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Cauer Ladder Network Representation of a Nonlinear
Eddy-current Field using a First-order Approximation
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An approximation approach is proposed for the analysis of nonlinear quasi-static eddy currents adopting a Cauer ladder network
(CLN). When there are nonlinear magnetic materials in the analysis domain, the electric and magnetic modes and their corresponding
values for resistors and inductors in the CLN may vary according to the level of saturation in the core. Considering the effects of
the modes and their magnitudes on the saturation imposes a heavy computational burden, which brings the efficiency of the CLN
method into question. This paper studies a first-order approximation of the nonlinear CLN method to keep the nonlinearization
procedure computationally effective, simple, and accurate. Numerical tests are carried out for a two-dimensional nonlinear inductor
excited with rectangular and sinusoidal excitations to show the accuracy of the proposed nonlinear resolution method.

Index Terms—Nonlinear Cauer Circuit, eddy current, finite element method, model order reduction.

I. INTRODUCTION

ELECTROMAGNETIC drive systems require accurate and
computationally inexpensive mathematical models for

their electromagnetic devices. These models are expected to
cover all the moving parts, magnetic nonlinearities, eddy cur-
rents, and hysteresis losses over a wide range of frequencies.
Although the finite element method (FEM) covers all the
requirements mentioned above, its high computational cost
makes it ineffective and less favorable in control applications.

The demand for efficient mathematical models on the one
hand and the inadequate performance of the FEM on the
other hand has encouraged researchers to apply model order
reduction (MOR) techniques to magnetodynamic fields. MOR
helps reduce the complexity of mathematical models without
considerably sacrificing accuracy.

Among different MOR techniques, proper orthogonal de-
composition (POD) is most commonly used in the field of
computational electromagnetics [1]–[3]. POD-based MOR has
been shown to be efficient for linear problems; however,
it encounters difficulties in terms of a loss of accuracy in
saturated regions, instabilities in numerical solutions, and
increased computational cost. Innovative approaches have been
proposed to tackle these issues [4]–[6]; however, the present
paper solves the problem using a totally different approach
based on the Cauer ladder network (CLN).

The CLN was originally proposed as an equivalent circuit
representation of laminated magnetic sheets [7]. Owing to its
strong physical interpretation and high accuracy, the CLN has
been generalized beyond one-dimensional problems [8],[9].
The CLN can be constructed in a few sets of sequential finite-
element magnetostatic-field analyses. The use of the CLN
method removes the need for taking snapshots and finding
the eigenvalues of large matrices.

The present paper expands the applicability of the CLN
to the nonlinear eddy-current field. The proposed method
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Fig. 1. Eddy-current field configuration

considers magnetic saturation by approximating the saturation
effects in the first magnetic mode. The remainder of the paper
is organized as follows. The second chapter briefly explains
the CLN method. The third chapter discusses the effects of
nonlinear magnetic material on CLN parameters. The fourth
chapter proposes our nonlinearization technique and gives
numerical examples.

II. MATRIX-BASED FORMULATION OF THE LINEAR CLN

In finite element space, the vector potential A, electric field
E, and magnetic flux B can be defined with edge elements
w1
i and facial elements w2

j as

A =
∑
i

aiw
1
i , E =

∑
i

eiw
1
i , B =

∑
j

bjw
2
j , (1)

in which ai and ei, respectively, represent the line integration
of A and E along the ith edge while bj is the surface
integration of B over the jth face in analysis domain Ω [10].
The set of line and face integrals are used to construct variable
vectors as

a = [a1, a2, ...]
T
, e = [e1, e2, ...]

T
, b = [b1, b2, ...]

T
. (2)

In the matrix formulation of the FEM, the curl operator is
defined as an edge–face incident matrix, C, such that B =
∇×A can be rewritten as

b = Ca. (3)
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Fig. 2. Cauer circuit

The governing equation of the eddy-current field in quasi-
magnetostatic mode excited by the power supply as shown in
Fig. 1 is

CTνb = CTνCa = σe+ j0, (4)
Ce = −∂tb = −∂tCa. (5)

Here, j0 is the external current and ν and σ are, respectively,
the reluctivity and conductivity matrices defined as

ν = νij , νij =

∫
Ω

1

µ
w2
i ·w2

jdΩ,

σ = σij , σij =

∫
Ω

σw1
i ·w1

jdΩ, (6)

where µ and σ are, respectively, the permeability and conduc-
tivity. For the sake of brevity, the coefficient matrix in (4) is
denoted K:

K = CTνC. (7)

The eddy-current field in Fig. 1 is described by its
impedance in the frequency domain. The impedance can be
represented in the form of continued fractions as

Z (s) =
V (s)

I(s)
=

b0 + b1s+ b2s
2 + ...

a0 + a1s+ a2s2 + ...

