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Spontaneous scalarization is an interesting mechanism for modification of gravity by nonminimal
coupling of a scalar field tomatter or curvature invariants in the context of scalar-tensor theories, and its onset
is signaled by linear instability of the scalar field around the corresponding general relativity solution. We
thus perform the linear stability analysis of the scalar field about general relativity solutions and highlight a
crucial difference between a spherically symmetric profile and a planar symmetric profile.We clarify that the
critical value for the instability is sensitive to the morphology and that the spontaneous scalarization occurs
much more easily with the planar symmetric shape than with the spherically symmetric shape.
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I. INTRODUCTION

Spontaneous scalarization has been attractingmuch atten-
tion recently as a mechanism for local modification of
gravity. This phenomenon was found in [1] for the canonical
scalar-tensor theory without potential but with coupling to
the matter Lagrangian via a conformally transformed metric
Ω2ðϕÞgμν. Later, the model was generalized for a massive
scalar field [2,3]. In these models, the evolution of the scalar
field is affected by the stress energy tensor of the matter
component due to the nonminimal coupling of the scalar
field. Therefore, by designing the dependence of the con-
formal factor on the scalar field, one can modify gravity in
high density regions. Specifically, withΩ;ϕ ¼ 0 andΩ;ϕϕ< 0

at ϕ ¼ ϕ0, the scalar field in a high density region exhibits
tachyonic instability causing the spontaneous scalarization,
which leads to interesting phenomenology [4]. The gener-
alization to those theories in which the scalar field couples to
matter via a disformally transformed metric was also inves-
tigated [5]. Furthermore, the spontaneous scalarization in the
Einstein-scalar-Gauss-Bonnet theory was also investigated
[6–8], inwhich the scalarization is triggered by the tachyonic
mass due to the coupling between a scalar field and the
Gauss-Bonnet term. It is also shown that the Schwarzschild-
Newman-Tamburino-Unti solution can get scalarized in
models with a nonminimal coupling to either the Gauss-
Bonnet or the Chern-Simons terms [9]. The spontaneous
scalarization of the electrically charged black holes in the
presence of nonminimal couplings between a scalar field and
the Maxwell invariant is also explored [10].
The study of spontaneous scalarization in spherically

symmetric configurations is somewhat mature. To be a

realistic model, however, it is important to investigate it
with other shapes of the matter distribution. The main
purpose of the present paper is to reveal the shape
dependence of the spontaneous scalarization in a concise
manner. To highlight the shape dependence, we compare a
spherically symmetric spacetime and a planar symmetric
spacetime. The occurrence of the spontaneous scalariza-
tion is manifested as linear instability of perturbation of
the scalar field about the corresponding general relativity
(GR) solution with ϕ ¼ ϕ0 [11]. In this framework the
linear perturbation of the scalar field does not affect the
background GR solution since the stress energy tensor of
the scalar field and the ϕ dependence of the conformal
factor start at the second order of δϕ≡ ϕ − ϕ0. Hence the
evolution of the scalar perturbation δϕ at the linear order is
governed by the perturbed Klein-Gordon equation with
the fixed GR background metric, which takes the form of a
Schrödinger equation with an effective potential and
energy after mode decomposition. As we shall see below,
the instability of the scalar perturbation, i.e., the sponta-
neous scalarization, corresponds to the existence of a
bound state with negative energy in the Schrödinger
problem.
While in general the form of the effective potential is

not simple, it is expected that we can acquire some insight
from a simpler Schrödinger problem with the square well
potential [12]. Let us therefore consider the Schrödinger
equation

�
−

d2

dx2
þU

�
ψ ¼ Eψ ; ð1:1Þ
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with the square well potential

UðxÞ ¼
�−U0 ðjxj < DÞ;
0 ðjxj > DÞ: ð1:2Þ

Here, x is the radial coordinate. Since the potential is an
even function, without loss of generality we can assume
that ψðxÞ is either odd or even. The planar symmetric case
amounts to −∞ < x < ∞, whereas the spherically sym-
metric case amounts to 0 < x < ∞. It is well known that
the condition for the existence of a bound state with
negative energy E < 0 differs between these two cases
[12]. For the spherically symmetric case, decomposing the

wave function as Ψ ¼ P
l;m

ψlðrÞ
r Yl;mðθ;φÞ and focusing

on the monopole mode l ¼ 0, one arrives at the form of
(1.1). The interior solution is given by a linear combination
of sine and cosine functions. Requiring the regularity of Ψ
at r ¼ 0 allows only the odd-parity sine function. The even-
parity solution, which has lower energy in general, is not
allowed. As a result, a bound state with negative energy
exists if and only if U0 > U0;c where the critical value is
given by

U0;c ¼
π2

4D2
: ð1:3Þ

It implies that the square well potential needs to be
sufficiently deep and/or wide to satisfy the finite threshold.
In contrast, for the planar symmetric case, both of the odd
and even functions are allowed, and consequently the
bound state with negative energy exists so long as
U0 > 0. Hence, in the planar symmetric case, the critical
value is given by

