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Abstract 11 

 This paper presents improvement and performance evaluation of the “perturbation 12 

source method”, which is one of the Monte Carlo perturbation techniques. The formerly 13 

proposed perturbation source method was first-order accurate, although it is known that 14 

the method can be easily extended to an exact perturbation method. A transport equation 15 

for calculating an exact flux difference caused by a perturbation is solved. A 16 

perturbation particle representing a flux difference is explicitly transported in the 17 

perturbed system, instead of in the unperturbed system. The source term of the transport 18 

equation is defined by the unperturbed flux and the cross section (or optical parameter) 19 

changes. The unperturbed flux is provided by an “on-the-fly” technique during the 20 

course of the ordinary fixed source calculation for the unperturbed system. A set of 21 

perturbation particle is started at the collision point in the perturbed region and tracked 22 

until death. For a perturbation in a smaller portion of the whole domain, the efficiency 23 

of the perturbation source method can be improved by using a virtual scattering 24 
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 2 

coefficient or cross section in the perturbed region, forcing collisions. Performance is 1 

evaluated by comparing the proposed method to other Monte Carlo perturbation 2 

methods. Numerical tests performed for a particle transport in a two-dimensional 3 

geometry reveal that the perturbation source method is less effective than the correlated 4 

sampling method for a perturbation in a larger portion of the whole domain. However, 5 

for a perturbation in a smaller portion, the perturbation source method outperforms the 6 

correlated sampling method. The efficiency depends strongly on the adjustment of the 7 

new virtual scattering coefficient or cross section. 8 

  9 

Keywords: Monte Carlo; perturbation; fixed source problem; transport equation 10 

 11 

1. Introduction 12 

 Monte Carlo methods have difficulties in calculating the effect of a small 13 

perturbation in the system parameters. The effect of a perturbation, of course, can be 14 

obtained by performing two independent Monte Carlo calculations and subtracting the 15 

estimates of the unperturbed system from those of the perturbed system. A prohibitively 16 

huge computational cost would however be required to obtain statistically significant 17 

estimates for a small perturbation. The statistical uncertainty of the difference between 18 

two independent runs is sometimes comparable with the change of the estimates if the 19 

perturbation is small and the computation time short. Thus far, two perturbation 20 

calculation methods, the correlated sampling method [1–5] and the differential operator 21 

sampling method [4, 6, 7], have been developed to overcome difficulties in the Monte 22 

Carlo perturbation calculations. These methods have been widely investigated; their 23 

unique advantages and drawbacks have been identified in many publications (e.g., 24 

[8–12]). 25 

In the correlated sampling method, the perturbed history is forced to follow the 26 
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unperturbed one along the same tracks in phase space. It has been found that the 1 

correlated sampling method suffers from a large or unbounded variance when the 2 

perturbation exceeds a certain limit [4]. 3 

The differential operator sampling method accumulates a sum of products 4 

combining cross section, path segment probabilities, and associated partial derivatives 5 

(first order and higher) for all trajectories. The divergence of the variance, which 6 

frequently occurs in the correlated sampling method for a larger perturbation, can be 7 

circumvented in the differential operator method. However, the differential operator 8 

sampling method uses up to the second-order terms in a widely used Monte Carlo code, 9 

MCNP [12], and the higher-order terms, beyond the third order, are truncated. A 10 

localized and large perturbation would require higher-order terms, truncated in 11 

commonly-used differential operator sampling method. As the order becomes higher, 12 

the mathematical formulation of the higher-order terms becomes more involved. In 13 

addition, many quantities need to be scored during the course of the particle’s random 14 

walk, making the calculation less efficient. In the Monte Carlo code, MVP, the order of 15 

the differential operator method is uniquely expanded to the 8th order [9]. However 16 

higher the order is, the differential operator sampling method remains essentially 17 

approximate and may be occasionally insufficient for large and localized perturbations. 18 

The two Monte Carlo perturbation methods have already been implemented into 19 

some Monte Carlo production codes [8, 9, 12–16]. The two Monte Carlo perturbation 20 

methods can be applied to perturbation calculations in keff-eigenvalue problems as well 21 

as fixed source problems. In the keff-eigenvalue problems, the fission source spatial 22 

distribution is also perturbed due to the perturbation of system parameters such as cross 23 

sections and material density. To estimate the effect of the fission source perturbation, 24 

some techniques have been developed and installed into Monte Carlo codes [8, 9, 17]. 25 
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For the fixed source problems, on the other hand, the need to consider the fission source 1 

perturbation effect can be avoided. 2 

Besides the correlated sampling method and the differential operator method, there 3 

exists another perturbation method known as the “perturbation source” method [18–20] 4 

in which a separate random walk is performed to follow a “perturbation particle” once a 5 

perturbed region is encountered in the original random walk. The perturbation particle 6 

explicitly represents the change of the flux due to the perturbation. However, this 7 

method is less effective when a large number of collisions occurs in the perturbed 8 

region during a history, too many perturbation particles must be followed. On the other 9 

hand, if the perturbed region is very small, most of particles pass through the perturbed 10 

region without collision and too few perturbation particles are started, which make the 11 

perturbation source method less effective than other perturbation techniques. To 12 

compensate for the shortcomings of the perturbation source method, Preeg and Tsang 13 

[20] proposed a hybrid method that uses the correlated sampling method initially, and14 

then switches to the perturbation source method for the remainder of the history. 15 

According to [18, 19], the perturbation source method has been used within the 16 

first-order accuracy by neglecting higher-order terms; although it is known that the 17 

method can be easily extended to an exact perturbation method [18]. Thus, the formerly 18 

proposed perturbation source method only yields an approximate estimate of 19 

perturbation. 20 

The present paper focuses on the Monte Carlo perturbation method for particle 21 

(light or neutron) transport in a semi-transparent material. The perturbation source 22 

method is improved to take into account higher-order terms neglected in the previous 23 

studies. This paper proposes a method for improving the effectiveness of the 24 

perturbation source method to estimate the variation of flux in problems where the 25 
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 5 

perturbed region covers only a small fraction of the whole domain. The dependence of 1 

the efficiency improvement for a user-specified parameter is investigated. It is shown 2 

that the newly improved perturbation source method outperforms the correlated 3 

sampling method and the differential operator method for such problems in terms of 4 

computation efficiency. The underlying concept of this paper is applicable to other 5 

particle transport calculations. In the sections that follow, the theory and numerical 6 

examples are presented. 7 

 8 

2. Theory of the improved perturbation source method 9 

This section presents a theory of the perturbation method used to calculate the 10 

difference of flux variation caused by the perturbation of system parameters in a fixed 11 

source problem. The theory is already proposed [18, 19] and simple, but it provides an 12 

exact perturbation method that can be performed in the Monte Carlo method. The 13 

unperturbed light transport equation with a fixed source is given by 14 

),,(),,( ESE ΩrΩrH =φ ,                       (1) 15 

where 16 
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              (2) 17 

