble, France
38	10	Grenoble-IIVI, Oniversite Grenoble Alpes, Laboratorie 55K, 1-58000 Grenoble, Plance
39		
40 41	11	
42		
43		
44 45	12	Corresponding author: Yosuke Higo, higo.yohsuke.5z@kyoto-u.ac.jp, +81-75-383-3305
46		
47	10	
40 49	13	
50		
51 52	14	
53		
54		
55 56		
57		
58		
59 60		
61		
62		1
63 64		
65		

Abstract

Water retention characteristics are important for modeling the mechanical and hydraulic behavior of partially saturated sand. It is well known that the soil water characteristic curve shows hysteresis during drying and wetting processes. For a better understanding of the water retention characteristics of partially saturated soil, a microscopic investigation of the morphological transitions for the pore water phase and the pore air phase, such as volume distribution, spatial distribution and continuity during drying and wetting processes, is crucial. In the present study, different water retention states of a partially saturated sand were visualized during water retention tests using microfocus x-ray computed tomography (CT). The CT images obtained from the tests were segmented into the soil particle phase, the pore water phase and the pore air phase. Then, a series of image processing, erosion, dilation and cluster labeling, was applied to the images in this order to quantify the cluster volume distributions, the number of clusters and the continuity of both the pore water phase and the pore air phase. The morphological transitions for the pore air phase and the pore water phase, subjected to decreasing and increasing degrees of saturation, were revealed using the results of the image processing, and then the water retention states were characterized based on the morphologies for the two phases. The influence of the morphologies on the hysteresis was discussed.

Keywords: Partially saturated sand, Water retention test, Microfocus x-ray CT, Image processing, Morphology, Water retention state

1. Introduction

The relationship between suction and the degree of saturation for partially saturated soil is interpreted as the soil water retention curve (SWRC). The SWRC is an important characteristic for the hydraulic and mechanical behavior of partially saturated soil. Thus, a modeling of the SWRC that incorporates the effect of the hydraulic hysteresis of the water retention characteristics into the shear strength, permeability and volume change of partially saturated soil was developed (e.g., [5, 9, 11, 33, 44]). The hysteresis shown during the drying and wetting processes by the SWRC was observed through water retention tests (e.g., [8, 13, 20, 43]), and the water retention capability was found to significantly depend on the bulk density of the soil and the particle size distribution (e.g., [10, 39]). The main causes of the hysteresis have been interpreted as follows: 1) the ink-bottle effect due to irregularities in the size and connectivity of the pores (e.g., [34]) and 2) the contact angle hysteresis at the interface between a liquid and a solid during the drying and wetting processes (e.g., [3, 6]). Up to now, these mechanisms at the pore scale have generally been expressed by schematic illustrations (e.g., [2, 30]). For a better understanding of these mechanisms, a microscopic investigation of the water retention behavior in particulate soils is important. The purpose of the present study is to reveal the microscopic water retention behavior of partially saturated sand using microfocus x-ray computed tomography (CT). Microfocus x-ray CT is an effective tool for nondestructively and three-dimensionally visualizing the microstructures of geomaterials or porous media; it has been widely used for investigating the failure mechanism of particulate soils with strain localization (e.g., [1, 7, 17, 37]) and particle morphological features of granular geomaterials [31]. Spatial resolution and image processing techniques for microfocus x-ray CT have been developed, resulting in the ability to segment the phases in an object at the microscopic scale and to investigate the microstructural changes in soils [e.g., [36]]. For partially saturated sands, microfocus x-ray CT has been applied to investigations of water retention states and the evolution of pore-scale quantities. The investigations have been done through triaxial compression tests (e.g., [17, 18, 21, 26]) and water retention tests (e.g., [4, 16, 19, 20, 22, 24, 28, 29, 35]). Changes in the degree of saturation in partially saturated soil involve morphological transitions for both water and air in void spaces, which cause variations in the water retention states. Microscopic investigations of the morphologies for the pore water phase and the pore air phase, and their transitions during the drying and wetting processes, provide important data for classifying the water retention states and contribute to elucidating the mechanism of the hysteresis. The morphologies of pore water for partially saturated soils, such as the shape of the liquid bridges and the distribution of pore water, have been extensively studied. Observations of the morphologies have been done using a scanning electron microscope (SEM) and an environmental scanning electron microscope (ESEM) (e.g., [12, 40]). Mercury intrusion porosimetry (MIP) is the other approach for studying pore water morphologies based on pore space morphologies (e.g., [38, 40]). Although SEM and ESEM provide high resolution images sufficient for visualizing the liquid bridges, the images are limited to those that capture small portions of the sample surfaces. Recently, microfocus x-ray CT with image analyses has been applied to investigate the pore water morphologies in three-dimensional conditions (e.g., [23, 27, 32, 41, 46]). The morphologies of both pore water and pore air, and their transitions during triaxial compression tests and water retention tests, need further study. In addition, the morphological transitions for

pore fluids with a variation in the degree of saturation are essential for interpreting the relationship between the water retention characteristics and the mechanical behavior during shearing as well as the permeability of partially saturated soil (e.g., [14, 18, 26, 42]).

In the present study, a water retention test was performed on sand, and the various water retention states subjected to drying and wetting were visualized using microfocus x-ray CT. The CT images obtained in the tests were segmented into the soil particle phase, the pore water phase and the pore air phase (trinarization). A series of image processing, erosion, dilation and cluster labeling, was applied to the trinarized images to quantify the volume distributions, the number of clusters and the continuity for the pore water phase and the pore air phase. The morphologies for the pore water phase and the pore air phase at given degrees of saturation and their transitions during the drying and wetting processes were clearly specified using the results of the image processing. Then, the water retention states which have been schematically explained were interpreted based on the morphologies for the two phases. Through comparisons of the analysis results using the images obtained at almost the same degrees of saturation during drying and wetting, the influence of the morphologies for the two phases on the hysteresis was examined.

