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A partially-implicit solution method is developed for fast magnetization analysis using an assembled domain structure model. The 
implicit time-marching scheme is simplified to avoid the inversion of a dense Jacobian matrix by separating the magnetostatic field 
into near and far components. The proposed approach achieves a reduction of computation time by 94 to 99%. 
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I. INTRODUCTION 

DVANCED simulation technologies are being used in the 
computer-aided design of electric machines and 

electronic devices. Microscopic magnetic devices are also 
being designed using micro-magnetic simulations (MMSs) 
that solve the Landau-Lifshitz-Gilbert equation (LLGE) [1]–
[4]. For macroscopic or mesoscopic magnetization analyses, 
however, the solution of LLGE requires huge computational 
cost because of the exchange-field computation on nanoscale 
cells. Recently, several energy-based multiscale approaches 
[5]–[7] have been studied to construct physical macroscale 
models and succeeded to reconstruct the magnetization 
property of silicon steel. Among them, the assembled-domain-
structure model (ADSM) [7] can be applied to the mesoscopic 
analysis straightforwardly because it can handle the shape 
anisotropy due to the magnetostatic energy and the metastable 
magnetization states due to the magnetic anisotropy.  

The ADSM consists of mesoscopic two (or six) domain 
cells. It was successfully applied to an analysis of thin-film 
giant magneto-impedance (GMI) elements [8] and silicon 
steels [7]. In the ADSM, a magnetization state that locally 
minimizes the total energy is determined using explicit time 
integration [9], although at large computational cost. This 
study develops a partially-implicit time-integration method to 
find local energy minima at small computational cost. The 
partial-implicit method is compared with the explicit method 
and also with another efficient ADSM based on 
magnetization-state switching in unit cells using the threshold 
fields [10] in an analysis of the GMI sensor. 

II. PARTIALLY-IMPLICIT METHOD IN THE ADSM 

A. Simplified domain structure model and its assembly 

The simplified-domain-structure model (SDSM) is a 
mesoscopic magnetization model that represents the domain 
wall motion and magnetization rotation of two or six domains. 
Fig. 1(a) shows a schematic of the SDSM for two domains, 
where ሺ𝜙௜, 𝜃௜ሻ  is the spherical angles of the magnetization 
vector of domain i ሺ𝑖 ൌ 1,2ሻ ; 𝜆ଵ  and 𝜆ଶ ൌ 1 െ 𝜆ଵ  are their 
volume ratios. 

The ADSM is a macroscopic magnetization model 
[Fig. 1(b)] constructed by assembling unit cells, each being a 
SDSM [8]. The magnetization is described by the collective 
behavior of the cells. The magnetization state of each cell is 
determined by the local minimization of the total magnetic 
energy consisting of the Zeeman energy, anisotropy energy, 
domain-wall energy, and magnetostatic energy [9].  

The normalized total energy e of the ADSM is given as 
𝑒 ൌ 𝑒ୟ୮ି୥୪୭ୠୟ୪ ൅ 𝑒ୟ୬ି୥୪୭ୠୟ୪ ൅ 𝑒୵ି୥୪୭ୠୟ୪ ൅ 𝑒ୱ୲ି୥୪୭ୠୟ୪ , (1)

 
where the Zeeman energy 𝑒ୟ୮ି୥୪୭ୠୟ୪ , the anisotropic energy 
𝑒ୟ୬ି୥୪୭ୠୟ୪ , and the domain-wall energy 𝑒୵ି୥୪୭ୠୟ୪  are the 
summations of the energy components of all cells. The 
magnetostatic energy 𝑒ୱ୲ି୥୪୭ୠୟ୪  is due to the magnetostatic 
field to be discussed in II.B. 
 
 
 
 
 
 
 
 
 
 
               (a)                                                             (b) 
 
Fig. 1.  Schematics of (a) the SDSM and (b) the ADSM. 

 
The magnetization state of cell k is represented by the state 

variable vector 𝒙ሺ𝑘ሻ ൌ ሺ𝜙ଵ, 𝜃ଵ, 𝜙ଶ, 𝜃ଶ, 𝜆ଵሻ. The magnetization 
vector X in the ADSM consists of all the cell state variable 
vectors 𝒙ሺ𝑘ሻሺ𝑘 ൌ 1,2, ⋯ ሻ. 