=),,( EΩrφ  the unperturbed flux at position r with energy E and direction Ω , 18 

=),,( ES Ωr the external light source term, =tµ the total coefficient of absorption and 19 

scattering, =sµ  the scattering coefficient. We suppose that the coefficients in Eq. (2) 20 

are perturbed with the fixed source term being unchanged. Then, the flux is perturbed to 21 

)),,(),,()(,,( EEE ΩrΩrΩr δφφφ +≡′  where ),,( EΩrδφ  is the difference of the flux 22 

due to the perturbation. On the other hand, the perturbed flux, ),,( EΩrφ′ , obeys the 23 

following perturbed transport equation: 24 

),,(),,(),,( ESEE ΩrΩrHΩrH =′+′ φ∆φ .                 (3) 25 
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),,( EΩrHφ∆  is described by 1 
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where tµ∆  and sµ∆  are the differences of the total coefficient and the scattering 3 

coefficient due to the perturbation, respectively. Subtracting Eq. (1) from Eq. (3) yields 4 

the transport equation for the flux difference ),,( EΩrδφ : 5 

),,(),,(),,( EEE ΩrHΩrHΩrH φ∆δφ∆δφ −=+ .             (5) 6 

The right-hand side of Eq. (5) represents a source term for this equation and is defined 7 

by Eq. (4). To solve Eq. (5), the unperturbed flux ),,( EΩrφ  on the right-hand side of 8 

Eq. (5) needs to be obtained by the unperturbed transport equation, Eq. (1), with the 9 

fixed source ),,( ES Ωr . Once we know the unperturbed flux and the source term for Eq. 10 

(5), the flux difference ),,( EΩrδφ  can be obtained by solving Eq. (5). 11 

 Formerly, the perturbation source method was used by omitting the second term on 12 

the left-hand side of Eq. (5) [18, 19]. However, it is very easy to include this term by 13 

transporting perturbation particles in the perturbed system, not in the unperturbed 14 

system as noted in [18]. This perturbation method that solves Eq. (5) can provide an 15 

exact flux difference without approximation. When we apply this perturbation method 16 

to a deterministic method, the unperturbed flux distribution is calculated first and then it 17 

is stored in a memory or a file. Then, Eq. (5) is solved by reading the unperturbed flux 18 

distribution from the file or memory. As can be seen in Eq. (4), the flux is energy- and 19 

angular-dependent to estimate the source term in Eq. (5). Thus, if a three dimensional 20 

problem with a fine energy group structure is being treated, a huge memory or file 21 

storage would be required. We have to note that the source term can be positive and 22 

negative, thereby making the flux difference positive and negative as well. 23 

 24 
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3. Monte Carlo algorithm of the perturbation source method 1 

3.1 Monte Carlo algorithm for calculating flux difference 2 

This section presents a Monte Carlo algorithm to solve the flux difference transport 3 

equation, Eq. (5). First of all, a fixed source Monte Carlo calculation is performed to 4 

solve Eq. (1), and the unperturbed flux ),,( EΩrφ  is obtained. This calculation is 5 

called the “fixed source calculation mode”. Up to this point, this procedure is similar to 6 

ordinary fixed source calculations. When a particle undergoes a collision in the 7 

perturbed region, the source term for the flux difference equation, Eq. (5), is estimated. 8 

The information for the source term is composed of the position, energy, direction, and 9 

particle weight. Two methods are available for obtaining the source term. One method 10 

is to perform the unperturbed fixed source calculation until a sufficiently large number 11 

of collision points are accumulated. After the unperturbed fixed source calculation is 12 

completed, the accumulated seven-dimensional data (3 for position, 1 for energy, 2 for 13 

direction, and 1 for particle weight) are used for the subsequent flux difference 14 

calculation for Eq. (5). This method, however, requires a large storage capacity to store 15 

a sufficient amount of source information. This is more serious in the Monte Carlo 16 

method since a collision point is defined in the continuous space while the flux is 17 

allocated at discrete points in the deterministic methods. 18 

Another method, which is adopted in this paper, is a so-called “on-the-fly” 19 

technique. When a particle undergoes a collision in the perturbed region in the 20 

unperturbed system, the fixed source calculation is temporarily suspended. Then, the 21 

source term for Eq. (5) is calculated using Eq. (4) and a new particle (perturbation 22 

particle), which represents the flux difference, is emitted from the collision point (how 23 

to determine the weight, energy, and direction of the new particle is described below). 24 

This process is called the “perturbation calculation mode”. The perturbation particle is 25 
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tracked using the perturbed parameters as defined on the left-hand side of Eq. (5). The 1 

proposed perturbation method can yield the exact values of the flux change on the 2 

grounds that the perturbed parameters are used for tracking the perturbation particle. 3 

After the perturbation particle emitted from the collision point is killed when escaping 4 

from the external boundary or Russian roulette game, the calculation for Eq. (5) is 5 

terminated. Then, the suspended fixed source calculation is resumed as if nothing had 6 

happened. This process is repeated until desired statistics for the flux difference are 7 

reached. 8 

Next, how to define the source term in Eq. (5) in the Monte Carlo method is 9 

discussed. Once a particle with a weight of W undergoes a collision in the perturbed 10 

region in the unperturbed system, the calculation mode is switched to the perturbation 11 

calculation mode. The source term in Eq. (5) is defined as follows. 12 

(1) Source term caused by the perturbation of the total coefficient13 

The first term on the right-hand side of Eq. (4) is caused by the perturbation of the 14 

total coefficient. This term is represented by 15 

.
),(

),(
E

WEW
t

tt r
r

µ
µ∆−= (6) 16 

A new perturbation particle with a weight of tW  is emitted from the collision point. 17 

The direction and energy of the new particle are unchanged from the colliding particle. 18 

If 0>tµ∆ , the weight tW  is negative. 19 

(2) Source term due to the perturbation of the scattering coefficient20 

The second term on the right-hand side of Eq. (4) is caused by the perturbation of 21 

the scattering coefficient. This source term is composed of the perturbation of the total 22 

scattering coefficient and the scattering angle and energy distribution function. This 23 

source term is obtained by the following steps. 24 

1) The direction Ω′ and energy E′ after the scattering are sampled from the25 
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probability density function of the unperturbed scattering cross section 1 

