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Abstract. Tree ring analysis is an important field of science, and is vital in modeling the
environmental response system of tree growth. In most cases, analyses have been conducted
using one parameter from one tree ring, e.g., ring-width, density, or ratio of stable isotopes. The
information within a ring, however, has been less studied, although it offers many more
possibilities for investigation, such as seasonal responses over shorter time scales. Therefore,
to elucidate the sub-seasonal climatic response of softwood (Cryptomeria japonica), we
investigate the use of a wavelet–convolutional neural network (CNN) model, which
incorporates spectral information that is normally lost in conventional CNN models. This paper
highlights the usefulness of the wavelet-CNN for classifying cross-sectional optical
micrographs and extracting structural information specific to a calendar year. Class activation
maps indicate that the dimension and position of cells in a radial file are likely to be
discriminative features for the wavelet-CNN. This study shows that wavelet-CNNs have the
potential to be highly effective methods for dendrochronology.

1. Introduction
Tree ring analysis is an important task in many fields, including dendrochronology, dendroclimatology,
and modeling the tree growth environmental response systems [1]. In these studies, tree ring widths
have been used as the main feature for analyzing the relationships between tree growth and climate and
for reconstructing past long-term climatic change. At the same time, there have been several attempts
to extract much finer seasonal responses within an annual ring [2] [3]. For example, the structure of
hardwood, which is more differentiated anatomically than that of softwood. Among the many
anatomical features in this structure, vessel parameters are considered to be the best promising proxies
for seasonal dendroclimatic analysis [4] [5].

In contrast, the structure of softwood, which is simpler, more regular and periodic, the structural
signature is not obvious. However, recent analysis has suggested that the changes of wood density from
earlywood to latewood [6] or radial diameters and cell wall thickness in a radial file could reflect well
the intra- annual seasonal responses [7]. The information within a ring, however, is expected to be
much more complex, and it seems difficult to reach a general conclusion from visual inspection or a

Anatomical traits of Cryptomeria japonica tree rings 
studied by wavelet convolutional neural network 

  1*,3
 

 
  1*  T Nakajima  , K Kobayashi  and J Sugiyama   2

  2
      Research Institute for Sustainable Humanosphere, Kyoto University, Uji Kyoto 611-0011, Japan 
       Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
       College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China   3

  1



ICFP 2019

IOP Conf. Series: Earth and Environmental Science 415 (2020) 012027

IOP Publishing

doi:10.1088/1755-1315/415/1/012027

2  

limited number of measurements. Given this situation, we have employed deep-learning in the field of 
tree ring analysis.  

In recent years image recognition technology has improved and has been applied in various fields. 
It is also applied to the field of wood science especially in species (wood) identification. Several 
methods such as the gray level co-occurrence matrix [8, 9], local binary patterns [10, 11], and higher 
order local autocorrelation [12] have been employed to extract features from wood images. 
Identification with high accuracy was achieved using these features extracted from various types of 
images such as stereomicrographs, optical micrographs, or images from 3D computed X-ray 
tomography. More recently, Scale-Invariant Feature Transform (SIFT) [13], which are robust features 
based on the local density gradient, were used to analyze optical micrographs of family Lauraceae [14]. 
The result indicates that the classification can be performed with precision, and features specific to the 
species provide anatomical implications so far unreported as a result of visual inspection. This 
conclusion was further confirmed by employing bag-of-feature models of SIFT descriptors [15]. These 
studies strongly suggest the applicability of computer vision as a new tool for wood anatomy. 

In addition to the above conventional machine learning approaches using manually designed 
feature extractors and classifiers, CNNs have also been tested. In addition to Lauraceae, about 8,000 
images from six classes and 51 genera were used to form a hardwood image database that was tested 
by VGG16 model and its modified form. The resulting accuracy was excellent; however, when the 
same model was applied to the softwood database (e.g., pine and cypress) it was no better than visual 
inspection [16].  

As already mentioned, softwood appearance is simpler and more regular than that of the hardwood. 
Similar to many algorithms, CNNs process images directly in the spatial domain; thus, a CNN is 
considered to be an essentially spatial approach [17]. In contrast, spectral information such as repetition 
and periodicity is another important type of image information, particularly in the case of softwood 
images. Therefore, to include both spatial and spectral information, a combined model consisting of 
the wavelet transform and a CNN (wavelet-CNN) [17] was examined in this study. 