2. Material and Experimental Setup

The sample used in the present study is Toyoura sand. Figure 1 shows the grain size distribution curve of Toyoura sand, while the physical properties of this sand are listed in Table 1. The diameter D_{50} of Toyoura sand is 190 µm. Figure 2 shows a schematic illustration of the test apparatus consisting of an acrylic hollow cylinder (18.0 mm in inner diameter and 18.0 mm in height), an acrylic pedestal (35.0 mm in diameter), a saturated ceramic disc, a double-tube burette and a water tank. The air-entry pressure of the ceramic disc was 50 kPa, which is sufficiently larger than the water retention capability of Toyoura sand; thus, the suction imposed on the Toyoura sand could be controlled by the ceramic disc. A loose (low bulk density) sand specimen was prepared by the water pluviation technique; namely, the Toyoura sand was poured from a certain height into the hollow cylinder that was initially filled with water. The specimen conditions are listed in Table 2. It is seen in the x-ray tomographic images that tiny air bubbles were trapped at the initial condition. In the present study, it was assumed that the volume of trapped air bubbles was sufficiently small and that the degree of saturation at the initial state was 100%. The water retention test in the present study was started by conducting the drying process using a negative water column [45]. Suction was applied making sure the water level in the burette was lower than the top of the specimen (Fig. 2); the water level in the burette was varied until equilibrium was reached (about 1 day for the studied specimen). The applied suction was then seen to correspond to the water head difference between the water level in the burette and the top of the specimen. A level of suction that corresponded to the air-entry pressure of Toyoura sand (2 kPa) was firstly applied and then a step-by-step increase in suction was applied up to 10 kPa during the drying process. The

5 4 5 6 7	101	corresponding changes in the amount of water drainage at each equilibrium were measured by a differential pressure
, 8 9 0	102	gauge installed on the burette. After the drying process, the wetting process was started by decreasing the suction from
1 2 3	103	10 kPa to 2kPa and then continuing to decrease it step-by-step to 0 kPa. The corresponding changes in the amount of
4 5 6	104	water absorption at each equilibrium were measured by the differential pressure gauge. It should be noted that the
7 8 9	105	experiment was carried out in a temperature-controlled room at 20 degrees C, and the top of the specimen was exposed
0 1 2	106	to an atmospheric pressure with almost 100% humidity through the water tank to minimize water evaporation.
3 4 5 6	107	At each equilibrium during the drying and wetting processes, the three-phase microstructures in the specimen were
7 8 9	108	visualized using a microfocus x-ray CT apparatus "KYOTO-GEOµXCT (TOSCANER-32250µhdk)" (e.g. [17]). Its
0 1 2 2	109	specifications are listed in Table 3. The scan area and the scan conditions are shown in Fig. 3. The entire specimen was
3 4 5 6	110	observed by global tomography, while the local region of interest focusing on the middle height of the specimen was
0 7 8 9	111	observed by local tomography. The materials comprising the sand specimen are distinguished from each other based
0 1 2	112	on the level of attenuation of the x-ray, that is, the distribution of the CT values had a 16-bit signed integer. It is
3 4 5	113	empirically known that the relation between the levels of attenuation of x-ray and the CT values is linear (e.g. [7, 17]).
6 7 8	114	As indicated by Fig. 3, each phase can be identified by different grayscale colors in a CT image as follows: the brighter
9 0 1	115	gray portion corresponds to soil particles, the black portion corresponds to air, the darker gray portion corresponds to
2 3 4 5	116	water and the white portion corresponds to metal inclusions.
5 6 7 8 9 0	117	
1 2 3		7

3. Image Analysis Methods

3.1. Trinarization

In the present study, the soil particle phase, the pore water phase and the pore air phase in the three-dimensional 16 121 tomographic volume were segmented using the region growing method (e.g. [19]). The region growing method is a 19 122 segmentation method for digital images that postulates that the adjacent voxels with gray values similar to a chosen 22 123 voxel are assimilated into the same phase. A certain voxel representing the gray value of a phase is firstly chosen as the "initial seed". Subsequently, the voxels adjacent to the initial seed are extracted as the same phase when their gray values are smaller than the tolerance limit. To distinguish between the three phases using the region growing method, 32 126 a suitable tolerance for each phase is needed. In the CT images scanning partially saturated sand, a voxel often shares 35 127 more than two phases. Specifically, voxels sharing the soil particle phase and the pore air phase are often misidentified 38 128 as the pore water phase owing to the partial volume effect (e.g., [19, 20, 25]). In the present study, the levels of tolerance for the region growing of the soil particle phase and the pore air phase were determined by taking the partial volume effect into account in the following steps. Firstly, the gray value distributions for the soil particle phase, the pore water phase and the pore air phase were assumed as normal distributions, while those for the three types of phases due to the 51 132 partial volume effect, namely, the voxels sharing the soil particle phase and the pore water phase, the voxels sharing 54 133 the pore water phase and the pore air phase and the voxels sharing the pore air phase and the soil particle phase, were 57 134 assumed as uniform distributions, as shown in Fig. 4. Subsequently, the superposition of the weighted gray value distributions for the six phases was determined using the maximum likelihood estimation method so that it was close

to the gray value distribution of the original CT image. Once the superposition was estimated, the level of tolerance for extracting the pore air phase was determined as the interval between the mean value of the normal distribution for the pore air phase and the intersection of the normal distributions for the pore air phase and the pore water phase, as shown in Fig. 5. Similarly, the level of tolerance for extracting the soil particle phase was determined as the interval between the mean value of the normal distribution for the soil particle phase and the intersection of the soil particle phase and the pore water phase. The remaining voxels after the extraction of the pore air phase and the soil particle phase were considered as the pore water phase. Prior to the trinarization, a median filter with 5^3 voxels was applied to the CT images obtained in the present study to reduce noise. The median filter was applied and region growing was performed using the 3D image analysis software VGStudioMax3.1 (Volume Graphics GmbH). Examples of the original CT image and the trinarized image are shown in Fig. 6 in which the gray, blue and black colors denote the soil particle phase, the pore water phase and the pore air phase, respectively. To investigate the accuracy of the measuring volumes of the pore water phase and the pore air phase using the trinarization technique, validation work was conducted. A specimen with a height of 12 mm, a diameter of 6 mm, a void ratio of 0.846 and a degree of saturation of 0.662 was prepared, as shown in Fig. 7. Toyoura sand was packed in an acrylic cylinder by the moist tamping method. Two kinds of X-ray CT scans were performed with spatial resolutions of 6.72 µm (Case A) and 12.25 µm (Case B). Then, the void ratio and the degree of saturation, calculated using trinarization, were compared with those of the specimen. The specimen was small enough to be observed in its entirety even with the high spatial resolution of 6.72 µm. The results are listed in Table 4. The void ratio and the degree of