),,( EEs ′→′→ ΩΩrµ . 2 

2) The source term due to the perturbation of the total scattering coefficient is3 

obtained with 4 
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and the superscript p denotes that the quantity is for the perturbed system. Note that the 8 

integrals in Eq. (8) are carried out with respect to the angle and energy after scattering. 9 

3) The source term due to the perturbation of the scattering angle and energy10 

distribution is obtained by 11 
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where ),( EP ′′Ω  is the probability density function of the direction Ω′  and the 13 

energy E′ after scattering in the unperturbed system. Note that Eq. (9) is simply 14 

written and it should be modified to use the formatting of the atomic or nuclear data. 15 

4) A new perturbation particle with a weight of )( as WW +  is emitted from the16 

collision point. The perturbation particle’s direction and energy are Ω′  and E′ , 17 

respectively. 18 

Consequently, the two perturbation particles, which are the sources for the flux 19 

difference calculation, are emitted from every collision point, and they are tracked until 20 

their deaths. The score of the perturbation particles divided by the total sum of starting 21 

particles’ weights from the source represents the perturbed flux ),,( EΩrδφ . The two 22 

perturbation particles are independent and can be emitted in no particular order. A 23 

schematic flow chart of this perturbation method is shown in Fig. 1. When the two 24 
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perturbation particles emitted from the collision point are both killed, the fixed source 1 

calculation for Eq. (1) resumes from the collision point. The weights of the perturbation 2 

particles for the flux difference calculation are in general smaller than those of the fixed 3 

source calculation for Eq. (1) in the unperturbed system, depending on the perturbation 4 

and colliding particle’s weight. The lower weight threshold for Eq. (5) should be 5 

smaller than the one of the fixed source calculation for Eq. (1) if the Russian roulette 6 

game is applied. 7 

8  [Fig.1] 

As new features of this paper, the performance of the perturbation source method is 9 

compared with other Monte Carlo perturbation methods and a method for improving the 10 

efficiency is proposed below. 11 

12 

3.2 Improvement of the perturbation source method 13 

As shown in Fig. 1, the perturbation calculation does not start unless the particle 14 

undergoes a collision within the perturbed region. Even when the particle enters the 15 

perturbed region, the particle that passes through the region without collision does not 16 

initiate a perturbation particle. In problems where the perturbed region covers only a 17 

small fraction of the whole domain, perturbation particles are rarely emitted, which 18 

makes the perturbation calculation less effective. For improving the efficiency of the 19 

perturbation source method, a virtual scattering coefficient is added to the perturbed 20 

region. The total coefficient tµ  is increased by a factor of C (>1). An increased pseudo 21 

total coefficient, 22 

tt C µµ ⋅=* , (10) 23 

is assigned to the perturbed region. The increased pseudo total coefficient is used for the 24 

calculation for the fixed source calculation mode. This method is similar to the 25 

Woodcock delta tracking [21] that is used as an efficient algorithm for free path 26 
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sampling in heterogeneous media. When a particle undergoes a collision within the 1 

perturbed region having the pseudo total coefficient *
tµ , a perturbation particle is 2 

emitted from the collision point. The starting weight of the perturbation particle is 3 

adjusted to compensate for the biased total coefficient: 4 

C
WW t

t =′ , (11) 5 

C
WWWW as

as
+

=′+′ , (12) 6 

where tW , sW , and aW  are defined by Eqs. (6), (7), and (9), respectively. After the 7 

perturbation particles are killed, the perturbation calculation mode is terminated. Then, 8 

the fixed source calculation mode is resumed, and a pseudo random number ξ between 9 

0 and 1 is generated. If the random number meets the criteria: 10 

)1(* Ct

t =<
µ
µξ , (13) 11 

the virtual collision in the fixed source calculation mode is accepted as the real collision. 12 

If not, the virtual collision is rejected and the random walk continues with the direction, 13 

energy, and weight being left unchanged. Whether the virtual collision is accepted or 14 

not, the next free path within the perturbed region is sampled with *
tµ . 15 

16 

4. Numerical tests for the perturbation source method17 

4.1 Overview of the numerical tests 18 

Numerical tests for the proposed Monte Carlo perturbation method are performed 19 

for a two-dimensional 2 cm × 2 cm homogeneous rectangular domain. Following the 20 

customary procedure of light transport calculations, the energy dependence is neglected 21 

and the scattering angular distribution function is unchanged by the perturbation. The 22 

Henyey-Greenstein function [22, 23], which is commonly used in light transport 23 

calculations, is chosen for the scattering angular distribution function: 24 

2/32

2

)cos21(
1

4
1),(

θπ gg
gf

−+
−

=→′ ΩΩr , (14)25 
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where θ is the angle between Ω′  and Ω , and g is the anisotropy factor. The optical 1 

parameters of the unperturbed system are: 2 

=sµ 10 cm‒1, =aµ 0.5 cm‒1, and g = 0.9, 3 

where =aµ absorption coefficient and =+= sat µµµ 10.5 cm‒1. 4 

As discussed above, the efficiency of the perturbation source method depends on 5 

the fraction of the perturbed region. First, the perturbation source method is tested for a 6 

perturbation in a larger portion of the whole domain. Then, a perturbation in a smaller 7 

portion is tested. 8 

9 

4.2 Perturbation in a large portion 10 

The absorption coefficient or scattering coefficient is changed in the 1.6 cm × 1.6 11 

cm region as shown in Fig. 2. A beam source perpendicular to the “Side 3” is placed at 12 

the center of the “Side 3” in Fig. 2. The incident beam is perpendicular to the “Side 3”. 13 

When a particle with a weight of W leaves one of four sides, the boundary measurement 14 

of the particle, 15 

)( Ωn ⋅⋅W , (15) 16 

is scored where Ω= particle’s direction and n = unit outward vector normal to the 17 

boundary surface, and the boundary is considered transparent and non-reflecting. The 18 

exitance on a side is estimated as 19 

∑ ⋅⋅= i iid W
N

P )(1 Ωn , (16) 20 

where =iW ith particle’s weight leaving the side, and i is summed over all particles 21 

leaving the side, and N = the total number of particles emitted from the source. 22 

[Fig. 2] 23 

Two perturbations are considered for the numerical tests. In the first one, the 24 

absorption coefficient in the perturbed region is increased by 20% (i.e., +0.1 cm−1). In 25 

the second one, the scattering coefficient is increased by 20% (i.e., +2.0 cm−1). To 26 

compare the perturbation source method with other perturbation techniques, the 27 
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correlated sampling method, the first-order differential operator method, and the 1 

second-order differential method are used. 2 

In the correlated sampling method used in this paper, the perturbed history is forced 3 

to follow the unperturbed one along the same track. When a particle having a weight of 4 