In this paper, we report the results of calendar year predictions using two strategies, namely 
wavelet-CNN analysis using optical microscopic images and a random forest classifier with 21 
anatomical features estimated from each ring. The performance of wavelet-CNN is evaluated against 
the results obtained by random forest analysis. 
 
2. Material and methods 
 
2.1 Wood material 
Three wood disks from Japanese cedar (Cryptomeria japonica, D. Don) planted in the Ashiu 
Experimental Forest, Field Research Center, Kyoto University, were investigated. The trees fell during 
the typhoon in 2017 and consists of the around 70 years annual rings up to 2017. In addition, a precise 
meteorological data of the site is available for the future ring-climate correlation analysis. For each 
wood disk, wood blocks from four different radial directions were collected, and assigned labels A to 
D.  
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From each wood block, transverse sections (20 µm thick) were prepared using a sliding 
microtome (Yamato, Japan) and the wood surface was covered with a corn starch solution. The quality 
of the transverse sections was greatly improved using this method, because it significantly decreases 
the incidence of secondary cell walls splitting off the primary wall while making transverse sections 
[18]. After preparing the transverse sections, they were stained with 0.5% safranin solution. These 
sections covered 18 annual rings (2000–2017) in all directions from each wood disk. 

Then, the cross-sectional images were acquired with an Olympus™ 2× (0.08 NA) PlanApo 

objective lens using a BX51 optical microscope equipped with a DP73 charge-coupled device camera. 
The original image was RGB color and had a size of 1600 ×1200 pixels with a pixel resolution of 2.2 
μm. 
 
2.2 Image preprocessing 
One of the most striking differences between hardwood and softwood is that the softwood cells 
(tracheids) are perfectly aligned along the radial directions. These series of cells are generated by the 
cell division of the same cambial initials and called radial files. Assuming that each radial file must 
contain seasonal memory of the climate, the radial files are aligned horizontally as precisely as possible. 
For this purpose, the Fourier transform is used, as shown in Figure 3b, to find the angle between the 
vertical axis of the image and the maximum intensity of the streak that appears perpendicular to the 
radial files in the power spectrum (indicated by the arrow). After rotating an image by, as shown in 
Figure 3c, density profiles along the horizontal directions were measured and the annual ring borders 
were located. Then, smaller images covering one annual ring were cropped and reshaped into 80  800 
(height × width) pixel images. The resulting images form the final image database, which is 
summarized in Table 1. 
 

 
2.3 Wavelet-CNN model 
Of the several existing networks, the wavelet-CNN recently proposed by Fujieda et al. [9] is 
investigated in the present analysis. In this study, Haar wavelets are used as the mother wavelet. 
Because Haar wavelets are orthogonal functions, they are suitable for representing radial and tangential 

Table 1. Summary of the image database 

Figure 1. Series of image preprocessing steps. a) Original image, b) power spectrum of (a), c) image 
after rotation, and d) images after cropping and resizing. 
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properties; tangential and radial cell walls appear as discrete signals and are almost aligned in either 
the vertical or horizontal direction. Based on the above points, each image was divided into four 
different frequency blocks after wavelet transformation. These LL, HL, LH, and HH blocks are shown 
in Figure 2. In this research, the LL and HL blocks were included in the wavelet-CNN to obtain 
information about the transition of radial cell walls, which reflects the annual growth pattern in the 
target calendar year. Up to five levels of image wavelet decompositions were extracted, as shown in 
Figure 2. Clearly, images of levels 1–3 appear to contain information about the specific patterns in 
radial files; the average resolution of one pixel is estimated to be 4.4 µm (level 1), 9 µm (level 2), 18 
µm (level 3), 36 µm (level 4), and 72 µm (level 5). This also means that three levels were the upper 
limit for detecting cells in a radial file. Thus, in this research, the original tree ring images and those 
after 1–3 levels of wavelet decomposition were trained using the wavelet-CNN. 