5 154 saturation calculated using trinarization are close to those of the specimen in both cases. Case A shows more accurate values than Case B, which indicates that the higher the resolution of the CT image is, the more accurate the trinarization will be. The gray value histograms for Cases A and B are shown in Figs. 8a and 8b, respectively. It is found from these figures that the shape of the superposition of the weighted distributions estimated by the maximum likelihood estimation 18 158 method is similar to that of the original distribution for both cases. As shown in Fig. 8b, for Case B, the proposed 21 159 technique describes the influence of the partial volume effect which leads to a relatively larger amount of frequency between the pore water phase and the soil phase. These results confirm that the proposed trinarization technique is a reasonable segmentation technique for partially saturated sand. 31 162 35 163 3.2. Morphology analysis The aim of this analysis was to reveal the volume distribution, continuity and numbers of assemblies for the pore $42 \ 165$ air phase and the pore water phase in partially saturated sand. In the present study, the pore air phase and the pore water 45 166 phase extracted from the trinarized volumes were divided into some assemblies with individual continuity. Hereafter, 48 167 they are referred to as "clusters" using the 3D image analysis software Avizo9.4.0 (FEI). The procedure for the morphology analysis of the pore water phase is as follows. Firstly, the pore water phase is extracted from the trinarized volume to provide the binary volume in which the blue portion is the pore water phase and the black portion is the 58 170 background phase, as shown in Fig. 9b. The binary volume contains pore water voxels due to the partial volume effect

4 5 6 7	171	between the soil particle phase and the pore air phase as well as the absorbed water that surrounds the soil particles.
, 8 9 0	172	Erosion and dilation are performed in this order to remove those voxels. Erosion is the morphological operator which
1 2 3	173	combines two sets using the vector subtraction of set elements to remove the projected noises from the digital image,
4 5 6	174	while dilation is the morphological operator which combines the two sets using the vector addition of set elements to
7 8 9	175	fill in the voids in the digital image (e.g., [15]). A structuring element that is composed of a center voxel and the
0 1 2 3	176	neighboring six voxels is defined for the erosion and the dilation. For the erosion, the target pore water voxel centered
4 5 6	177	at the structuring element is replaced with a background voxel when one of the neighboring six voxels corresponds to
7 8 9	178	the background voxel. In contrast, for the dilation, the target background voxel centered at the structuring element is
0 1 2	179	replaced with a pore water voxel when one of the neighboring six voxels corresponds to the pore water voxel. It is
3 4 5	180	assumed that the one-voxel erosion-dilation image processing sufficiently removes the voxels due to the partial volume
6 7 8	181	effect as well as the voxels due to the absorbed water. Once this processing has been done, the pore water phase is
9 0 1 2	182	clusterized, as shown in Fig. 9c. The separated pore water is labeled by assigning a unique number to all adjacent voxels
3 4 5	183	that constitute a cluster. Each cluster exhibits a different consecutive number starting with the value 1. In Fig. 9d, each
6 7 8	184	color describes a unique number for each cluster. The cluster volumes and the number of clusters are quantified by
9 0 1	185	counting the number of voxels that constitute each cluster in the labeled images.
2 3 4	186	
5 6 7	187	
8 9 0 1		
⊥ 2 3		11

1 2 3		
4 5 6 7	188	4. Results
8 9 10 11	189	4.1. Water retention curve
12 13 14	190	Figure 10 describes the water retention curve. The wetting curve is located below the drying path at a given degree
15 16 17 18 19	191	of saturation; i.e., hysteresis is clearly observed.
20 21 22	192	The degree of saturation begins to decrease at a suction of 1.9 kPa (point "b") to that of 9.8 kPa (point "g") in the
23 24 25 26	193	drying process, while it begins to increase at a suction of 1.9 kPa (point "h") in the wetting process. The degree of
20 27 28 29	194	saturation at a suction of 0.0 kPa at the end of the wetting process is less than 100%, which indicates that air bubbles
30 31 32 33	195	have been trapped due to drying and wetting in this order.
34 35 36 37 38	196	
39 40 41 42	197	4.2. Local void ratio and degree of saturation
43 44 45	198	In Fig. 10, the symbols from "a" to "l", except for "h" and "l", indicate the points at which the specimen is in
46 47 48 40	199	equilibrium, and x-ray CT scanning and trinarization were performed. Points "h" and "l" are omitted because the
49 50 51 52	200	obtained images were of low quality due to mechanical problems. Figure 11 shows examples of the horizontal and
53 54 55	201	vertical cross sections of the local tomography images and the trinarized images during the drying and wetting processes.
56 57 58	202	It is clearly observed that the black portion, indicating the pore air phase, increases in the drying process, whereas the
59 60 61	203	blue portion, indicating the pore water phase, increases in the wetting process. The local void ratio and the degree of
62 63 64		12

3	
4 5 204 6 7	saturation were quantified by counting the number of voxels for the three phases (the soil particle phase, the pore air
8 9 0	phase and the pore water phase) in the trinarized volumes. Figure 12 shows the local void ratios at each degree of
$\frac{1}{2}$ 206	saturation. It is seen that the local void ratios are comparable with the global void ratios. Figure 13 shows a comparison
4 5 207 6	of the water retention curve obtained by the test and the relationship between the local degrees of saturation calculated
7 8 208 9	with the trinarized volumes and the suction imposed on the specimen. Figure 13 indicates that the water retention curve
0 1 209 2	is qualitatively described by trinarization, although the local degrees of saturation tend to be relatively larger than the
3 4 210 5	global degrees of saturation of the specimen. One of the causes is that the initial global degree of saturation, assumed
6 7 8 211	to be 100%, is larger than the real one due to the trapped air bubbles. Another possible reason is that the trinarized
$^{0}_{1}$ 212	volumes contain a relatively greater amount of pore water than the other portions of the specimen, namely, the
3 4 213 5	heterogeneity of the degree of saturation. In addition, the degrees of saturation shown in this figure are calculated using
6 7 214 8	the trinarized volumes including the voxels for the pore water phase due to the partial volume effect.
9 0	
1 2 215 3	
4 5	
°7 216 8	4.3. Morphological transitions for pore water and pore air
$^{0}_{1}$ 217	4.3.1 Distributions of cluster volume for pore air and pore water
3 4 218 5	Figures 14a and 14b show the cluster volume distribution curves (CVDCs) of the pore air and the pore water,
6 7 219 8	respectively. The cluster volume used as a horizontal axis in these figures is the number of voxels that constitute each
⁰ 220 1 2 3	cluster, while the vertical axis is the cumulative ratio of each cluster volume to the total cluster volume, i.e., the 13
4	