W flies a distance s and undergoes a collision in the perturbed region, the weight of the 5 

perturbed history after the collision is [24] 6 

t

ss

t

s

ts

ts
s

t

s
t t

t

t
eW

e
eW

µ
µ

µ
µ

µµ
µµ

µ
µ µ∆

µ

µ ′
⋅=⋅

′′
⋅

′ −
−

′−

/
/ , (17) 7 

where the prime denotes the perturbed coefficient and ttt µµµ∆ −′= . 8 

The differential operator method estimates the perturbed exitance with the Taylor 9 

series expansion when an optical parameter p changes by p∆ : 10 

.
2
1 2

2

2
⋅⋅⋅+

∂
∂

+
∂
∂

= p
p
Pp

p
PP dd

d ∆∆∆ (18) 11 

Cross terms on the second derivative [25] are neglected because the material is single or 12 

the perturbation merely changes the density in the examples of this paper. 13 

In the first-order differential operator method, the first-derivative of dP  with respect to 14 

aµ  and sµ  in the perturbed region are respectively [26]: 15 

∑ ⋅⋅−=
∂
∂

i iii
a

d SW
N

P
)(1 Ωn

µ
, (19) 16 
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s

d SMW
N

P
µµ

)(1 Ωn , (20) 17 

where =iS  sum of the path lengths in the perturbed region for ith detected particle, 18 

and =iM number of collisions in the perturbed region for ith detected particle. iS  and 19 

iM  are accumulated during the course of the random walk in the fixed source Monte 20 

Carlo calculation with the unperturbed optical parameters. Similarly, the 21 

second-derivative of dP  with respect to aµ  and sµ  in the perturbed region are 22 

respectively [26]: 23 
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(1) Perturbation of absorption coefficient3 

The change of Pd due to the change of the absorption coefficient by +20% are 4 

obtained by the four perturbation methods (correlated sampling, perturbation source, 5 

first-order, and second-order differential operator methods) and are shown in Table 1-a. 6 

In addition to the Monte Carlo perturbation methods, the change of Pd is obtained by the 7 

difference between two independent runs before and after the perturbation. For the 8 

perturbation source method, the factor C defined in Eq. (10) is chosen as C = 1 and 4. 9 

Throughout this paper, the change of Pd calculated by the perturbation source method 10 

agrees with that by the correlated sampling method within 2 standard deviations. The 11 

results obtained by the first-order differential operator method significantly differs from 12 

other methods. However, the second-order differential operator method performs much 13 

better than the first order. 14 

Table 1-b compares the relative figure-of-merit (FOM) defined by 15 

FOM
Ts2

1
= , (23) 16 

where s = one standard deviation of absolute uncertainty and T = computation time. The 17 

FOM’s are normalized with respect to the correlated sampling. The perturbation source 18 

method is less effective compared to other perturbation methods regardless of the factor 19 

C. Furthermore, the computation efficiency of the perturbation source method decreases20 

with the factor C, which is contrary to expectation. The additional computational cost 21 

for handling more perturbation particles may not be worth the gain of reducing the 22 

uncertainty for this problem. 23 

[Table 1-a], [Table 1-b] 24 
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(2) Perturbation of scattering coefficient1 

The Monte Carlo perturbation calculations due to the perturbation of the scattering2 

coefficient have larger variances than the absorption coefficient. In the first-order 3 

differential operator method, for example, this is because two terms, in the parentheses 4 

in Eq. (20), siM µ/  and iS , almost cancel each other. The change of Pd due to the 5 

change of the scattering coefficient by +20% and the relative FOMs are shown in 6 

Tables 2-a and 2-b, respectively. In this case, the second-order differential operator 7 

method does not perform as well as with the perturbation of the absorption coefficient. 8 

Higher-order derivatives would be required to obtain more accurate estimates using the 9 

differential operator method. The FOMs of the perturbation source method for the 10 

scattering coefficient are much worse than for the absorption coefficient. The factor C 11 

does not affect the efficiency of the perturbation source method unlike the perturbation 12 

of the absorption coefficient. 13 

As a conclusion, the source perturbation method can certainly yield an exact 14 

estimate of the perturbation. However, for a perturbation in a larger portion of the whole 15 

domain, the efficiency is inferior to other Monte Carlo perturbation methods. 16 

[Table 2-a], [Table 2-b] 17 

4.3 Perturbation in a small portion 18 

The absorption coefficient or scattering coefficient is changed in the 0.0833 cm × 19 

0.0833 cm region as shown in Fig. 3. Again, a beam source perpendicular to the “Side 20 

3” is placed at the center of the “Side 3”. The perturbed area within the whole domain 21 

accounts for 0.17% of the whole domain. First, a smaller perturbation is added to the 22 

perturbed region. According to [4], the correlated sampling method suffers from a large 23 

or unbounded variance for a large perturbation. Therefore, a larger perturbation is also 24 

tested to compare the efficiency of the perturbation source method to the correlated 25 

sampling method. 26 
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[Fig. 3] 1 

(1) Smaller perturbation of absorption coefficient2 

The absorption coefficient in the perturbed region is increased by 20% (i.e., +0.1 3 

cm−1). The correlated sampling method, the perturbation source method (C = 1, 4, and 4 

32), the first-order differential operator method, and the second-order differential 5 

method are performed for the perturbation calculation, the change of Pd and their 6 

relative FOMs are shown in Tables 3-a, and 3-b, respectively. For this perturbation, the 7 

estimates of the first-order differential operator method agree with other perturbation 8 

methods within 2%, which is much better than the results for the larger perturbation. 9 

The efficiency of the perturbation source method with C = 1 is improved in the two 10 

sides and worsened in the remaining two sides compared with other perturbation 11 

methods. The efficiency of the perturbation source method becomes better as C 12 

increases. By adjusting the factor C, the perturbation source method can be superior to 13 

other Monte Carlo perturbation techniques. 14 

[Table 3-a], [Table 3-b] 15 

(2) Larger perturbation of absorption coefficient16 

The absorption coefficient in the perturbed region is increased by 300% (i.e., +1.5 17 

cm−1). The results are shown in Tables 4-a, and 4-b. The tendency of the relative FOMs 18 

in Table 4-b is almost the same as the smaller perturbation in Table 3-b. 19 

[Table 4-a], [Table 4-b] 20 

(3) Smaller perturbation of scattering coefficient21 

The scattering coefficient in the perturbed region is increased by 30% (i.e., +3.0 22 

cm−1). The results are shown in Tables 5-a, and 5-b. The perturbed source method with 23 