For the first training–testing division, 17% of the dataset were used as test data, maintaining 
equal proportions of each directional dataset, and the rest formed the training dataset. Three evaluation 
methods were prepared. First, the test set included only one directional data image and we examined 
how the wavelet-CNN extracted year-specific features from each directional dataset. Secondly, the test 
set included data from one individual and we tested whether the wavelet-CNN could extract year-
specific features from each individual wood disk, beyond directional anisotropy. Finally, the test set 
included all original test data and we tested whether the wavelet-CNN could extract year-specific 
features beyond individual differences. Validation was performed using the 17% of data in the training 
set, and the models constructed after 100 epochs (repetation of training) were evaluated using the test 
set. The whole process was repeated three times. All programs were written in Python 3.6 using the 
Keras and TensorFlow libraries. 
 

 
2.4 Anatomical feature and random forest 
We calculated anatomical feature parameters from each tree ring micrographs with the original ring 
widths. Tree ring images were binarized using Otsu’s criteria [19]. Anatomical features such as lumen 
area, lumen radial diameter (LRD), and the centroid coordinates of cell lumen were then calculated 
using the Connected Component routine from the Python library. The wall radial thickness (WRT) of 
the cells was calculated using the LRD and the centroid coordinates of cell lumen. We present an 
example of calculating the WRT of Cell_1 in Fig. 3(d) from the anatomical features of two adjacent 
cells, Cell_1 and Cell_2. WRT is the average value (half) of the difference between the centroid 

Figure 2. Example of a discrete wavelet transform decomposition. At each level, four different frequency 
blocks, LL, HL, LH, and HH, are shown at the top-left, bottom-left, top-right, bottom-right, respectively. 
L: low frequency, H: high frequency. The average resolution of one pixel is estimated to be 4.4 µm (level 
1), 9 µm (level 2), 18 µm (level 3), 36 µm (level 4), and 72 µm (level 5). In the wavelet-CNN used in 
this research, only LL and HL are included. 
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distance �(����) and the corresponding lumen length ( 
(���	
����)

� ). In this calculation, we assume 

that adjacent WRTs have the same value and that the WRT of the target cell (Cell_1) is equal to the 
right-hand WRT next to the target cell lumen. The above description can be expressed by the following 

equation: �� = ��(����) − (���	
����)
� � /2 . At this point, accidentally connected regions were 

excluded as outliers. Such regions include those where the lumen size is greater than 50 μm in height 
or 60 μm in width, and areas with a lumen size of less than 10 μm width that are positioned 4/5 of the 
tree ring width from the earlywood boundary, or have an aspect ratio of less than 0.5 (height/width) or 
greater than 3, which are considered to be noise. These threshold data on Cryptomeria japonica are 
taken from [20]. The annual ring images were then divided into ten equal portions. From each portion, 
we calculated the average LRD and cell WRT (20 parameters) and the tree ring width. Thus, a total of 
21 parameters were taken from each tree ring image. The LRD, WRT, and ring width values were then 
standardized. In this research, several methods used in general tree ring analysis, such as constructing 
the chronology or detecting the growth trend, were not used. 

Calendar year prediction was conducted using a random forest approach. In recent years, 
research using machine learning instead of traditional linear models has increased, with several 
machine learning techniques outperforming linear models [21]. Thus, we decided to use the random 
forest classifier, which is a machine learning method, to evaluate the contribution of each important 
feature to the result. The training and test data were divided in the same way as described in section 
2.3. 
 

3. Result and discussion 
 
3.1 Effect of radial position on prediction accuracy 
The results of calendar year prediction using the wavelet-CNN and random forest approaches are 
presented in Table 2. First, the wavelet-CNN accuracy averages more than 70%. This is an amazing 
result because comparative classifiers using VGG-like models, which have not been described in detail 
in this paper, cannot achieve accuracy levels above 15%. VGG-like models only conduct species 
identification of hardwood, but wavelet-CNN can predict the calendar year from tree ring images taken 
from one species, Cryptomeria japonica, that are slightly different but very similar to each other. There 
were some differences in accuracy for each direction, especially in AS_1.  