4 5 6 7	221	proportion of clusters within a certain volume. In Fig. 14a, the pore air clusters with a volume of 10^3 to 10^5 voxels exist
/ 8 9	222	at an almost water-saturated condition (points "a" and "b"). As desaturation progresses up to point "d", the cumulative
1 2 3	223	volume at pore air volumes smaller than 10^5 voxels becomes nearly zero and then a pore air cluster with a volume larger
4 5 6	224	than 10^6 voxels is observed at the cumulative volume of 100%. This suggests that the pore air clusters with smaller
7 8 9	225	volumes connect to each other, forming a large pore air cluster with a decreasing degree of saturation. Further
0 1 2	226	desaturation up to point "g" provides a larger pore air cluster. On the contrary, a larger pore air cluster loses its volume
3 4 5 6	227	and is divided into smaller clusters during the wetting process from points "g" to "k".
7 8 9 0	228	In Fig. 14b, the CVDC of the pore water exhibits an opposite trend to that of the pore air during the drying and
1 2 3	229	wetting processes. A large pore water cluster exists at higher degrees of saturation and gradually loses its volume during
4 5 6 7	230	the drying process, which is finally divided into smaller pore water clusters at lower degrees of saturation. The smaller
, 8 9 0	231	pore water clusters tend to merge together into a large pore water cluster during the wetting process. As indicated by
1 2 3	232	Fig. 14b, the cumulative volume of a pore water cluster with a volume of 10^4 voxels is less than 10% at degrees of
4 5 6	233	saturation higher than 28% (points without "f" and "g") and a pore water cluster with a volume larger than 10^8 voxels
7 8 9	234	shows 100% cumulative volume. On the other hand, a pore water cluster with a volume of 10^4 voxels shows 100%
0 1 2 2	235	cumulative volume at degrees of saturation lower than 28% (points "f" and "g"). This indicates that the volume of 10^4
5 4 5 6	236	voxels for the pore water cluster seems to be the threshold between smaller volume clusters and a large volume cluster
7 8 9	237	for Toyoura sand. The large volume cluster of the pore water phase is larger than 10^8 voxels.
0 1 2 2		14

1 2		
3 4		
5 6 7 8	238	
9 10 11 12	239	4.3.2 Continuity and number of clusters for pore air and pore water
12 13 14 15	240	The maximum number of voxels that constitute a cluster, that is, the maximum volume (V_{max}) of a cluster out of all
16 17 18	241	the clusters, was evaluated. Figures 15a and 15b show the V_{max} of the pore air and pore water clusters at each degree of
19 20 21	242	saturation, respectively. The symbols in these figures correspond to the x-ray scanning points shown in Fig. 10. In Fig.
22 23 24 25	243	15a, the V_{max} of the pore air cluster increases from points "c" to "g" in the drying process and then gradually decreases
26 27 28	244	from points "g" to "k" in the wetting process. On the contrary, the V_{max} of the pore water cluster decreases in the drying
29 30 31	245	process and increases in the wetting process, as shown in Fig. 15b. Figures 16a and 16b show the total volumes (V_{total})
32 33 34	246	of the pore air and pore water clusters at each degree of saturation, respectively. For pore air, the V_{total} is larger than the
35 36 37	247	V_{max} at points "a", "b", "c" and "k" where the degrees of saturation are higher than 60%. The same trend is observed
38 39 40	248	for the pore water at points "f" and "g" where the degrees of saturation are lower than 20%. For the other points, the
41 42 43 44	249	V_{total} for both the pore air and pore water clusters is almost identical to the $V_{\text{max}}.$
44 45 46 47	250	In the present study, continuity is defined as the ratio of V_{max} to V_{total} . It should be noted that continuity is defined as
48 49 50	251	an indicator for discussing the water retention states; it does not directly describe whether or not the pore water is
51 52 53 54	252	continuous in real soil. Figures 17a, 17b and 17c show the labeled images of the pore water cluster with continuity of
55 56 57	253	100.00% (point "a"), 97.26% (point "e") and 0.10% (point "f"), respectively. Continuity of almost 100% means that
58 59 60	254	one cluster occupies the total volume of clusters, whereas continuity of 0.10% means that the individual clusters exist
61 62 63		15
64 65		

2		
4 5 6 7	255	independently and spatially. A large cluster and some smaller clusters coexist when the continuity is about 97.26%, as
7 8 9	256	demonstrated in Fig. 17b. Figure 18 shows examples of pore water clusters with different volumes at point "e" where
10 11 12 13	257	the continuity of the pore water phase is almost 97.26%. The erosion-dilation image processing, aimed at removing the
14 15 16	258	pore water voxels from the grain surface, possibly removes the voxels of the capillary bridges created between grains.
17 18 19	259	Nevertheless, it is apparent from this figure that the pore water clusters with volumes smaller than 10^3 voxels (2.1×10^5)
20 21 22	260	μ m ³) form capillary bridges between the grains and that the clusters with a larger volume exhibit the same shape as
23 24 25 26	261	some of the connected small clusters. If the volume of a pore water cluster is larger than 10^4 voxels ($2.1 \times 10^6 \ \mu m^3$), as
27 28 29	262	shown in Fig. 18, the pore water phase becomes continuous with a volume of 10^8 voxels ($2.1 \times 10^{10} \mu\text{m}^3$). Figures 19a,
30 31 32	263	19b and 19c show the labeled images of pore air clusters with different levels of continuity. The figures indicate that
33 34 35	264	the pore air clusters exist as bubbles when the continuity is near 0% and they connect to each other to form a large pore
36 37 38	265	air cluster with an increase in continuity. Figure 20 shows examples of pore air clusters with different volumes. It can
40 41 42	266	be seen from this figure that the pore air cluster with a volume smaller than 10^5 voxels exists as a bubble, while that
43 44 45	267	with a volume of 10^6 voxels seems to be a continuous cluster comprising some air bubbles. In other words, a volume
46 47 48	268	of 10^6 voxels seems to be the threshold of a morphological transition for the pore air between small volume clusters
49 50 51	269	and a large volume cluster.
52 53 54	270	Figures 21a and 21b show the relations of the global degrees of saturation with continuity for pore air and with
56 57 58	271	continuity for pore water, respectively. The continuity for pore air at degrees of saturation higher than 80% is smaller
59 60 61	272	than 10% and it is nearly 100% at degrees of saturation lower than 80% without point "c". On the other hand, the
62 63 64 65		16