C = 1 is approximately half as effective as the correlated sampling method. However, 24 

the efficiency of the perturbed source method increases with the factor C. When C =32, 25 

the perturbation source method outperforms the correlated sampling method by a factor 26 
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of 7. The perturbation source method can achieve a higher efficiency than other 1 

perturbation methods by adjusting the factor C. 2 

[Table 5-a], [Table 5-b] 3 

(4) Larger perturbation of scattering coefficient 4 

 The scattering coefficient in the perturbed region is increased by 200% (i.e., +20.0 5 

cm−1). The results are shown in Tables 6-a, and 6-b. For such a larger perturbation of the 6 

scattering coefficient, the correlated sampling method incurs a larger variance, which 7 

can be observed by comparing the FOMs between the correlated sampling method and 8 

the differential operator method. Thus, the perturbation source method and the 9 

differential operator method exhibit relatively better performance than the correlated 10 

sampling method. The improvement of the efficiency in the perturbation source method 11 

is more remarkable than in the smaller perturbation. When C = 32, the perturbation 12 

source method is about 50 times more efficient than the correlated sampling method. 13 

[Table 6-a], [Table 6-b] 14 

4.4 Perturbation in an anisotropy factor 15 

 In the next example, the anisotropy factor of the Henyey-Greenstein function, 16 

which is defined in Eq. (14), is perturbed in the perturbed region in Fig. 3. The 17 

correlated sampling method, the perturbation source method (C = 1, 4, and 32), the 18 

first-order differential operator method, and the second-order differential method are 19 

tested for the perturbation calculation. 20 

 In the perturbation source method, when a particle having a weight of W undergoes 21 

a collision within the perturbed region, a perturbation particle is emitted from the 22 

collision point. The scattering angle θ for the perturbation particle is sampled using Eq. 23 

(14). The weight of the perturbation particle emitted from the collision point is: 24 

,
),(

),(),(
t

p
sa

W
gf

gfgfW
µ

µ
θ

θθ −′
=                    (24) 25 
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where =′g  the perturbed anisotropy factor, and 1 

2/32

2

)cos21(
1

4
1),(

θπ
θ

gg
ggf

−+
−

= .                   (25) 2 

In the correlated sampling method, when a particle having a weight of W flies a 3 

distance s and undergoes a collision in the perturbed region, the weight of the perturbed 4 

history after the collision is 5 

),(
),(

gf
gfeW

t

sst

θ
θ

µ
µµ∆ ′

⋅⋅ − ,                      (26) 6 

where θ = the scattering angle for the perturbed and unperturbed histories after the 7 

collision. 8 

 In the differential operator method, the first- and the second-derivative of dP  with 9 

respect to the anisotropy factor g in the perturbed region are respectively [26]: 10 

∑ ⋅⋅=
∂
∂

i iii
d GW

Ng
P

1)(1 Ωn ,                        (27) 11 
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2
2
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2
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where 13 
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G
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1

2
θ

θ
,                  (30) 15 

and the summation symbols for j denote the sum for all collisions in the perturbed 16 

region. 17 

 The perturbation calculations are performed when the anisotropy factor g is 18 

changed from 0.9 to 0.895. The change of Pd and their relative FOMs are shown in 19 

Tables 7-a, and 7-b, respectively. The perturbed source method with C = 1 is as 20 

effective as other perturbation methods for this perturbation. However, the efficiency of 21 

the perturbation source method increases with the factor C. Tables 8-a and 8-b show the 22 

results when the perturbation of g is much larger (from 0.9 to 0.6). For the perturbation 23 

of g, the perturbation source method outperforms other perturbation methods regardless 24 
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of the factor C. 1 

[Table 7-a], [Table 7-b], [Table 8-a], [Table 8-b] 2 

4.5 Perturbation for Multi-group Neutron Transport in a heterogeneous geometry  3 

 The perturbation source method is applied to perturbation calculations for 4 

multi-group neutron transport in a heterogeneous geometry. The geometry for the 5 

perturbation calculations is a two-dimensional right square having a checkerboard 6 

pattern array of light water and graphite as shown in Fig. 4. The calculations use 3 7 

energy group constants that are prepared with the standard reactor analysis code SRAC 8 

[27]. The constants are listed in Table 9. The scattering is assumed to be isotropic. A 9 

line neutron beam in the 1st energy group perpendicular to the “Side 3” enters from the 10 

center of the “Side 3”. As the perturbation added to this configuration, the water density 11 

of the perturbed region decreases by 80%. In the same manner as in the numerical 12 

examples shown above, the changes of the neutron currents in the 3rd energy group (i.e., 13 

thermal neutron) on the four outer boundaries are calculated with the three perturbation 14 

methods. The change of the thermal neutron currents and their relative FOMs are shown 15 

in Tables 10-a, and 10-b, respectively. Among the perturbation methods tested in this 16 

paper, the computation efficiency is maximized when the perturbation source method 17 

with C ≈ 30 is used. The tendency for this neutron transport in the heterogeneous 18 

geometry is the same as the numerical examples for the light transport. 19 

[Fig. 4][Table 9][Table 10-a][Table 10-b] 20 

5. Conclusions 21 

 The present paper has proposed an exact Monte Carlo perturbation method for 22 

fixed source problems, which is dubbed the “perturbation source method”. This paper is 23 

actually an improvement over a previously proposed version of the perturbation source 24 

method. In the previous studies for the perturbation source method, the higher-order 25 

perturbation has been neglected and the accuracy has been limited within the first-order 26 
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perturbation. On the other hand, the perturbation source method in this paper solves 1 

explicitly and exactly the transport equation for the flux difference without 2 

approximation by tracking “perturbation particles” in the perturbed system. This method 3 

employs a quite different concept from the well-known perturbation methods such as 4 

the correlated sampling method and the differential operator method. This method 5 

requires the flux in the unperturbed system as its source term. The unperturbed flux is 6 

provided by an “on-the-fly” technique during the course of the ordinary fixed source 7 

calculation for the unperturbed system. Then, a perturbation particle that started from 8 

the collision point in the perturbed region is tracked until its death. 9 

If the perturbed region covers a larger portion of the whole domain, too many 10 

perturbation particles have to be tracked, which makes the perturbation source method 11 

less effective than the correlated sampling method. On the other hand, if the perturbed 12 

region covers only a smaller portion of the whole domain, too few perturbation particles 13 

are started. For a perturbation in a smaller portion, the efficiency of the perturbation 14 

source method can be improved by adding a virtual scattering coefficient to the 15 

perturbed region, forcing collisions in the perturbed region. 16 

The numerical tests are performed for a particle transport in a two-dimensional 17 

semi-transparent material. The numerical tests in this paper compare the perturbation 18 

source method with the correlated sampling method, the first-order differential operator 19 

method, and the second-order differential operator method. The perturbation source 20 

method is less effective than the correlated sampling method for a perturbation in a 21 

larger portion of the whole domain. However, the perturbation source method 22 

outperforms other perturbation methods in situations where the perturbed region covers 23 

only a smaller portion of the whole domain. The improvement by the perturbation 24 

source method depends on the added virtual scattering coefficient or cross section and 25 
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on how large the perturbation is. For a large perturbation, the correlated sampling 1 

method suffers from a large variance. In such a case, the performance of the 2 

perturbation source method is relatively superior to the correlated sampling method. 3 