The local minimization of e is achieved by solving the 
ordinary differential equation (ODE) given by  

ሺ
d𝑿
d𝑡

,
d𝒀
d𝑡

ሻ ൌ 𝑭ሺ𝑿, 𝒀ሻ ൌ ሺ𝒀, െ𝛾𝒀 െ
𝜕𝑒
𝜕𝑿

ሻ  (2)

where γ  is the coefficient of dissipation and Y is an 
intermediate variable vector. Equation (2) is an artificial state 
equation for X and Y. A local energy minimum is obtained by 
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numerically integrating (2) until reaching an equilibrium point 

where 
ௗ𝑿

ௗ௧
ൌ ௗ𝒀

ௗ௧
ൌ 0  (see Appendix for detail). The obtained 

equilibrium point depends on the initial conditions, meaning it 
depends on the magnetization history.  

B. Partially-implicit method 

The forward Euler method is often used to solve ODEs, but 
it is necessary to reduce significantly the step size if the ODE 
is stiff. In that case, an implicit scheme such as the backward 
Euler method is effective.  

The implicit time-integration of (2) requires the Hessian 
matrix 𝜕ଶ𝑒/𝜕𝑿ଶ. As the magnetostatic field depends on all the 
cells’ dipoles, the Hessian matrix becomes dense. This incurs 
a large computational cost if the number of cells is large 
because the nonlinear solution by the Newton–Raphson 
iteration requires the inversion of the Jacobian matrix 
including the Hessian matrix.  

A partially- or semi-implicit scheme [3], [4] is sometimes 
used in the MMSs to solve the LLGE efficiently. In most 
cases, the magnetostatic field is not handled implicitly but 
processed explicitly to avoid the full matrix inversion. In this 
study, however, the magnetostatic field is one of the dominant 
terms to be handled implicitly. This paper proposes the 
decomposition of magnetostatic field as below. 

The demagnetizing field 𝒉ୱ୲ሺ𝑖ሻ is obtained by convolution 

𝒉ୱ୲ሺ𝑖ሻ ൌ ෍ 𝒔ሺ𝑖 െ 𝑖′ሻ𝒎ሺ𝑖′ሻ
௜ᇲ

 , (3)

where i is the cell index, s the demagnetizing coefficient 
matrix, and m(i’) the magnetization vector of cell i’. Here 
𝒉ୱ୲ሺ𝑖ሻ is divided into near field 𝒉ୱ୲୧୬ሺ𝑖ሻ and far field 𝒉ୱ୲ୣ୶ሺ𝑖ሻ, 
where 𝒉ୱ୲୧୬ሺ𝑖ሻ and 𝒉ୱ୲ୣ୶ሺ𝑖ሻ are generated by cell i and by the 
other cells, respectively [10], [11]. They are given by 

𝒉ୱ୲୧୬ሺ𝑖ሻ ൌ 𝒔ሺ0ሻ𝒎ሺ𝑖ሻ, 

𝒉ୱ୲ୣ୶ሺ𝑖ሻ ൌ ෍ 𝒔ሺ𝑖 െ 𝑖ᇱሻ𝒎ሺ𝑖ᇱሻ
௜ᇲஷ௜

ൌ ෍ 𝒔ᇱሺ𝑖 െ 𝑖ᇱሻ𝒎ሺ𝑖ᇱሻ
௜ᇲ

,

𝒔ᇱሺ𝑖ሻ ൌ ൜
0      ሺ𝑖 ൌ 0ሻ
𝒔ሺ𝑖ሻ ሺ𝑖 ് 0ሻ

 . 

(4)

In the partially-implicit scheme, 𝒉ୱ୲ୣ୶ሺ𝑖ሻ  is temporally 
integrated by an explicit scheme whereas 𝒉ୱ୲୧୬ሺ𝑖ሻ is processed 
by an implicit scheme based on the fact that 𝒔′ሺ𝑖ሻ is smaller 
than 𝒔ሺ0ሻ. The time integration scheme is written as 

ሺ𝑿௡ାଵ, 𝒀௡ାଵሻ ൌ ሺ𝑿௡, 𝒀௡ሻ ൅ ∆𝑡𝑭୧୫ሺ𝑿௡ାଵ, 𝒀௡ାଵሻ
൅ ∆𝑡𝑭ୣ୶ሺ𝑿௡ሻ 

(5)

where Δt is the time-step and n is the time-index; F is 
decomposed as F(X, Y) = Fim(X,Y) + Fex(X); hstex is included 
in Fex and all the other terms of F are included in Fim. This 
method approximates the Hessian matrix in a block-diagonal 
form corresponding to each cell, and proceeds cell-by-cell 
with the implicit time-integration. 