5 273 continuity for pore water at degrees of saturation lower than 30% is almost 0% and it is almost 100% at degrees of saturation higher than 30%. In other words, pore air becomes continuous while losing the continuity of pore water in the drying process, and pore water becomes continuous while losing the continuity of pore air in the wetting process. It is also clearly seen in Fig. 21 that the continuity for both pore air and pore water is relatively large at degrees of saturation between 30% and 80%. This indicates that the pore air phase and the pore water phase are mostly continuous 18 277 21 278 during a certain range of degrees of saturation in the middle of the drying and wetting processes. 25 279 Figures 22a and 22b show the number of clusters of pore air and pore water, respectively. At higher degrees of 28 280 saturation, a lot of pore air clusters and a smaller number of pore water clusters exist. Along with lower degrees of 31 281 saturation, comes the tendency for a larger number of pore water clusters to exist with a decreasing number of pore air clusters. 39 283

5. Discussions

9 285 The results of the morphology analysis for Toyoura sand, including the continuity, the cluster volume and the number 12 286 of clusters for pore air and pore water, are summarized in Fig. 23. Firstly, pore air is discontinuous; therefore, smaller pore air clusters exist at almost fully saturated conditions (points "a" and "b"). In this case, a continuous pore water cluster with a large volume occupies the void spaces in the sand, as shown in Fig. 17a; smaller air bubbles are spatially trapped in the void spaces, as shown in Fig. 19a. As desaturation proceeds until degrees of saturation lower than the AEV (points "c", "d" and "e"), morphologies for both the pore air phase and the pore water phase start to change. Specifically, discontinuous pore air clusters with 32 292 smaller volumes connect to each other forming a continuous pore air cluster with a large volume, as shown in Fig. 19b, 35 293 whereas continuous pore water begins to be separated into smaller pore water clusters, for example, as shown in Fig. 38 294 17b. In other words, a continuous phase with a large volume and a discontinuous phase with a smaller volume exist together in the void spaces. In the water retention state, along with lower degrees of saturation, comes a larger number of pore water clusters. 48 297 With a further decrease in the degrees of saturation (points "f' and "g"), a continuous pore air cluster becomes larger and then only discontinuous pore water clusters with smaller volumes exist. This suggests that capillary bridges exist spatially at the grain contacts, as shown in Figs. 17c and 18. In the wetting process, pore air and pore water become

300 continuous with increasing degrees of saturation, after which the pore air becomes discontinuous and the pore water
301 becomes continuous.
302 The results of the morphology analysis confirmed that the morphologies for pore air and pore water in partially
303 saturated sand can be identified as follows: i) a continuous and large volume and ii) discontinuous and smaller volumes.

Then, the water retention states of partially saturated sand can be classified using the two kinds of morphologies for the two phases as the following three states: 1) a state at which discontinuous pore air (trapped air) and continuous pore

water coexist, 2) a state at which continuous pore air and continuous pore water coexist and 3) a state at which

07 continuous pore air and discontinuous pore water (capillary bridges) coexist.

32 308 Figure 14b suggests that there is a threshold where the morphology of pore water starts to transit, i.e., discontinuous 35 309 pore water clusters with smaller volumes become a continuous pore water cluster with a large volume and vice versa. 38 310 In the present study, the threshold was, for example, about 0.6 times as large as a soil particle of Toyoura sand (2.1×10^6) μ m³). Similarly, Fig. 14a suggests that there is a threshold where the morphology of pore air starts to transit, and its value was about 60 times as large as a soil particle of Toyoura sand $(2.1 \times 10^8 \ \mu\text{m}^3)$. These trends can probably be attributed to the uniformity of the pore volumes in the Toyoura sand which is a poorly graded sand. On the other hand, 51 314 the threshold of pore air is not as clear as that of pore water. In other words, pore air clusters with a larger variety of 54 315 volumes spatially distribute more in partially saturated sand than pore water clusters. A morphology analysis for sand 57 316 with various grain size distributions or bulk densities will contribute to clarifying the mechanism of the morphological transitions for both pore air and pore water.

5 318 In cases where partially saturated sand is subjected to drying and wetting in this order, pore air and pore water experience continuous or discontinuous morphology. Then, the water retention states transit as follows: states 1), 2) and 3) in this order during the drying process and states 3), 2) and 1) in this order during the wetting process. These histories correspond to the states demonstrated in Figs. 17a, 17b and 17c during the drying process and the states demonstrated 18 322 in Figs. 17c, 17b and 17a during the wetting process. Assuming that the above water retention states correspond to 21 323 those suggested by Bear [2], insular air saturation, funicular saturation and pendular saturation correspond to states 1), 2) and 3), respectively. 28 325 A comparison of the results at similar degrees of saturation during the drying and wetting processes, given in Fig. 10, 31 326 examines the relationship between the morphological transitions of pore fluid (pore air and pore water) and hysteresis. Comparisons of the results at such points, e.g., "d" and "j", and "e" and "i" in Fig. 23, confirm that both pore water and pore air are continuous at any point. Thus, there is no significant difference in microscopic morphologies for pore air and pore water at similar degrees of saturation during the drying and wetting processes evaluated by the morphology 44 330 analysis even though the water retention curve apparently exhibits hysteresis. It is possible that the difference in the 47 331 principal curvatures of the capillary bridges, which leads to different levels of suction even when the degrees of saturation are similar, probably causes the hysteresis. 55 333

Conclusions

X-ray CT images, scanning different water retention states with high spatial resolution, were analyzed using a morphology analysis to investigate the volume distributions, continuity and number of clusters for pore air and pore water with a variation in the degree of saturation. Then, the morphologies for the two phases were clearly specified based on the results.

The analysis confirmed that pore air and pore water in partially saturated sand exhibit two kinds of morphologies: a continuous and large volume and discontinuous and smaller volumes. In the drying process, continuous pore water was divided into discontinuous pore water clusters, i.e., capillary bridges. In contrast, $34 \ 342$ discontinuous pore air bubbles connected to each other and formed a continuous pore air cluster with a large 37 343 volume. In the wetting process, the opposite behavior was observed. Based on the morphologies, the water 40 344 retention states were classified into three states at certain degrees of saturation: 1) the state at which discontinuous pore air (trapped air) and continuous pore water coexist, 2) the state at which both pore air and pore water are continuous and 3) the state at which continuous pore air and discontinuous pore water (capillary bridges) coexist. 50 347 In addition, there are probably thresholds between the discontinuous clusters with smaller volumes and the continuous cluster with a large volume for both pore air and pore water. The water retention curve exhibited 53 348 56 349 apparent hysteresis; however, the morphology analysis revealed that there was no significant difference in the morphologies for pore air and pore water at similar degrees of saturation during the drying and wetting processes.