The efficiency of the perturbation source method depends strongly on the adjustment of 4 

the virtual scattering coefficient or cross section added to the perturbed region. As a 5 

general rule, the efficiency increases with the virtual scattering coefficient added. 6 

There still remain some works to be done in the future. The application to the 7 

continuous-energy physics is one of future works. The optimization of the factor C for 8 

increasing the number of collisions in a perturbed region may also be desirable. The 9 

proposed method can be straightforwardly applied to keff-eigenvalue problems unless the 10 

fission source distribution is changed by a perturbation. However, a new algorithm 11 

should be invented to take into account the fission source perturbation. 12 

13 
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Figures 1 

Fig. 1 Schematic flow chart of the perturbation source method 2 

Fig. 2 Geometry for a perturbation in a larger portion. 3 

Fig. 3 Geometry for a perturbation in a smaller portion. 4 

Fig. 4 Geometry for a multi-group neutron transport perturbation. 5 
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Table 1-a Change of Pd by 20% increase in absorption coefficient in a larger portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Independent run 
−8.50E−3a 

(2.35E−6)b 

−7.09E−3 

(2.74E−6) 

−3.11E−3 

(4.04E−6) 

−4.95E−3 

(2.79E−6) 

Correlated sampling 
−8.50E−3 

(1.11E−6) 

−7.09E−3 

(9.47E−7) 

−3.11E−3 

(5.21E−7) 

−4.95E−3 

(6.86E−7) 

Perturbation source 

C =1 

−8.49E−3 

(1.78E−6) 

−7.09E−3 

(1.65E−6) 

−3.11E−3 

(7.14E−7) 

−4.95E−3 

(1.01E−6) 

Perturbation source 

C =4 

−8.50E−3 

(2.89E−6) 

−7.09E−3 

(2.64E−6) 

−3.11E−3 

(9.06E−7) 

−4.95E−3 

(1.37E−6) 

Differential operator 

First order 

−9.48E−3 

(1.23E−6) 

−7.85E−3 

(1.05E−6) 

−3.40E−3 

(5.27E−7) 

−5.37E−3 

(7.45E−7) 

Differential operator 

Second order 

−8.41E−3 

(1.10E−6) 

−7.02E−3 

(9.40E−7) 

−3.08E−3 

(5.17E−7) 

−4.92E−3 

(6.82E−7) 

a Read as −8.50×10−3 
b One standard deviation 

 

Table 1-b Relative FOM with respect to the correlated sampling method for 20% increase in 

absorption coefficient in a larger portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Independent run 0.007 0.004 0.001 0.002 

Correlated sampling 1.000 1.000 1.000 1.000 

Perturbation source 

C =1 
0.465 0.396 0.641 0.555 

Perturbation source 

C =4 
0.132 0.116 0.298 0.226 

Differential operator 

First order 
0.812 0.821 0.830 0.848 

Differential operator 

Second order 
1.08 1.08 1.08 1.07 
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Table 2-a Change of Pd by 20% increase in scattering coefficient in a larger portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Independent run 
−8.43E−3a 

(2.39E−6)b 

−1.57E−3 

(2.86E−6) 

5.96E−3 

(4.14E−6) 

5.58E−4 

(2.89E−6) 

Correlated sampling 
−8.43E−3 

(4.88E−6) 

−1.57E−3 

(4.88E−6) 

5.96E−3 

(3.68E−6) 

5.51E−4 

(4.11E−6) 

Perturbation source 

C =1 

−8.41E−3 

(3.10E−5) 

−1.52E−3 

(2.93E−5) 

5.96E−3 

(2.19E−5) 

5.32E−4 

(2.68E−5) 

Perturbation source 

C =4 

−8.45E−3 

(2.26E−5) 

−1.61E−3 

(2.13E−5) 

5.98E−3 

(1.56E−5) 

5.46E−4 

(1.91E−5) 

Differential operator 

First order 

−9.73E−3 

(6.00E−6) 

−1.29E−3 

(5.02E−6) 

6.08E−3 

(3.14E−6) 

9.43E−4 

(4.00E−6) 

Differential operator 

Second order 

−8.24E−3 

(4.95E−6) 

−1.65E−3 

(4.95E−6) 

5.96E−3 

(3.65E−6) 

5.05E−4 

(4.14E−6) 

a Read as −8.43×10−3 
b One standard deviation 

 

Table 2-b Relative FOM with respect to the correlated sampling method for 20% increase in 

scattering coefficient in a larger portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Independent run 0.138 0.097 0.026 0.067 

Correlated sampling 1.000 1.000 1.000 1.000 

Perturbation source 

C =1 
0.019 0.021 0.021 0.018 

Perturbation source 

C =4 
0.019 0.021 0.022 0.019 

Differential operator 

First order 
0.702 0.999 1.46 1.11 

Differential operator 

Second order 
1.03 1.03 1.08 1.04 
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Table 3-a Change of Pd by 20% increase in absorption coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 
−2.15E−6a 

(3.42E−9)b 

−1.47E−6 

(2.78E−9) 

−1.67E−5 

(1.22E−9) 

−4.33E−5 

(2.11E−9) 

Perturbation source 

C =1 

−2.15E−6 

(3.11E−9) 

−1.46E−6 

(2.27E−9) 

−1.67E−5 

(1.20E−8) 

−4.33E−5 

(2.38E−8) 

Perturbation source 

C =4 

−2.15E−6 

(1.62E−9) 

−1.46E−6 

(1.18E−9) 

−1.67E−5 

(7.54E−9) 

−4.33E−5 

(1.59E−8) 

Perturbation source 

C =32 

−2.14E−6 

(1.06E−9) 

−1.46E−6 

(7.60E−10) 

−1.67E−5 

(7.92E−9) 

−4.32E−5 

(1.80E−8) 

Differential operator 

First order 

−2.16E−6 

(3.45E−9) 

−1.48E−6 

(2.81E−9) 

−1.68E−5 

(1.24E−8) 

−4.35E−5 

(2.18E−8) 