We mixed all the image data taken from different radial directions of the three wood disks and 
repeated the tests. Because of the directional anisotropy of wood, even in an image set from the same 

Figure 3. Series of image processing steps for calculating anatomical features. a) Original image, b) image 
binarized using Otsu’s method, c) calculating lumen radial diameter (LRD) and centroid coordinates of cell 
lumen by Connected Component method, and d) representation of a schematic radial file of two adjacent 
cells and calculating cell wall radial thickness (WRT) using LRD and centroid coordinates of cell lumen. 
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year, the rings vary in width, i.e., there are different numbers of cells in the radial files. This is because 
the annual rings are not exactly concentric and the growth is directionally different. However, to our 
surprise, the wavelet-CNN provided an accuracy of around 75%. This indicates that the computer 
vision approach can successfully detect so-far unknown sub-seasonal rhythms in radial files that are 
sufficiently discriminative to mitigate the directional fluctuation of radial growth and individual 
differences. 
 Secondly, the accuracy of the random forest classifier and anatomical features was examined. 
The calendar year prediction using the random forest achieves an accuracy of around 50–60% when 
testing each individual and 46% when testing all of the mixed test data. It is remarkable that only 21 
measured values can achieve over 50% accuracy in calendar year prediction, and several tree ring 
studies using such tree growth parameters have reported interesting correlations between annual growth 
patterns and climate information [7]. Based on this fact, there is a strong chance that wavelet-CNNs 
could be used to provide deeper insights in the field of tree ring research. 

 
3.2 Attentional area for the prediction 
Using the final convolutional layer of the wavelet-CNN model, gradient–class activation map (Grad-
CAM) images were obtained following the method proposed by Selvaraju et al. [22] in order to see the 
place where network was excited. Typical images, together with the corresponding CAMs from all 
directions of AS_1 in 2004, are presented in Figure 4. The upper images for each direction represent 
the original tree ring image and the lower images represent the rational judgements of the upper images 
made by Grad-CAM. Red parts are those that are important in determining the correct year. The reason 
why these upper and lower images represent the same tree ring image but the ring widths are different 
is that the lower images have been reshaped to have a width of 800 pixels so that all tree ring images 
are the same size. Intriguingly, the regions of attention are found in very similar radial positions in the 
annual rings, and the area where the cell wall is thicker than the surrounding area in the transition zone 
from earlywood to latewood receives significant attention in all images.  

The phenomenon whereby cell walls in particular areas are thicker than those in surrounding areas 
can be considered as the tree growth activity being occasionally weakened by harsh drying during 
midsummer, then refreshed by off-seasonal late summer precipitation. In this case, the normal 
transition from earlywood to latewood can be modulated in such a way that a partial recovery from 
latewood to earlywood occurs. Usually, such a minor modulation is not noticeable by visual inspection. 
This study has, however, elegantly demonstrated for the first time that the modulation and its position 
can be a discriminative feature of the calendar year. 

Variation within a ring is sufficiently large to be greater that the variation among different rings. 
As a potential method of normalizing this difference to allow for comparison, we resized all the images 
to 80 × 800 pixels. However, more work is needed on the data normalization along the radial direction 
to preserve the time scale as precisely as possible.  

Although there are still several important issues to overcome, the applicability of wavelet-CNNs is 
promising. In particular, such models will shed light on softwood identification, which has so far been 
difficult using conventional CNNs such as VGG-like models. Work along these lines is also in progress. 

Table 2. Accuracy of calendar year prediction using wavelet-CNN and random forest classifier 
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ecological studies. New Phytologist 163 77–86,

Figure 4. CAMs using the final convolutional layer [18] in our wavelet-CNN. The highlighted area 
indicates the discriminative image regions used by the network to identify the corresponding calendar 
year. In the case of AS_1 in 2004, the transition zone is highlighted in all directions.

4. Conclusion 
In this study, a wavelet-CNN was shown to be useful for classifying cross-sectional optical micrographs 
indexed by the year of the annual ring. This network may have a potential to extract structural 
information specific to a calendar year, which was previously thought to be impossible, even from 
visual scrutiny by experts. A comparison of wavelet-CNN and random forest methods suggests that 
wavelet-CNN may be used as dendroclimatology technique, because several tree ring studies using 
such tree growth parameters have reported interesting results regarding annual growth patterns and 
climate information. Although further studies using more samples from different individuals are 
required, the present study is the first successful deep learning approach to be applied to image data for 
tree ring analysis. Once a robust model has been established and correlated with climatic information, 
it may allow us to predict the record of sub-seasonal climatic information from the analysis of tree 
rings. 
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