U0;c ¼ 0: ð1:4Þ

Therefore, it is natural to expect that the spontaneous
scalarization occurs more easily in the planar symmetric
case, compared with the finite threshold of the effective
potential required for the spherically symmetric case. We
shall show that the analogy indeed applies.
The rest of the paper is organized as follows. In Sec. II

we define the model and notations. Throughout the paper,
for simplicity we neglect the mass of the scalar field in
vacuum. In Sec. III we study a spherically symmetric
spacetime and clarify that there exists a finite and non-
vanishing threshold for the spontaneous scalarization. In
Sec. IV we investigate the planar symmetric spacetime and
analytically show that the spontaneous scalarization takes
place for an arbitrary small absolute value of the tachyonic
mass inside a matter source. Then Sec. V is devoted to a
conclusion and discussions. In Appendix we provide a note
on the curvature singularity of the static planar symmetric
solution.

II. THE MODEL

Let us define the model and summarize the notation that
we adopt in this paper. In this section we do not specify the
form of the metric nor the matter profile. We work in the
Einstein frame and thus consider the Einstein-Hilbert term
for the metric gμν with a canonical kinetic term for a scalar
field ϕ,

S¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
∂μϕ∂μϕ−VðϕÞ

�
þSmðg̃μν;ψmÞ;

ð2:1Þ

where the matter action Sm has a nonminimal coupling to
the scalar field via the Jordan frame metric g̃μν ≡ Ω2ðϕÞgμν.
The Einstein and Klein-Gordon equations are given by

Gμν ¼ 8πGðΩ2Tμν þ TðϕÞμνÞ;

□ϕ ¼ ∂Veff

∂ϕ ; ð2:2Þ

where the stress energy tensor for the scalar field and the
effective potential are given by

TðϕÞμν ≡ −
�
1

2
∂λϕ∂λϕþ VðϕÞ

�
gμν þ ∂μϕ∂νϕ;

VeffðϕÞ≡ VðϕÞ − 1

4
Ω4ðϕÞT̃; ð2:3Þ

and the matter stress energy tensors are Tμν ≡ 2ffiffiffiffi−gp δSm
δgμν

and

T̃μν ≡ 2ffiffiffiffi
−g̃

p δSm
δg̃μν

; the trace is T̃ ≡ g̃μνT̃μν.

We focus on the background solution with ϕ ¼ ϕ0 ¼
const, assuming that Ωðϕ0Þ ¼ 1, Ω;ϕðϕ0Þ ¼ 0 and
Vðϕ0Þ ¼ V;ϕðϕ0Þ ¼ 0. These conditions are sufficient to
guarantee the existence of the GR solution with ϕ ¼ ϕ0

(see also [13] for the conditions for more general higher-
derivative theory but without nonminimal coupling to
matter). Indeed, at ϕ ¼ ϕ0, the Einstein equation (2.2) is
simply given by

Gμν ¼ 8πGTμν: ð2:4Þ

From (2.2) we see that at the linear order of the scalar
perturbation δϕ ¼ ϕ − ϕ0, the Einstein equation is
unchanged from GR. Therefore any GR solution solves
it up to the linear order of δϕ.
On the other hand, the Klein-Gordon equation (2.2) for ϕ

shows that, due to the nonminimal coupling, the dynamics
of the scalar field is affected by the matter configuration. At
the background level, the equation of motion is trivially
satisfied by ϕ ¼ ϕ0.
Let us consider a small perturbation of the scalar field

δϕ ¼ ϕ − ϕ0. Since its backreaction to the spacetime
geometry and matter is absent at the linear order as
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mentioned above, we consider the evolution of the scalar
perturbation on the fixed GR background metric.1 The
perturbed equation of motion is given by

□δϕ ¼ m2
effδϕ; ð2:5Þ

with the effective mass

m2
eff ≡ V;ϕϕðϕ0Þ − Ω;ϕϕðϕ0ÞT; ð2:6Þ

where T≡gμνTμν and we used Ωðϕ0Þ¼ 1 and Ω;ϕðϕ0Þ¼ 0.
The instability of δϕ amounts to the spontaneous

scalarization. For instance, let us suppose a homogeneous
and isotropic perfect fluid with T ¼ −ρþ 3P and define a
bare mass squared m2 ≡ V;ϕϕðϕ0Þ, i.e., the contribution of
the potential to the effective mass squared, and a dimen-
sionless parameter2 β̂0 ≡ 3M2

PlΩ;ϕϕðϕ0Þ measuring the size
of the contribution of the conformal factor to the effective
mass squared in the unit of the reduced Planck massMPl ≡
ð8πGÞ−1=2 (up to the overall factor of 3). We then obtain

m2
eff ¼ m2 þ β̂0

3M2
Pl

ðρ − 3PÞ: ð2:7Þ

The case with m ¼ 0 and β̂0 < 0 amounts to the sponta-
neous scalarization when ρ − 3P > 0. With non-negligible
density, δϕ exhibits a tachyon instability. It implies that the
GR solution is unstable and the system is spontaneously
scalarized. While the mass m of the potential is phenom-
enologically important, it is not crucial to include it to see
the shape dependence, which is the main purpose of the
present paper. Therefore, for simplicity we assume m2 ≪
jβ̂0ðρ − 3PÞ=ð3M2