Differential operator 

Second order 

−2.15E−6 

(3.45E−9) 

−1.46E−6 

(2.78E−9) 

−1.68E−5 

(1.23E−8) 

−4.33E−5 

(2.11E−8) 

a Read as −2.15×10−6 
b One standard deviation 

 

Table 3-b Relative FOM with respect to the correlated sampling method for 20% increase in 

absorption coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 1.00 1.00 1.00 1.00 

Perturbation source 

C =1 
1.12 1.39 0.960 0.726 

Perturbation source 

C =4 
3.83 4.78 2.26 1.50 

Perturbation source 

C =32 
11.9 15.3 2.73 1.56 

Differential operator 

First order 
0.983 0.982 0.981 0.987 

Differential operator 

Second order 
0.997 1.01 0.998 1.00 
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Table 4-a Change of Pd by 300% increase in absorption coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 
−2.95E−5a 

(4.61E−8)b 

−1.99E−5 

(3.63E−8) 

−2.30E−4 

(1.64E−7) 

−6.05E−4 

(2.92E−7) 

Perturbation source 

C =1 

−2.96E−4 

(4.35E−8) 

−1.99E−5 

(3.12E−8) 

−2.31E−4 

(1.67E−7) 

−6.05E−4 

(3.36E−7) 

Perturbation source 

C =4 

−2.95E−4 

(2.25E−8) 

−1.98E−5 

(1.61E−8) 

−2.30E−4 

(1.05E−7) 

−6.05E−4 

(2.24E−7) 

Perturbation source 

C =32 

−2.95E−4 

(1.34E−8) 

−1.99E−5 

(9.45E−9) 

−2.31E−4 

(1.00E−7) 

−6.05E−4 

(2.31E−7) 

Differential operator 

First order 

−3.23E−4 

(5.15E−8) 

−2.21E−5 

(4.19E−8) 

−2.53E−4 

(1.85E−7) 

−3.53E−4 

(3.18E−7) 

Differential operator 

Second order 

−2.92E−4 

(4.53E−8) 

−1.96E−5 

(3.56E−8) 

−2.28E−4 

(1.62E−7) 

−6.02E−4 

(2.90E−7) 

a Read as −2.95×10−5 
b One standard deviation 

 

Table 4-2b Relative FOM with respect to the correlated sampling method for 300% increase in 

absorption coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 1.00 1.00 1.00 1.00 

Perturbation source 

C =1 
1.08 1.30 0.930 0.725 

Perturbation source 

C =4 
3.73 4.51 2.21 1.51 

Perturbation source 

C =32 
11.9 14.7 2.70 1.59 

Differential operator 

First order 
0.832 0.782 0.821 0.876 

Differential operator 

Second order 
1.03 1.04 1.03 1.01 
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Table 5-a Change of Pd by 30% increase in scattering coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 
5.46E−6a 

(9.99E−8)b 

4.95E−6 

(7.65E−8) 

2.51E−5 

(3.52E−7) 

−6.89E−5 

(6.10E−7) 

Perturbation source 

C =1 

5.71E−6 

(1.37E−7) 

5.07E−6 

(9.98E−8) 

2.47E−5 

(4.37E−7) 

−6.90E−5 

(7.19E−7) 

Perturbation source 

C =4 

5.60E−6 

(6.70E−8) 

5.05E−6 

(5.00E−8) 

2.51E−5 

(2.16E−7) 

−6.89E−5 

(3.63E−7) 

Perturbation source 

C =32 

5.60E−6 

(3.06E−8) 

4.99E−6 

(2.29E−8) 

2.50E−5 

(1.03E−7) 

−6.89E−5 

(1.79E−7) 

Differential operator 

First order 

5.91E−6 

(9.98E−8) 

5.07E−6 

(7.45E−8) 

2.50E−5 

(3.52E−7) 

−7.01E−5 

(6.34E−7) 

Differential operator 

Second order 

5.71E−6 

(1.01E−7) 

5.01E−6 

(7.69E−8) 

2.46E−5 

(3.51E−7) 

−6.87E−5 

(6.11E−7) 

a Read as 5.46×10−6 
b One standard deviation 

 

Table 5-b Relative FOM with respect to the correlated sampling method for 30% increase in 

scattering coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 1.00 1.00 1.00 1.00 

Perturbation source 

C =1 
0.515 0.544 0.621 0.666 

Perturbation source 

C =4 
1.85 1.95 2.22 2.36 

Perturbation source 

C =32 
7.19 7.56 7.97 7.84 

Differential operator 

First order 
1.14 1.20 1.14 1.05 

Differential operator 

Second order 
1.02 1.03 1.05 1.04 
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Table 6-a Change of Pd by 200% increase in scattering coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 
3.26E−5a 

(1.69E−6)b 

2.89E−5 

(1.26E−6) 

1.39E−4 

(7.67E−6) 

−4.15E−4 

(1.27E−5) 

Perturbation source 

C =1 

3.38E−5 

(9.36E−7) 

3.17E−5 

(7.11E−7) 

1.55E−4 

(3.29E−6) 

−4.21E−4 

(5.71E−6) 

Perturbation source 

C =4 

3.31E−5 

(4.68E−7) 

3.17E−5 

(3.56E−7) 

1.53E−4 

(1.65E−6) 

−4.17E−4 

(2.86E−6) 

Perturbation source 

C =32 

3.31E−5 

(1.65E−7) 

3.22E−5 

(1.26E−7) 

1.54E−4 

(5.82E−7) 

−4.20E−4 

(1.01E−6) 

Differential operator 

First order 

3.77E−5 

(6.46E−7) 

3.45E−5 

(4.83E−7) 

1.71E−4 

(2.27E−6) 

−4.64E−4 

(4.10E−6) 

Differential operator 

Second order 

3.26E−5 

(1.20E−6) 

3.18E−5 

(1.00E−6) 

1.58E−4 

(4.22E−6) 

−4.14E−4 

(6.40E−6) 

a Read as 3.26×10−5 
b One standard deviation 

 

Table 6-b Relative FOM with respect to the correlated sampling method for 200% increase in 

scattering coefficient in a smaller portion. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 1.00 1.00 1.00 1.00 

Perturbation source 

C =1 
3.01 2.93 5.03 4.54 

Perturbation source 

C =4 
10.8 10.5 18.1 16.4 

Perturbation source 

C =32 
41.3 40.1 69.1 62.3 

Differential operator 

First order 
7.11 7.14 11.9 9.94 

Differential operator 

Second order 
2.04 1.66 3.45 4.07 
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Table 7-a Change of Pd by the change of the anisotropy factor from 0.9 to 0.895. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 
9.05E−7a 