III. MAGNETIZATION ANALYSIS 

This section presents results of the magnetization analysis 
using the ADSMs applying the Euler method (ADSM-E) and 
applying the partially-implicit method (ADSM-I). 

A thin film GMI sensor with in-plain uniaxial-inclined easy 
axis is analyzed. It has three magnetization states (Fig. 2). 

When the applied magnetic field is weak, stripe domains 
parallel to the easy axis direction are observed (labeled WM). 
When the magnetic field exceeds a threshold field, a single 
domain state (S+ or S−) appears due to the shape anisotropy. 
The magnetization state transition can be used as a memory in 
highly sensitive magnetic field detection [12], [13]. For this 
paper, an amorphous Co85Nb12Zr3 film is examined with the 
easy axis direction 𝜃ୣୟୱ୷ ൌ 20° due to the induced anisotropy. 
The film size is given in Fig. 2. The material parameter 
settings are: 𝜇଴𝑀௦ ൌ 0.93 T, exchange stiffness constant 𝐴 ൌ
1.49 ൈ 10ିଵଵ J/m, and anisotropy constant 𝐾ଵ ൌ 260 J/m3. 

Using the explicit scheme, [8] revealed the property of GMI 
element comparing the influence of perpendicular magnetic 
field with that of longitudinal distribution of magnetic field. In 
this paper, some of results are recomputed by the partially 
implicit scheme to compare the computation time and 
simulation accuracy with those given by the explicit method.  

 
Fig. 2.  Magnetization curves for the three states of a GMI film. 

 

A. Magnetization analysis using the ADSM with 3 variables 

First, assuming in-plane magnetization, the state variable 
vector 𝒙ሺ𝑘ሻ ൌ ሺ𝜙ଵ, 𝜙ଶ, 𝜆ଵሻ  is used in each cell of the ADSM. 
The GMI film is divided into 64 × 1 × 1 cells. Fig. 3 shows the 
magnetization Mx of the thin film with uniform applied 
magnetic field H along the longitudinal direction, where Mx 
and H are normalized by 𝑀௦  and the anisotropy field 
HK = 2K1 / μ0MS, respectively. No significant difference is 
found in the simulated magnetizations obtained by the ADSM-
E and ADSM-I (Fig. 3). Fig. 4 presents a comparison of the 
computation time taken for the ADSM-E and ADSM-I 
simulations; ADSM-I achieves a reduction of more than 99%. 
 

 
 
Fig. 3.  Comparison of magnetization curves obtained using ADSM-I and 
ADSM-E. 
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Fig. 4.  Comparison of computation times of the ADSM-E and the ADSM-I 
simulations using 3 variables per cell. 

 

B. Magnetization analysis using the ADSM with 5 variables 

Next, to take into account an off-plane rotation, the state 
variable vector  𝒙ሺ𝑘ሻ ൌ ሺ𝜙ଵ, 𝜃ଵ, 𝜙ଶ, 𝜃ଶ, 𝜆ଵሻ is used in each cell 
of the ADSM. Fig. 5 compares the magnetization curves 
obtained by the ADSM-I and the ADSM-E, where the GMI 
film is divided into 64 × 1 × 1 cells. Both methods yield 
almost the same magnetization as the 3-variable case. The 
threshold field for the transition from the negative single 
domain state (S−) to the positive single domain state (S+) is 
about 0.1 corresponding to the applied field of 56 A/m. The 
threshold field reported in [12] is about 40 A/m, which is 
sensitively affected by the film geometry and the easy axis 
direction and roughly agrees with the value from the 
simulation. Fig. 6(a) and (b) describe the magnetization 
property with the applied magnetic field distributed along the 
longitudinal direction as 

𝐻ሺ𝑥ሻ 𝐻௞⁄ ൌ 𝐻ୟ୴ୣ/𝐻௞ ൅ ℎଵ𝑥/𝐿  (6)
where 𝐻ୟ୴ୣ is the average magnetic field, h1 = 0.5, 1 and L = 1 
mm. For a distributed field with h1 = 1, only the WM state is 
seen when |𝐻ୟ୴ୣ| is small as is experimentally found in [13]. 

Fig. 7 compares computation times taken for the ADSM-E 
and the ADSM-I simulations of the GMI film in a uniform 
magnetic field. ADSM-I achieves a reduction of 94%. 
 