PlÞj and focus on the case where the
stability is solely determined by the effective mass origi-
nated from the matter coupling via the Jordan frame metric.
In the following sections we shall therefore set m ¼ 0.
In Secs. III and IV, we shall consider background GR

solutions for two different matter distributions, a spheri-
cally symmetric profile and a planar symmetric profile, and

highlight a crucial difference between them for the stability
of the perturbation δϕ.

III. SPHERICALLY SYMMETRIC SPACETIME

Let us begin with the spherically symmetric spacetime.
While we shall focus on the static case, first we write down
the metric in a time dependent form

ds2 ¼ −AðrÞdt2 þ FðtÞ
BðrÞ dr

2 þ r2ðdθ2 þ sin2θdφ2Þ; ð3:1Þ

just to be parallel with the structure of Sec. IV. We compute
the components of the Einstein tensor and assume a
diagonal form of the stress-energy tensor of the matter
source. We then find that the Einstein tensor has a nontrivial
off-diagonal component

Gt
r ¼ −

_F
rAF

¼ 0: ð3:2Þ

Therefore, the only possible solution is FðtÞ ¼ 1, and a
background solution of the form (3.1) with nontrivial time
dependency does not exist. Therefore, we shall focus on the
static case from now on.

A. Background solution

Let us focus on the static, spherically symmetric space-
time given by

ds2 ¼ −AðrÞdt2 þ 1

BðrÞ dr
2 þ r2ðdθ2 þ sin2θdφ2Þ: ð3:3Þ

The Einstein equation is given by

Gt
t ¼

ðrBÞ0
r2

−
1

r2
¼ −8πGρ;

Gr
r ¼

BðrAÞ0
r2A

−
1

r2
¼ 8πGP; ð3:4Þ

where ρðrÞ is the energy density and PðrÞ is the radial
pressure. For later convenience, from the Einstein equation
one can derive

ðABÞ0
rA

¼ 2ð1 − BÞ
r2

− 8πGðρ − PÞ: ð3:5Þ

As the simplest example, we consider the density profile
with a step function

ρðrÞ ¼
�
ρ0; ð0 < r < dÞ;
0; ðr > dÞ: ð3:6Þ

It is well known that this system has an exact solution
for interior and exterior regions. Let us define L≡
ð8πGρ0=3Þ−1=2 corresponding to the Jeans length and

1This approach is sometimes called the “decoupling limit”
analysis in the literature. There is no backreaction of the scalar
perturbation to the metric and matter at linear order for the
canonical model of the spontaneous scalarization [11]. For
example, in [14], the spontaneous scalarization of the black hole
surrounded by matter in the model (2.1) was considered. To study
the stability analytically, the backreaction of the scalar field to
spacetime geometry and matter was first neglected, a sufficient
condition [15] to develop the instability was derived, and then full
numerical analysis was provided. A similar analysis was also
employed in [7] to analytically study the spontaneous scalariza-
tion in the Einstein-scalar-Gauss-Bonnet gravity.

2Here we use a notation slightly different from the one used in
the literature, i.e., αðϕÞ≡ d lnΩðϕÞ

dϕ , α0 ≡ αðϕ0Þ, and β0 ≡ α;ϕðϕ0Þ,
for which with Ωðϕ0Þ ¼ 1 and α0 ¼ 0, one obtains
β0 ¼ Ω;ϕϕðϕ0Þ.
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normalize the variables as t̂≡ t=L and r̂≡ r=L. With the
normalized variables, the interior and exterior
Schwarzschild solutions are written as

A ¼ 1

4
ð3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − d̂2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − r̂2

p
Þ2;

B ¼ 1 − r̂2 ð0 < r̂ < d̂Þ;

A ¼ B ¼ 1 −
d̂3

r̂
ðr̂ > d̂Þ; ð3:7Þ

where d̂ ¼ d=L. The pressure is given by analytically
integrating the Tolman-Oppenheimer-Volkoff (TOV) equa-
tion as

P ¼
8<
:

ρ0
ffiffiffiffiffiffiffi
1−r̂2

p
−

ffiffiffiffiffiffiffiffi
1−d̂2

p
3

ffiffiffiffiffiffiffiffi
1−d̂2

p
−

ffiffiffiffiffiffiffi
1−r̂2

p ð0 < r̂ < d̂Þ;

0 ðr̂ > d̂Þ;
ð3:8Þ

which has the maximum value at r ¼ 0, monotonically
decreases as r increases, and reaches zero at r ¼ d. This
background solution is shown in Fig. 1 for the case
d̂ ¼ 0.5. Note that the normalized Schwarzschild radius
is not d̂ but d̂3. For 0 < r̂ < d̂, Aðr̂Þ ¼ 0 corresponds to

r̂2 ¼ 9d̂2 − 8: ð3:9Þ

Therefore, so long as we consider

d̂ <
2

ffiffiffi
2

p

3
≈ 0.943; ð3:10Þ

Aðr̂Þ is positive and does not cross zero for r̂ > 0.