1 2							
3 4							
5 6 7	5 351 The discussions in the present study were made based on the local tomographic volume that is a small port						
, 8 9 10	$\frac{1}{352}$ of the entire specimen. Microscopic investigations of the entire specimen, such as the spatial distribution and						
11 12 353 homogeneity of the morphologies, should be conducted in the future.							
16 17 18 19	354						
20 21 22 23	355	Acknowledgments					
24 25 26	356	This research was partly supported by grants given by Tec 21, the Obayashi Foundation, SPIRITS project of Kyoto					
 27 28 357 University and the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for JSPS Fel 29 							
31 32 33	17J06250]. The authors gratefully acknowledge the support of Mr. Takanobu Ishimura (Maxnet Co., Ltd, Japan) who						
34 35 36	$\frac{1}{5}$ assisted us in performing the image analysis by using 3D image analysis software Avizo9.4.0 (FEI) in the present stud						
37 38	360						
39							
40 41							
41 42							
43							
44 45							
46							
47							
48 49							
50							
51							
5∠ 53							
54							
55							
56							
57							
59							
60							
ь⊥ 62		22					
63	3						
64							
65							

1 2						
3						
4 5	361	1 References				
6 7	362	1.	Andò E, Hall SA, Viggiani G, Desrues J, Bé-suelle P (2012) Grain-scale experimental investigation of localised			
8	363		deformation in sand: a discrete particle tracking approach. Acta Geotechnica 7(1):1-13			
9 10	364	2.	Bear J (1979) Hydraulics of groundwater. New York, McGraw-Hill:190-224			
11 12	365	3.	Blake TD, Haynes IM (1973) Contact-angle hysteresis. Progress in surface and membrane science 6:125–138			
13	366	4.	Bruchon JF, Pereira JM, Vandamme M, Lenoir N, Delage P, Bornert M. (2013) Full 3D investigation and			
14 15	367		characterization of capillary collapse of a loose partially saturated sand using X-ray CT. Granular Matter			
16	368		15(6):783-800			
17	369	5.	Chiu, DF, Ni XW, Zhang LS (2014) Effect of hydraulic hysteresis on shear strength of partially saturated clay and			
19 20	370		its prediction using a water retention surface. Engineering Geology 173:66-73			
21	371	6.	De Souza EJ, Gap L, McCarthy TJ, Arzt E, Crosby AJ (2008) Effect of contact angle hysteresis on the			
22 23	372		measurement of capillary forces. Langmuir 24(4):1391-1396			
24	373	7.	Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand			
25 26	374		specimens studied by computed tomography. Géotechnique 46(3):539-546			
27 28	375	8.	Feia S, Ghabezloo S, Bruchon JF, Sulem J, Canou J, Dupla JC (2014) Experimental evaluation of the pore-access			
29	376		size distribution of sands. Geotechnical Testing Journal 37(4):613-620			
30 31	377	9.	Fredlund DG, Xing A, Fredlund MD, Barbour SL (1995) The relationship of the partially saturated soil shear			
32	378		strength to the soil-water characteristic curve. Canadian Geotechnical Journal 33(3):440-448			
33 34	379	10.	Gallage CPK, Uchimura T (2010) Effects of dry density and grain size distribution on soil-water characteristic			
35 36	380		curves of sandy soils. Soils and Foundations 50(1):161-172			
37	381	11.	Gallipoli D, Wheeler S, Karstunen M (2003) Modelling the variation of degree of saturation in a deformable			
38 39	382		partially saturated soil. Géotechnique 53(1):105-112			
40	383	12.	Gvirtzman H, Magaritz M, Klein E, Nadler A (1983) A scanning electron microscopy study of water in soil.			
4⊥ 42	384		Transport in Porous Media 2:83–93			
43 44	385	13.	Haines WB (1930) Studies in the physical properties of soil – V: The hysteresis effect in capillary properties and			
45	386		the modes of water distribution associated therewith. Journal of Agricultural Science 20(1):97-116			
46 47	387	14.	Hamamoto S, Moldrup P, Kawamoto K, Sakaki T, Nishimura T, Komatsu T (2016) Pore network structure linked			
48	388		by X-ray CT to particle characteristics and transport parameters. Soils and Foundations 56(4):676–690			
49 50	389	15.	Haralick, RM, Sternberg, SR, Zhuang, X (1987) Image analysis using mathematical morphology. IEEE			
51 52	390		transactions on pattern analysis and machine intelligence 9(4):532-550			
53	391	16.	Hashemi MA, Khaddour G, François B, Massart TJ, Salager S (2014) A tomographic imagery segmentation			
54 55	392		methodology for three phase geomaterials based on simultaneous region growing. Acta Geotechnica 9(5):831-			
56	393		846			
57 58	394	17.	Higo Y, Oka F, Kimoto S, Sanagawa T, Matsushima Y (2011) Study of strain localization and microstructural			
59 60	395		changes in partially saturated sand during triaxial tests using microfocus X-ray CT. Soils and Foundations			
61			22			
62 63			23			
64						