 
 
Fig. 5.  Comparison of the magnetization curves obtained from the ADSM-I 

and ADSM-E simulations with 5 variables per cell. 
 

 
(a)                                               (b) 

 
Fig. 6.  Comparison of the magnetization curves obtained by the ADSM-E and 
the ADSM-I simulations for a magnetic field linearly distributed within (a) 
 ℎଵ ൌ 0.5 and (b) ℎଵ ൌ 1. 

 

 
 
Fig. 7.  Comparison of computation times for the ADSM-E and the ADSM-I 
simulations for a GMI film in a uniform magnetic field with 5 variables per 
cell. 
 

C. Comparison with another efficient ADSM 

This section aims a further reduction of computational cost 
by using another efficient method proposed in [10]. This 
method obtains the equilibrium point in each cell directly cell-
by-cell. Similar to the ADSM-I, the magnetostatic filed is 
divided into hstin and hstex, and hstex is added to the applied 
filed hap in cell k as heff(k) = hap + hstex(k). The magnetization 
property given by the SDSM that constitutes the ADSM is 
assumed to be known. Then the magnetization state in cell k 
can be determined from heff(k). For the GMI film, the SDSM 
generates two types of magnetization states; a single domain 
state (S+ and S− states) and the state of 180° domain-wall 
motion (WM state). If the threshold fields that induce the state 
transitions between S± and WM are known, the magnetization 
state in cell k can be switched depending on the variation of 
heff(k). The macroscopic magnetization is obtained by 
synthesizing the magnetizations of the unit cells (SDSMs), 
where the magnetization of cell k is determined by the 
effective field heff(k). This method is called ADSM-TS 
(threshold switching). 

Fig. 8 compares the magnetization curves obtained by the 
ADSM-TS and the ADSM-I simulations. There is some 
difference between the simulated magnetization curves. This 
is because the ADSM-TS does not take into account the 
magnetization rotation exactly. When the applied magnetic 
field |ℎ| ൑ 2 , the ADSM-I exhibits an ineligible 
magnetization rotation whereas the ADSM-TS does not give 
the magnetization rotation because a simple state transition 
between S± and WM is assumed. 

A comparison of computation times (Fig. 9) show that the 
ADSM-TS achieves a reduction of 87% compared with 
ADSM-I but at the expense of some modeling accuracy. 
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Fig. 8.  Comparison of the magnetization curves for ADSM-TS and ADSM-I. 
 

 
 
Fig. 9.  Comparison of computation times for ADSM-TS and ADSM-I. 

 

IV. CONCLUSION 

A partially-implicit method for the ADSM was proposed, 
where the magnetostatic field is separately processed 
implicitly and explicitly to avoid a dense matrix inversion 
encountered in the Newton–Raphson iteration. The proposed 
method is more than 15 times as fast as the explicit method. 

Another fast method called ADSM-TS reduces considerably 
the computation time but at the expense of modeling accuracy. 
This aspect needs to be addressed and improved if the method 
is to have use in practical simulations. 

APPENDIX 

A simple minimization of energy e is achieved by solving 
the ODE given as 

d𝑿
d𝑡

ൌ െ
𝜕𝑒
𝜕𝑿

 (7)

which corresponds to the steepest descent method. However, it 
sometimes fails because of an oscillation of X in the solution 
process. The solution using (2) can be regarded as a gradient 
descent method with a momentum [14]. Equation (2) is an 
analogy of equation of motion driven by a potential energy e, 
which is described as md2r/dt2 + γdr/dt + ∂e/∂r = 0 where m is 
the mass and γ is the damping factor. In our case, however, the 
generalized mass and damping factor matrices for X are not 
known. This is why we call (2) “artificial.” Equation (2) has 
equilibrium points where ∂e/∂X = 0. Their characteristic 
exponents are given by [− γ ± (γ2−4α)1/2] / 2 corresponding to 
an eigenvalue α of ∂2e/∂X2. Hence, an equilibrium point is 
stable if all the eigenvalues of ∂2e/∂X2 are positive; it is 
unstable if one of the eigenvalues is negative.  

The partially implicit scheme is also effective to solve (7). 
The implicit solution of (7) is called ADSM-SD here. Fig. 10 

compares its computation time with that by the ADSM-I, 
where the ADSM-I is faster than the ADSM-SD by 30 %. 
 

 
 
Fig. 10.  Comparison of computation times for ADSM-SD and ADSM-I. 
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