B. Perturbation

Next, we study perturbation about the background
analytic solution. As mentioned above, the metric and
matter remain as the GR solution at linear order of the
scalar perturbation δϕ ¼ ϕ − ϕ0. Hence we focus on the
perturbed Klein-Gordon equation on the fixed GR metric

solution. By decomposing the perturbation into spherical
harmonics as

δϕ ¼
X
l;m

σlðt; rÞ
r

Ylmðθ;φÞ; ð3:11Þ

from (2.5) we can write down the evolution equation as

−
∂2σl
∂ t̂2 þ∂2σl

∂r̂2� ¼A

�
1−B
r̂2

−
3

2

ρ−P
ρ0

þlðlþ1Þ
r̂2

þL2m2
eff

�
σl;

ð3:12Þ

where r̂� is the normalized tortoise coordinate defined via
dr̂=dr̂� ¼

ffiffiffiffiffiffiffi
AB

p
. We also used (3.5) to simplify the right-

hand side.
The relation between r̂ and r̂� can be analytically

obtained as

r̂�ðr̂Þ ¼

8>>><
>>>:

2ffiffiffiffiffiffiffiffiffi
8−9d̂2

p arctan

�
r̂

ffiffiffiffiffiffiffiffiffi
8−9d̂2

p
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−d̂2Þð1−r̂2Þ

p
−1

�
ð0 < r̂ < d̂Þ;

r̂ − d̂þ d̂3 log
�
r̂−d̂3
d̂−d̂3

�
þ 2ffiffiffiffiffiffiffiffiffi

8−9d̂2
p arctan

�
d̂

ffiffiffiffiffiffiffiffiffi
8−9d̂2

p
2−3d̂2

�
ðr̂ > d̂Þ:

ð3:13Þ

We can also obtain the inverse function as

r̂ðr̂�Þ ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffi
8−9d̂2

p
sinðr̂�

ffiffiffiffiffiffiffiffiffi
8−9d̂2

p
=2Þ

cosðr̂�
ffiffiffiffiffiffiffiffiffi
8−9d̂2

p
=2Þþ3

ffiffiffiffiffiffiffiffi
1−d̂2

p ð0 < r̂� < d̂�Þ;

d̂3
�
1þW

�
ðd̂−2 − 1Þ exp

�
d̂−2 − 1þ r̂�

d̂3
− 2

d̂3
ffiffiffiffiffiffiffiffiffi
8−9d̂2

p arctan
�
d̂

ffiffiffiffiffiffiffiffiffi
8−9d̂2

p
2−3d̂2

�	�	
ðr̂� > d̂�Þ;

ð3:14Þ

FIG. 1. The background solution represented by A (top, black
solid line), B (top, blue dashed line), and P (bottom) for the
constant density sphere profile with radius d̂ ¼ 0.5.
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where d̂� ≡ r̂�ðd̂Þ and WðzÞ is the product logarithm or
the Lambert function satisfying z ¼ WeW . Note that
limr̂→0r̂� ¼ 0 and limr̂→∞r̂� ¼ ∞, and r̂� ≈ r̂ at the leading
order of the approximation d̂ ≪ 1.
Below we set m2 ≡ V;ϕϕðϕ0Þ ¼ 0 and focus on the l ¼

0 monopole mode as it is the most unstable mode. Using
the definition Ω;ϕϕðϕ0Þ≡ β̂0=ð3M2

PlÞ, we obtain

−
∂2σ0
∂ t̂2 þ ∂2σ0

∂r̂2� ¼ A

�
1 − B
r̂2

þ
�
β̂0 −

3

2

�
ρ − P
ρ0

	
σ0: ð3:15Þ

By using the Fourier decomposition σ0 ¼
R

dω
2π e

−iωt̂ψðr̂�Þ,
we obtain the Scrödinger-type equation

�
−

d2

dr̂2�
þU

�
ψ ¼ Eψ ; ð3:16Þ

with the effective potential and energy as

Uðr̂�Þ≡A

�
1−B
r̂2

þ
�
β̂0−

3

2

�
ρ−P
ρ0

	
; E≡ω2; ð3:17Þ

where the right-hand side of the effective potential Uðr̂�Þ is
understood as a function of r̂� after substituting r̂ ¼ r̂ðr̂�Þ
given in (3.14). Since δϕ ∼ ψðr̂�Þ=r̂ and limr̂→0r̂� ¼ 0, the
regularity of δϕ at the origin r̂ ¼ 0 requires the boundary
condition ψð0Þ ¼ 0. We note that the existence of a bound
state satisfying jψð�∞Þj < ∞ with negative energy
ω2 < 0 amounts to the instability as the perturbation δϕ
grows up exponentially.
The potential Uðr̂�Þ is shown in Fig. 2, which is

determined by two dimensionless parameters, d̂ and β̂0.
Since we are interested in the spontaneous scalarization, we
focus on the case β̂0 < 0. The larger jβ̂0j is, the deeper the
depth of the well is, implying that it is easier to have a
negative energy bound state. On the other hand, as d̂
increases, the width of the negative region increases.