51(1):95-111

- 18. Higo Y, Oka F, Sato T, Matsushima Y, Kimoto S (2013) Investigation of localized deformation in partially saturated sand under triaxial compression by microfocus X-ray CT with digital image correlation. Soils and Foundations 53(2):181-198
- 19. Higo Y, Oka F, Morishita R, Matsushima Y, Yoshida T (2014) Trinarization of μ X-ray CT images of partially saturated sand at different water retention states using a region growing method. Nuclear Instruments and Methods in Physics Research B 324:63-69
- 20. Higo Y, Morishita R, Kido R, Khaddour G, Salager S (2015a) Local water retention behavior of sand during drying and wetting process observed by micro x-ray tomography with trinarization. The 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Japanese Geotechnical Society Special publication 2(16):635-
- 21. Higo Y, Oka F, Morishita R, Matsushima Y (2015b) Quantitative observation of strain localisation in a partially saturated triaxial specimen using microfocus X-ray CT with image analysis. In: proceedings of the 10th International Workshop on Bifurcation and Degradation in Geomaterials:325-330
- 22. Higo Y, Kido R, Takamura F, Fukushima Y (2018) Pore-scale investigations of partially water-saturated granular soil. Mechanics Research Communications 94:1-7
- 23. Khaddour G, Salager S, Higo Y, Andò E, Desrues J (2015) Discrete analysis of water phase evolution within 30 412 unsaturated soil. In: proceedings of the 2nd International Conference on Tomography of Materials and Structures, 33 414 30th June-3rd July 2015, Quebec, Canada
- 24. Khaddour G, Riedel I, Ando E, Charrier P, Besuelle P, Desrues J, Viggiani G, Salager S (2018) Grain-scale characterization of water retention behaviour of sand using X-ray CT. Acta Geotechnica 13:497–512
- 25. Kido R, Higo Y (2017a) Evaluation of distribution of void ratio and degree of saturation in partially saturated 38 417 triaxial sand specimen using micro x-ray tomography. Japanese Geotechnical Society Special Publication 5(2):22-
- 26. Kido R, Higo Y, Salager S (2017b) Microscopic investigation of progressive changes of pore water distribution in shear band of unsaturated sand under triaxial compression. In: proceedings of the 19th International Conference 46 422 on Soil Mechanics and Geotechnical Engineering:1171-1174
- 27. Kido R, Higo Y (2019) Distribution changes of grain contacts and menisci in shear band during triaxial compression test for unsaturated sand. Japanese Geotechnical Society Special Publication 7(2):627-635
- 28. Kim FH, Penumadu D, Hussey DS (2012) Water distribution variation in partially saturated granular materials using neutron imaging. Journal of Geotechnical and Geoenvironmental engineering 138(2):147-154
- 29. Kim FH, Penumadu D, Gregor J, Kardjilov N, Manke L (2013) High-resolution neutron and X-ray imaging of granular materials. Journal of Geotechnical and Geoenvironmental engineering 139(5):715–723
- 30. Kohgo Y, Nakano M, Miyazaki T (1993) Theoretical aspects of constitutive modelling for partially saturated soils. 57 429 Soils and Foundations 33(4):49-63
- 60 431 31. Lai Z, Chen Q (2019) Reconstructing granular particles from X-ray computed tomography using the TWS

machine learning tool and the level set method. Acta Geotechnica 14:1-18

- 32. Manahiloh KN, Meehan CL (2017) Determining the soil water characteristic curve and interfacial contact angle from microstructural analysis of X-ray CT images. Journal of Geotechnical and Geoenvironmental Engineering 143(8):1-11
- 33. Mašín D (2010) Predicting the dependency of a degree of saturation on void ratio and suction using effective stress principle for partially saturated soils. International Journal for Numerical and Analytical Methods in Geomechanics 34(1):73-90 14 438
- 34. Moro F, Böhni H (2002) Ink-bottle effect in mercury intrusion porosimetry of cement-base materials. Journal of 17 440 Colloid and Interface Science 246:135-149
 - 35. Mukunoki T, Miyata Y, Mikami K, Shiota E (2016) X-ray CT analysis of pore structure in sand. Solid Earth 7(3):929-942
- 36. Nguyen CD, Benahmed N, Andò E, Sibille L, Philippe P (2019) Experimental investigation of microstructural 22 443 changes in soils eroded by suffusion using X-ray tomography. Acta Geotechnica 14: 749-765
 - 37. Oda M, Takemura T, Takahashi M (2004) Microstructure in shear band observed by microfocus X-ray computed tomography. Géotechnique 54(8):539-542
- 38. Prapaharan S, Altschaeffl AG, Dempsey BJ (1985) Moisture curve of a compacted clay: mercury intrusion method. Journal of Geotechnical Engineering 111(9):1139–1143 30 448
- 39. Romero E, Gens A, Lloret A (1999) Water permeability, water retention and microstructure of unsaturated 33 450 compacted Boom clay. Engineering Geology 54(1-2):117-127
- 40. Romero E, Simms PH (2008) Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy. Geotechnical and Geological Engineering 26(6):705-727 38 453
 - 41. Scheel M, Seemann R, Brinkmann M, Di Michiel M, Sheppard A, Breidenbach B, Herminghaus S (2008) Morphological clues to wet granular pile stability. Nature Materials 7:189-193
 - 42. Sun D, Sun W, Xiang L (2010) Effect of degree of saturation on mechanical behaviour of unsaturated soils and its elastoplastic simulation. Computers and Geotechnics 37:678-688
- 46 458 43. Vachaud G, Thony JL (1971) Hysteresis during infiltration and redistribution in a soil column at different initial water contents. Water Resources Research 7(1):111–127
 - 44. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of partially saturated soil. Soil Science Society of America Journal 44(5):892-898
- 45. Vanapalli SK, Nicotera MV, Sharma RS (2008) Axis translation and negative water column techniques for suction control. Geotechnical and Geological Engineering 26:645-660 54 463
- 46. Wang JP, Lambert P, De Kock T, Cnudde V, François B (2019) Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomography. Acta Geotechnica 14:1545–1559 57 465

1 2				
3 4				
5 6	468	List of Tables		
7				
8 9	469	Table 1. Physical properties of	Toyoura sand	
10 11				
12	470	Table 2. Specimen conditions		
13 14				
15 16	471	Table 2. Same Gastians of mice	- f	in stalling EDD
17	4/1	Table 3. Specifications of micr	ofocus x-ray apparatus	installing FPD
18 19				
20 21	472	Table 4 Validation results	s for CT images wit	th different resolutions
22				
23 24	473			
25 26				
27	474	Table 1. Physical properties of	Toyoura sand	
28 29				
30 31		Particle density (g/cm ³)	2.64	
32		Maximum void ratio	0.975	
33 34		Minimum void ratio	0.614	
35 36		Average diameter (mm)	0.185	
37		Uniformity coefficient	1.6	
38 39		Fines content (%)	0.1	
40 41	475			
42	110			
43 44	470			
45 46	476	Table 2. Specimen conditions		
47		Diameter (mm)	18.00	
48 49		Height (mm)	17.74	
50 51		Initial void ratio	0.822	
52		Initial porosity (%)	45.12	
53 54		Relative density Dr (%)	42.38	
55 56		Initial degree of saturation (%)	100.00 (Assumption)	
57	477			
58 59	411			
60 61				
62				26
63 64				