(1.49E−8)b 

8.71E−7 

(1.14E−8) 

4.19E−6 

(5.25E−8) 

−1.15E−5 

(9.18E−8) 

Perturbation source 

C =1 

9.16E−7 

(1.49E−8) 

8.70E−7 

(1.13E−8) 

4.16E−6 

(5.26E−8) 

−1.14E−5 

(9.17E−8) 

Perturbation source 

C =4 

9.04E−7 

(7.48E−9) 

8.54E−7 

(5.69E−9) 

4.14E−6 

(2.65E−8) 

−1.15E−5 

(4.64E−8) 

Perturbation source 

C =32 

9.16E−7 

(2.66E−9) 

8.58E−7 

(2.02E−9) 

4.17E−6 

(9.95E−9) 

−1.14E−5 

(1.82E−8) 

Differential operator 

First order 

9.29E−7 

(1.08E−8) 

8.63E−7 

(8.18E−9) 

4.18E−6 

(3.80E−8) 

−1.14E−5 

(6.71E−8) 

Differential operator 

Second order 

8.92E−7 

(9.62E−9) 

8.70E−7 

(7.36E−9) 

4.09E−6 

(3.39E−8) 

−1.15E−5 

(5.92E−8) 

a Read as 9.05×10−7 
b One standard deviation 

 

Table 7-b Relative FOM with respect to the correlated sampling method for the change of the 

anisotropy factor from 0.9 to 0.895. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 1.00 1.00 1.00 1.00 

Perturbation source 

C =1 
1.00 1.02 0.997 1.00 

Perturbation source 

C =4 
3.69 3.74 3.65 3.63 

Perturbation source 

C =32 
18.6 18.9 16.5 15.0 

Differential operator 

First order 
1.00 1.01 0.994 0.974 

Differential operator 

Second order 
1.04 1.04 1.04 1.04 

 

  



Table 8-a Change of Pd by the change of the anisotropy factor from 0.9 to 0.6. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 
4.27E−5a 

(7.94E−7)b 

4.87E−5 

(8.57E−7) 

2.05E−4 

(3.74E−6) 

−5.68E−4 

(3.62E−6) 

Perturbation source 

C =1 

4.17E−5 

(4.35E−7) 

4.95E−5 

(3.90E−7) 

2.06E−4 

(1.54E−6) 

−5.70E−4 

(1.92E−6) 

Perturbation source 

C =4 

4.24E−5 

(2.69E−7) 

4.91E−5 

(2.39E−7) 

2.05E−4 

(9.51E−7) 

−5.68E−4 

(1.21E−6) 

Perturbation source 

C =32 

4.25E−5 

(1.07E−7) 

4.97E−5 

(9.51E−8) 

2.06E−4 

(4.05E−7) 

−5.69E−4 

(5.83E−7) 

Differential operator 

First order 

5.23E−5 

(9.11E−7) 

5.14E−5 

(6.93E−7) 

2.49E−4 

(3.23E−6) 

−6.92E−4 

(5.69E−6) 

Differential operator 

Second order 

4.15E−5 

(2.67E−6) 

5.00E−5 

(2.11E−6) 

1.89E−4 

(9.52E−6) 

−5.75E−4 

(1.69E−5) 

a Read as 4.27×10−5 
b One standard deviation 

 

Table 8-b Relative FOM with respect to the correlated sampling method for the change of the 

anisotropy factor from 0.9 to 0.6. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 1.00 1.00 1.00 1.00 

Perturbation source 

C =1 
3.70 5.46 6.66 4.00 

Perturbation source 

C =4 
13.2 19.5 23.5 13.6 

Perturbation source 

C =32 
69.0 102 107 48.4 

Differential operator 

First order 
1.39 2.80 2.45 0.742 

Differential operator 

Second order 
0.162 0.301 0.283 0.0841 

 

  



Table 9 3-group constants for light-water and graphite. 

 

  Light-water Graphite  

1t  (cm-1) Total cross section of 1st group 0.33207 0.21053 

2t  (cm-1) Total cross section of 2nd group 1.1265 0.45009 

3t  (cm-1) Total cross section of 3rd group 2.7812 0.53500 

1a  (cm-1) Absorption cross section of 1st group 0.00030500 0.00013890 

2a  (cm-1) Absorption cross section of 2nd group 0.00036990 0.0000017 

3a  (cm-1) Absorption cross section of 3rd group 0.018250 0.000021 

21
s  (cm-1) 

Group-transfer cross section from 1st 

to 2nd group 
0.10464 0.029672 

32
s  (cm-1) 

Group-transfer cross section from 2nd 

to 3rd group 
0.097961 0.015913 

 



Table 10-a Change of the thermal neutron currents by 80% decrease in the light water density. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 
−6.56E−5a 

(1.78E−6)b 

−7.71E−5 

(1.17E−6) 

−1.74E−4 

(3.82E−6) 

2.01E−5 

(5.84E−6) 

Perturbation source 

C =1 

−6.45E−5 

(4.02E−7) 

−7.68E−5 

(8.63E−7) 

−1.67E−4 

(2.14E−6) 

6.02E−6 

(2.15E−6) 

Perturbation source 

C =10 

−6.46E−5 

(8.65E−7) 

−7.65E−5 

(4.01E−7) 

−1.70E−4 

(1.02E−6) 

8.99E−6 

(1.03E−6) 

Perturbation source 

C =30 

−6.48E−5 

(3.68E−7) 

−7.66E−5 

(3.67E−7) 

−1.68E−4 

(9.87E−7) 

7.73E−6 

(9.92E−7) 

Differential operator 

First order 

−5.22E−5 

(6.90E−7) 

−6.25E−5 

(6.90E−7) 

−1.57E−4 

(2.05E−6) 

−1.61E−5 

(2.06E−6) 

Differential operator 

Second order 

−6.23E−5 

(8.89E−7) 

−7.49E−5 

(8.87E−7) 

−1.62E−4 

(2.74E−6) 

−5.09E−6 

(2.74E−6) 

a Read as −6.56×10−5 
b One standard deviation 

 

Table 10-b Relative FOM with respect to the correlated sampling method for 80% decrease in 

the light water density. 

 

  Side 1 Side 2 Side 3 Side 4 

Correlated sampling 1.00 1.00 1.00 1.00 

Perturbation source 

C =1 
6.18 2.71 4.64 10.8 

Perturbation source 

C =10 
19.7 8.62 14.0 32.6 

Perturbation source 

C =30 
23.6 10.3 15.0 34.9 

Differential operator 

First order 
12.5 5.45 6.50 15.2 

Differential operator 

Second order 
7.08 3.09 3.43 8.01 
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