To check the existence of the bound state with negative
energy, we can exploit a theorem of the Strum-Liouville
theory on the number of nodes of eigenfunctions [16] (for a
related method, see [17,18]): if eigenfunctions ψ0;ψ1;…,
are ordered according to increasing eigenvalues with
E0 < E1 < � � �, the nth eigenfunction has n nodes.
Hence, solving the Schrödinger equation (4.17) with
E ¼ 0, we can check whether it is the ground state, i.e.,
the bound state with the lowest E, by looking at whether it
does not or does have nodes for r̂� > 0. Note that from the
boundary condition, the solution always has a node at
r̂� ¼ 0. However, it corresponds to the existence of the
even-parity solution with negative energy, which, however,
is prohibited by the requirement of the regularity of δϕ at
the origin. Therefore, we focus on nodes for r̂� > 0. In
particular, we are interested in clarifying the critical value
β̂0;c such that the zero energy Schrödinger equation starts to
have a node for β̂0 < β̂0;c. It means that for β̂0 ≥ β̂0;c the
zero energy bound state is the ground state without any
nodes for r̂� > 0. Therefore, in practice, for a given d̂ we
solve the zero energy Schödinger equation with the odd-
parity boundary condition ψð0Þ ¼ 0 and ψ 0ð0Þ ¼ 1 with a
test value of negative β̂0 sufficiently close to 0 so that the
solution does not have a node for r̂� > 0, and we iterate the
calculation with a smaller β̂0 until we identify the critical
value β̂0;c below which the solution starts to have a node for
r̂� > 0. Then, from the nodal theorem, a node of the zero
energy bound state guarantees the existence of a negative
energy bound state, which leads to the instability of δϕ, i.e.,
the spontaneous scalarization.
The numerically obtained β̂0;c for various d̂ is depicted in

Fig. 2. The dots from ðd̂;−β̂0Þ ¼ ð10−5; 2.47 × 1010Þ to
(0.9,2.29) denote numerically calculated values of the
critical value β̂0;c, which can be well approximated by

−β̂0;c ≈
2

d̂2
; ð3:18Þ

FIG. 2. The potential Uðr̂�Þ (left) and the critical value β̂0;c (right) for the spherically symmetric step function density profile (3.6).
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shown as the solid line in Fig. 2. The scaling of (3.18)
precisely matches the physical intuition from (1.3). It can
also be understood from an order estimation following from
the dispersion relation ω2 ∼ d−2 − jm2

eff j ∼ ρ0ðd̂−2 − jβ̂0jÞ,
which needs to be negative for instability. The result also
matches the expectation from the shape of the potential. For
a fixed d̂, as β̂0 decreases and subceeds the critical value
β̂0;c, the spontaneous scalarization occurs. This is because a
deeper potential allows the existence of a bound state with
negative energy, leading to the instability that indicates the
onset of scalarization. On the other hand, for a fixed β̂0, as d̂
decreases, the spontaneous scalarization requires larger
jβ̂0j. Physically, the spontaneous scalarization requires a
sufficiently large radius, dense profile, or large tachyon
mass due to the conformal factor.

IV. PLANAR SYMMETRIC SPACETIME

Let us see how the results in Sec. III are changed if we
consider a matter profile with a different morphology. As an
extreme example, we consider a planar symmetric matter
configuration, and correspondingly a planar symmetric
spacetime whose metric is given by

ds2 ¼ −a2ðzÞdt2 þ f2ðtÞb2ðzÞðdx2 þ dy2Þ þ dz2: ð4:1Þ

Writing down all the components of the Einstein tensor and
supposing a diagonal form of the stress-energy tensor of the
matter component, we obtain a condition from ðt; zÞ
component

Gt
z ¼ −

2_f
a2f

�
ln
a
b

�0
¼ 0; ð4:2Þ

where a prime denotes a derivative with respect to z.
It suggests the two possible branches, fðtÞ ¼ 1 or
bðzÞ ¼ aðzÞ, where we absorbed the proportionality con-
stant in a redefinition of bðzÞ or x, y, respectively. However,
as shown in Appendix, the static branch fðtÞ ¼ 1 with the
step function density profile ends up with a curvature
singularity. While it may be possible to consider other
density profiles to derive a solution without the curvature
singularity, the fact that the simplest profile is plagued with
the curvature singularity is not attractive. Hence we focus
on the second branch with bðzÞ ¼ aðzÞ:

ds2 ¼ −a2ðzÞdt2 þ f2ðtÞa2ðzÞðdx2 þ dy2Þ þ dz2: ð4:3Þ

Outside the matter source, using the vacuum Einstein
equation, one can confirm that the contraction of the Weyl
tensor identically vanishes on vacuum, implying that there
is no curvature singularity for the metric (4.3).
Furthermore, one can also check that all the components
of the Riemann tensor are identically vanishing, which
implies that the vacuum solution of the form (4.1) is locally

equivalent to the Minkowski metric through a coordinate
transformation. The ðt; tÞ component of the vacuum
Einstein equation is given by