= R0 +
1

1
L1s

+ 1
R2+ 1

1
L3s

+...

. (8)

The equivalent circuit for (8) is depicted in Fig. 2. In the
CLN method, the electric field e and magnetic vector potential
a are decomposed into a set of time-constant electric e2n

and magnetic a2n+1 modes, respectively weighted by e2n and
h2n+1 [8]:

e =

∞∑
n=0

e2n(t)e2n, (9)

a =

∞∑
n=0

h2n+1(t)a2n+1. (10)

Referring to Fig. 2, e2n and h2n+1 are, respectively, the
voltage drop over R2n and the current in L2n+1. R2n and
L2n+1 are, respectively, normalizing constants that ensure the
orthogonality of the electric and magnetic modes:

eT2nσe2m =
δnm
R2n

, (11)

aT2n+1Ka2m+1 =δnmL2n+1, (12)

where δnm is the Kronecker delta.

The CLN procedure starts from a unit power source and
a−1 = 0 with the recurrence formulas

K (a2n+1 − a2n−1) =R2nσe2n, (13)

e2n+2 − e2n =− 1

L2n
a2n+1. (14)

III. CLN WITH A NONLINEAR MAGNETIC CORE

The linearization of the nonlinear magnetic core was also
studied in [8]. The magnetic field in the core oscillates
closely around a specific working point, and permeabilities
are thus stored and frozen at that particular working point.
It has been shown that better results are obtained with the
differential frozen permeabilities (dB/dH) than with the
frozen permeabilities (B/H). We therefore rely on differential
permeabilities and reluctivities.

When there is a nonlinear magnetic core in Ω, the reluctivity
matrix should be considered an a-dependent function:

ν = νdiff(B) = νdiff(Ca), (15)

where νdiff is a differential reluctivity matrix that is the same
as that in (6) except that 1/µ is the differential reluctivity as
dH/dB. According to (10) and (15), the coefficient matrix in
(7) can be rewritten as

K = CTνdiff (Ca)C

= CTνdiff

( ∞∑
n=0

h2n+1(t)Ca2n+1

)
C. (16)

The proposed approach of approximating (4) is to consider
the first mode as the only source of saturation in the magnetic
core:

K ≈K
′

a1
= CTνdiff (h1(t)Ca1)C. (17)

n = 0, h1 ∈ dom(|i|)
a−1 = 0,σe0 = j0

1

R0
= eT0 σe0

solve: CTνdiff (h1Cã1)Cã1 = −R0σe0

a1 = a−1 + ã1

K
′

a1
= CTνdiff (h1Ca1)C

L2n+1 = aT2n+1K
′

a1
a2n+1

e2n+2 = e2n −
a2n+1

L2n+1

1

R2n+2
= eT2n+2σe2n+2

solve: K
′

a1
ã2n+3 = −R2n+2σe2n+2

a2n+3 = a2n+1+ã2n+3

n← n+ 1

Fig. 3. Flowchart of the first-order nonlinear CLN procedure
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Fig. 4. First-order nonlinear CLN circuit

The first magnetic mode is the most dominant mode in
shaping the saturation, and the above approximation will
therefore lead to reasonable results. Similar to the nonlin-
earization approach used in [8], the reluctivities corresponding
to h1a1 are stored for higher-order modes. Thereafter, the
shape and intensity of the electric and magnetic modes and
their corresponding resistance and inductance values in the
CLN will depend on h1. The proposed procedure of the
nonlinear CLN is depicted in Fig. 3. The procedure should be
repeated for an adequate number of points in the desired range
of h1, to obtain look-up tables for R2n(h1) and L2n+1(h1).

The approximation applied in (17) implies that h1 is the
only factor affecting saturation. However, in practice, satura-
tion in the core is affected by all h2n+1 components, equivalent
to the total current, i. We therefore argue that

R2n(h1) ≈ R2n(i), (18)
L2n+1(h1) ≈ L2n+1(i). (19)

Finally, the nonlinear CLN model comprises i dependent
look-up tables for CLN parameters as depicted in Fig. 4.