Table 3. Specifications of microfocus x-ray CT apparatus				
	Max. voltage (kV)	225		
X-ray	Max. current (mA)	0.888		
source	Max. consumption power (W)	200		
	Min. focus size (µm)	4		
	Image matrices	1024 ²		
Flat	Resolution performance (µm)	5		
panel	Integration time (ms)	66-999		
detector	Projection views	600-4800		
(FPD)	Number of images averaged at	1.50		
	each projection view	1-50		

32 481

 $1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 478 \\ 6 \\ 7 \\ 8 \\ 9 \\ 479 \\ 10$

Table 4 Validation results for CT images with different resolutions

	Measured value	Trinar	ization 482
Case	Specimen	А	В
Void ratio	0.846	0.831	0.820
Degree of saturation	0.662	0.656	0.725 483
Water content	0.212	0.206	0.225

 $\begin{array}{c} 44\\ 45\\ 46\end{array} 485$

 $\begin{array}{r} 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 50\\ 61\\ \end{array}$

1 2 3		
4 5 6 7	486	List of Figures
8 9 10 11	487	Fig. 1 Grain size distribution curve of Toyoura sand
12 13 14	488	Fig. 2 Schematic illustration of test apparatus and negative water column
16 17 18	489	Fig. 3 Scan area and conditions
19 20 21 22	490	Fig. 4 Gray value distributions obtained by maximum likelihood evaluation: (a) assumption of gray value distributions
23 24 25	491	as normal and uniform distributions and (b) superposition of gray value distributions
26 27 28 29	492	Fig. 5 Conceptual diagram of determination of tolerances for region growing
30 31 32	493	Fig. 6 Horizontal cross section of trinarized image
34 35 36	494	Fig. 7 Validation of trinarization technique: (a) specimen and (b) application of trinarization to CT images
37 38 39 40	495	Fig. 8 Gray value histograms for CT images: (a) Case A (6.72 μ m in resolution) and (b) Case B (12.25 μ m in resolution)
41 42 43 44	496	Fig. 9 Procedure for morphology analysis of pore water phase
45 46 47	497	Fig. 10 Water retention curve
49 50 51	498	Fig. 11 Horizontal and vertical cross sections of original CT images and trinarized images
52 53 54 55	499	Fig. 12 Local void ratios at different degrees of saturation
56 57 58 59	500	Fig. 13 Comparison of water retention curve with those calculated using trinarization
60 61 62 63 64 65	501	Fig. 14 Cluster volume distribution curves: (a) pore air and (b) pore water 28

1 2 3		
4 5 6 7	502	Fig. 15 Maximum volume of clusters at different degrees of saturation: (a) pore air and (b) pore water
8 9 10	503	Fig. 16 Total volume of clusters at different degrees of saturation: (a) pore air and (b) pore water
11 12 13 14	504	Fig. 17 3D and 2D views of pore water clusters for different levels of continuity
15 16 17 18	505	Fig. 18 Pore water clusters with different volumes at grain contacts (point "e")
19 20 21	506	Fig. 19 3D and 2D views of pore air clusters for different levels of continuity
22 23 24 25	507	Fig. 20 Pore air clusters with different volumes (point "c")
26 27 28 29	508	Fig. 21 Continuity of clusters at different degrees of saturation: (a) pore air and (b) pore water
30 31 32	509	Fig. 22 Number of clusters at different degrees of saturation: (a) pore air and (b) pore water
33 34 35 36	510	Fig. 23 Summary of morphology analysis
37 38 39		
40 41 42 43		
44 45 46		
48 49 50		
51 52 53 54		
55 56 57		
58 59 60 61		
62 63 64 65		29

Fig. 1 Grain size distribution curve of Toyoura sand

Fig. 2 Schematic illustration of test apparatus and negative water column

Fig. 3 Scan area and conditions

Fig. 4 Gray value distributions obtained by maximum likelihood evaluation: (a) assumption of gray value distributions as normal and uniform distributions and (b) superposition of gray value distributions

Fig. 5 Conceptual diagram of determination of tolerances for region growing

Fig. 6 Horizontal cross section of trinarized image

Fig. 7 Validation of trinarization technique: (a) specimen and (b) application of trinarization to CT images

Fig. 8 Gray value histograms for CT images: (a) Case A (6.72 μ m in resolution) and (b) Case B (12.25 μ m in resolution)

Fig. 9 Procedure for morphology analysis of pore water phase

Fig. 10 Water retention curve

Point k (global degree of saturation=79.02%)

Fig. 11 Horizontal and vertical cross sections of original CT images and trinarized images

Fig. 12 Local void ratios at different degrees of saturation

Fig. 13 Comparison of water retention curve with those calculated using trinarization

Fig. 14 Cluster volume distribution curves: (a) pore air and (b) pore water

Fig. 15 Maximum volume of clusters at different degrees of saturation: (a) pore air and (b) pore water

Fig. 16 Total volume of clusters at different degrees of saturation: (a) pore air and (b) pore water

Fig. 17 3D and 2D views of pore water clusters for different levels of continuity

Fig. 18 Pore water clusters with different volumes at grain contacts (point "e")

Fig. 19 3D and 2D views of pore air clusters for different levels of continuity

Fig. 20 Pore air clusters with different volumes (point "c")

Fig. 21 Continuity of clusters at different degrees of saturation: (a) pore air and (b) pore water

Fig. 22 Number of clusters at different degrees of saturation: (a) pore air and (b) pore water

Process	Drying						Wetting						
Points	а	b	с	d	е	f	g	h	i	j	k	Ι	m
Global S _r (%)	100	92.51	68.53	46.05	28.56	16.07	10.08	\backslash	33.56	51.54	79.02		\backslash
Continuity (air)	Discontinuous		Continuous		Contir	ntinuous		Continuous Continuous		Discon- tinuous			
Continuity (water)	Continuous		Continuous		Discontinuous					Conti- nuous			
Cluster volume (air)	Small			Large				Large					
Cluster volume (water)	Large			Small			Large						
Number of clusters (air)	Large Small						Sr	nall	Large				
Number of clusters (water)	Small La			irge			La	rge	Small				

Note 1: "continuous" means a continuity of nearly 100%, while "discontinuous" means a continuity of nearly 0%. Note 2: 1.0×10^6 voxels and 1.0×10^4 voxels are thresholds for the air phase and the water phase, respectively, where their morphologies transit from "large cluster volume" to "small cluster volume" and vice versa. Note 3: Thresholds between "large number of clusters" and "small number of clusters" are 7.0×10^3 (air) and 1.5×10^4 (water), respectively.

Fig. 23 Summary of morphology analysis