Gt
t ¼ −

_f2

a2f2
þ a02

a2
þ 2a″

a
¼ 0: ð4:4Þ

In what follows, we consider the case where the separation
of variables applies, i.e., the case with fðtÞ ¼ eHt, where H
is a positive constant, not only outside but also inside the
matter source.

A. Background

Let us consider the metric

ds2 ¼ −a2ðzÞdt2 þ e2Hta2ðzÞðdx2 þ dy2Þ þ dz2; ð4:5Þ

with the planar andZ2 symmetricmatter configuration.Here,
by the Z2 symmetry, we mean that the configuration is
invariant under the z-parity, i.e., z → −z. A solution for a
similar setup of the thick domain wall was derived in [19],
where the domain wall is formed by a scalar field. See also
[20] for the most general reflection-symmetric solution to
Einstein equations for a planar domain wall. In the present
case we simply assume a matter profile which respects the
planar and Z2 symmetries. Considering an anisotropic
perfect fluid, the stress-energy tensor is given by

Tμν ¼ ðρþ PxÞuμuμ þ Pxgμν þ ðPz − PxÞzμzν; ð4:6Þ
where uμ ¼ ð1=aÞð∂=∂tÞμ, zμ ¼ ð∂=∂zÞμ, andwe have used
Py ¼ Px. The Einstein equation is then given by

Gt
t ¼

a02 −H2

a2
þ 2a00

a
¼ −8πGρ;

Gx
x ¼ Gy

y ¼ a02 −H2

a2
þ 2a00

a
¼ 8πGPx;

Gz
z ¼

3ða02 −H2Þ
a2

¼ 8πGPz: ð4:7Þ

From (4.7) we immediately see that Px ¼ −ρ. Therefore the
matter stress-energy tensor is specified by ρ and Pz.
Given ρðzÞ, one can solve (4.7) for a and Pz. For the

following we assume that a > 0 and 3ρþ Pz ≥ 0, the
latter of which is weaker than the null energy condition
ρþ Pz ≥ 0 so long as ρ ≥ 0. We further assume that
ð3ρþ PzÞjz¼0 > 0. For general ρ and Pz, we can derive

a00

a
¼ −4πGð3ρþ PzÞ: ð4:8Þ

Hence, under the condition 3ρþ Pz ≥ 0 it holds that
a00ðzÞ ≤ 0. It also follows that a00ð0Þ < 0. Since the matter
configuration respects the planar and Z2 symmetries, aðzÞ
is also an even function. Thus we impose the condition
að0Þ ¼ 1 and a0ð0Þ ¼ 0 at z ¼ 0, and focus on the positive
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region z > 0 as the negative region z < 0 is given by a
reflection of the positive region. Combining a00ðzÞ ≤ 0 for
z > 0, a00ð0Þ < 0 and a0ð0Þ ¼ 0, we obtain a00ðzÞ < 0; i.e.,
aðzÞ is monotonically decreasing, for z > 0. In particular, if
there exists a boundary z ¼ �d of matter such that ρ ¼
Pz ¼ 0 for jzj ≥ d, it holds that a0ðdÞ < 0, which can be
used as a boundary condition to connect to the vacuum
solution.
Using the boundary condition of a0ðdÞ < 0, we can solve

the ðz; zÞ component of the vacuum Einstein equation to
obtain the exterior solution

aðzÞ ¼
�
Hðzþ zhÞ ðz < −dÞ;
−Hðz − zhÞ ðz > dÞ; ð4:9Þ

where zh is an integration constant which can be fixed by
matching the values of aðdÞ between the exterior solution
and the interior solution. We note that aðzÞ ¼ 0 at z ¼ �zh,
which defines the cosmological horizon [19].
The interior solution for aðzÞ and the pressure PzðzÞ

can be obtained for a given matter density distribution ρ
by solving the Einstein equation. To compare with the
case of a sphere profile with constant density in Sec. III,
we consider a wall with constant density extended for
−d < z < d,

ρðzÞ ¼
�
ρ0 ðjzj < dÞ;
0 ðjzj > dÞ: ð4:10Þ

By introducing the Jeans scale L≡ ð8πGρ0=3Þ−1=2, in the
following we work with the normalized variables t̂≡ t=L,
ẑ≡ z=L, and γ ≡HL, which is the ratio between the Jeans
scale and the cosmological horizon scale. Note also that
γ2 ¼ 3H2=ð8πGρ0Þ ¼ 1=Ωw where Ωw is the analogy of
the density parameter of the wall. In the following we
denote a0 ¼ da=dẑ.
The interior solution for the matter density profile (4.10)

can be obtained by solving the Einstein equation (4.7).
With the normalized variables, it can be rewritten as