IV. COMPUTATIONAL RESULTS

The proposed model is applied to the two-dimensional iron-
core inductor depicted in Fig. 5 [9] to evaluate its efficacy.
Owing to geometrical symmetry, only one quarter of the
domain is analyzed. The bulk-type iron core has a nonlinear
magnetization characteristic defined by

B = Bs(Coth(
H

Hs
)− Hs

H
), (20)

where Bs = 1.25 T and Hs = 544 A/m are, respectively, the
magnetic flux density and field intensity at a weak-saturation
point. The conductivity of the conductor bar and the core are
given by 4× 107 S/m and 1× 106 S/m, respectively.

The core has single-turn coils excited with rectangular
and sinusoidal signals having a frequency of 500 Hz. The
amplitudes of both excitations are set to 3 volts to guarantee
adequate saturation in the core.

Saturation changes the shape and magnitudes of modes
as discussed in section III. Figure 6 depicts the effect of
saturation in the first magnetic mode on the higher-order
modes. For the sake of clarity, the magnitudes of the modes
are normalized according to maximum values. To represent
the saturation of the magnitudes of the electric and magnetic
modes, corresponding values of R2n and L2n+1 are drawn
with respect to h1 in Fig. 7.

Fig. 5. Iron-core dimensions in millimeters

Fig. 6. Normalized electric and magnetic modes at different saturation points
(h1 = 1A for the linear case, h1 = 50A as for the knee-point and fully
saturated regimes, h1 = 300A)

Fig. 7. (a) Resistances and (b) inductances of the nonlinear CLN circuit

A. Transient Analysis

To verify the proposed linearization method, the transient
response of the eddy-current problem is studied over five
cycles to cover both the transient and steady-state responses.
The finite element mesh space has 137,042 elements with
69,022 nodes, and a three-stage resistive termination circuit
is chosen for the CLN network model. In Fig. 8 and Fig. 9,
the FEM and the nonlinear CLN driven transient responses are
illustrated together with the linear CLN results. A comparison
of the linear and nonlinear CLN responses shows that the
input voltage is high for the core to saturate. Additionally,
the nonlinear CLN network has acceptable error according to
the results obtained using the FEM.

B. Number of Stages

In the CLN representation of the eddy-current field, a
higher number of stages improves the accuracy of the transient
response in higher-order harmonics. The same rule applies for
the nonlinear CLN.
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Fig. 8. Transient response with rectangular excitation

Fig. 9. Transient response with sinusoidal excitation

However, because the saturation is mainly determined by the
modes with larger magnitudes (i.e., the first and third modes),
the accuracy is nonlinearity becomes less dependent on the
number of stages; see Fig. 10.

Fig. 10. Transient response with sinusoidal excitation

C. Speed-up ratio

Considering that the computational cost of transient analysis
depends on the time span and time step, it is less meaningful
to consider the speedup ratio of the proposed method and tran-
sient analysis. Similar to other MOR methods, the nonlinear
CLN representation of the eddy-current field requires offline
calculations to be made to obtain the CLN parameters. The
offline computation of the proposed method comprises linear
and nonlinear magnetostatic field calculations. The cost of
the latter calculations is determined by the number of desired
discrete values for h1 ∈ dom(|i|), where dom(|i|) is the range
of all possible values for |i|.

In the case of the results shown in Fig. 8 and Fig. 9, the
conventional time-stepping finite element analysis comprises
10 cycles with 100 time steps in each cycle. There are
thus 1000 nonlinear field simulations. On the CLN side, a
four-stage first ladder network is chosen with 10 points in
dom(|i|) = [0, 200]A. Ten nonlinear simulations are thus
required for the first stage and 3 × 10 linear simulations for
the remaining stages. Assuming that each nonlinear system of
equations requires 4 iterations on average, the speed-up ratio
is roughly approximated as

Speed-up
Ratio

≈ 1000nonlin

10nonlin + 30lin
≈ 1000× 4

10× 4 + 30
= 57. (21)

V. CONCLUSION
A first-order approximation method for the analysis of

nonlinear eddy-current problems using the CLN concept was
proposed. This method considers the saturation effect on the
CLN parameters, considering only the first magnetic mode as
the source of nonlinearization. The first magnetic mode is the
most dominant, and the proposed approximation approach thus
provides acceptable outcomes. Additionally, implementation
of the proposed approach was simple and computationally
inexpensive. Finally, the method was applied to a simple two-
dimensional nonlinear iron core to verify its accuracy. The
model can be extended to consider both the first and second
magnetic modes as the source of saturation in future work.
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