2a
d2a
dẑ2

þ
�
da
dẑ

�
2

þ 3a2 − γ2 ¼ 0; ð4:11Þ

Pz

ρ0
¼ 1

a2

��
da
dẑ

�
2

− γ2
	
: ð4:12Þ

Let us impose the condition ρ0 þ Pzð0Þ > 0, which is
necessary for the null energy condition and sufficient
for the condition 3ρþ Pz > 0 considered above. From
Pzð0Þ=ρ0 ¼ −γ2 we obtain the condition γ < 1. For the
parameter region 0 < γ < 1, we numerically solved (4.11)
for the interior solution of aðzÞwith the boundary condition
að0Þ ¼ 1 and a0ð0Þ ¼ 0, and we obtain PzðzÞ from (4.12).
We then confirmed that there exists the boundary of the
wall ẑ ¼ d̂ where Pzðd̂Þ ¼ 0. The parameter region 0 <
γ < 1 corresponds to 0 < d̂ < d̂jγ¼1 ≈ 1.57. The example

of the case d̂ ¼ 0.5 is depicted in Fig. 3. We also confirmed
that ρ0 þ PzðẑÞ > 0 is satisfied for 0 < ẑ < d̂. Since the
condition 3ρþ Pz > 0 is satisfied, aðẑÞ is monotonically
decreasing for 0 < ẑ < d̂ and connects to the exterior
vacuum solution (4.9).

B. Perturbation

Next let us consider the scalar perturbation δϕ ¼ ϕ − ϕ0

on the above background GR solution, since the metric and
matter remain unchanged at the linear order of δϕ. Unlike
the spherically symmetric case in Sec. III, it is possible to
show that β̂0;c ¼ 0 for a general profile

ρðzÞ ¼
�
ρintðzÞ ðjzj < dÞ;
0 ðjzj > dÞ; ð4:13Þ

respecting the Z2 and planar symmetries with the normali-
zation

R
d
−d dzρintðzÞ ¼ 2ρ0d. The density profile can be

originated from an external source, a scalar field, or
curvature invariants. Below we consider the general profile
(4.13) and use the constant density profile (4.10) only for
presentation of a concrete effective potential in Fig. 4.
From (2.5) we can derive the equation of motion for

perturbation of the scalar field. By decomposing the
perturbation into Fourier mode as

δϕ ¼
Z

d2k
ð2πÞ2

σkðt̂; ẑÞ
eγt̂a

eiðkxxþkyyÞ; ð4:14Þ

with k ¼ ðkx; kyÞ, the evolution equation takes the form of

−
∂2σk
∂ t̂2 þ∂2σk

∂ẑ2�
−a2

�
L2m2

eff þ
L2k2

e2γt̂a2
þ3

2

1

ρ0

�
Pz

3
−ρ

�	
σk ¼ 0; ð4:15Þ

FIG. 3. The background solutions a (top) and Pz (bottom) for
the constant density wall profile (4.10) with d̂ ¼ 0.5.
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where k2 ≡ k2x þ k2y and ẑ� is the normalized tortoise
coordinate defined via dẑ=dẑ� ¼ aðẑÞ.
In parallel to the spherically symmetric case in Sec. III, we

focus on the kx ¼ ky ¼ 0 mode as it is the most unstable
mode, setm2 ¼ 0, and use the notation β̂0 ≡ 3M2

PlΩ;ϕϕðϕ0Þ.
We also note that the trace of the stress-energy tensor is given
by T ¼ −ρþ 2Px þ Pz ¼ −3ρþ Pz in the present case.
By using the Fourier decomposition σ0 ¼

R
dω
2π e

−iωt̂ψðẑ�Þ,
we obtain

�
−

d2

dẑ2�
þ 3

�
−β̂0 þ

1

2

�
a2

ρ0

�
Pz

3
− ρ

�	
ψ ¼ ω2ψ : ð4:16Þ

Here, unlike the spherically symmetric case in Sec. III,
we need to take into account the fact that δϕ ∼
eð−iω−γÞt̂ψðẑ�Þ=aðẑ�Þ ¼ eðjωj−γÞt̂ψðẑ�Þ=aðẑ�Þ where we con-
sider pure imaginary frequency ω ¼ ijωj. This means that
the instability or exponential growth of δϕ corresponds
to jωj > γ. Therefore, it is more appropriate to work in
the notation

�
−

d2

dẑ2�
þU

�
ψ ¼ Eψ ð4:17Þ

with the potential and energy

Uðẑ�Þ≡3

�
−β̂0þ

1

2

�
a2

ρ0

�
Pz

3
−ρ

�
þ γ2; E≡−ω2þ γ2:

ð4:18Þ
The right-hand side of the potential U is understood as a
function of ẑ� after substituting the numerical solution
ẑ ¼ ẑðẑ�Þ. The exponential growth of δϕ amounts to the
bound state with negative energy E < 0.
As a demonstration, the potential Uðẑ�Þ for the constant

density wall profile (4.10) is depicted in Fig. 4. While in
practice we set the model parameter γ first and determine d̂
for each γ, to highlight the interplay to the results obtained

in Sec. III, we showed the value of d̂. As expected, the
depth of the potential is deeper for a larger value of jβ̂0j.
Let us go back to the argument with the general density

profile (4.13). As mentioned above, the instability or the
spontaneous scalarization amounts to the existence of a
bound state with negative energy E < 0. From the theorem
of the Strum-Liouville theory, at the critical value β̂0 ¼ β̂0;c
for the instability, the Schrödinger equation (4.17) with
E ¼ 0 allows a bound state without nodes. Once one
considers β̂0 < β̂0;c, the bound state for E ¼ 0 starts to
have a node, implying the existence of a bound state for
E < 0. Thus, let us focus on the bound state for E ¼ 0
without nodes.
First, let us focus on the interior solution obeying the

Schrödinger equation (4.17) with E ¼ 0. Since the effective
potential has the Z2 symmetry, without loss of generality
we can assume that ψðẑ�Þ is either even or odd. We
emphasize here that unlike the spherically symmetric case
in Sec. III, both odd- and even-parity solutions are allowed
for the planar symmetric case. For the odd-parity case, the
solution always has at least one node at ẑ� ¼ 0. Therefore,
the bound state without a node respects the even-parity,
satisfying the boundary condition ψð0Þ ¼ 1 and ψ 0ð0Þ ¼ 0.
Next, let us focus on a possibility of nodes for ẑ� > d̂�

for such an even-parity solution. Since U ¼ γ2 ¼ const for
ẑ� > d̂�, the exterior solution is simply given by

ψ ¼ cþeγẑ� þ c−e−γẑ� ; ð4:19Þ

where c� are integration constants. Without loss of general-
ity, we assume that c− ≠ 0 since the solution with c− ¼ 0 is
either trivial (if cþ ¼ 0) or unbounded (if cþ ≠ 0). This
solution has either one or zero node for ẑ� > d̂�, depending
on the sign of cþ=c−: the solution with cþ=c− > 0 does not
have nodes for ẑ� > d̂�. However, since jψ j → ∞ for
ẑ� → ∞, it is not a bound state. The solution with
cþ ¼ 0 does not have nodes for ẑ� > d̂� and is a bound

FIG. 4. The potential Uðẑ�Þ (left) for the constant density wall profile (4.10) and the critical value β̂0;c (right) for the planar symmetric
step function density profile.
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state as ψ is decaying as ẑ� → ∞. The solution with
cþ=c− < 0 has one node for ẑ� > d̂�, and jψ j → ∞ for
ẑ� → ∞. Therefore, the case cþ ¼ 0 is realized for the
critical value β̂0 ¼ β̂0;c. For a given function ψ , we can
check if cþ ¼ 0 or not by using the identity

dψ
dẑ�

ðd̂�Þ þ γψðd̂�Þ ¼ 2γcþeγd̂� : ð4:20Þ

For the critical value β̂0 ¼ β̂0;c, the left-hand side should
vanish.
In summary, the critical value β̂0 ¼ β̂0;c is defined by the

condition that the Schrödinger equation (4.17) with E ¼ 0
allows an even-parity bound state without a node. The even
parity is guaranteed by the boundary condition ψð0Þ ¼ 1,
ψ 0ð0Þ ¼ 0, and the absence of nodes for ẑ� > d̂� is
guaranteed by the condition dψ=dẑ�ðd̂�Þ þ γψðd̂�Þ ¼ 0.
Interestingly enough, under the assumption a > 0 and

3ρþ Pz > 0 for jẑ�j < d̂�, for any matter profile without
any approximation, we can show

β̂0;c ¼ 0; ð4:21Þ

for the planar symmetric case, in contrast to (3.18) for the
spherically symmetric case. It matches the physical intu-
ition from (1.4). The proof is as follows. First, using (4.7),
we can show that ψ ¼ a is a solution of the Schrödinger
equation (4.17) with E ¼ 0 and β̂0 ¼ 0. This solution also
satisfies the boundary condition ψð0Þ ¼ 1 and ψ 0ð0Þ ¼ 0.
The assumption a > 0 guarantees the absence of nodes.
Furthermore, under the assumption a > 0, 3ρþ Pz ≥ 0,
and ð3ρþ PzÞjz¼0 > 0, the exterior solution is given by
(4.9), and hence da=dẑðd̂Þ ¼ −γ. Since ψ ¼ a, this equa-
tion translates to dψ=dẑ�ðd̂�Þ ¼ −γψðd̂�Þ, which is nothing
but the desired condition. This proves that β̂0;c ¼ 0 for a
wide class of planar symmetric configurations, as shown in
Fig. 4 for a particular case.
As a complementary check, we performed numerical

calculations and confirmed that β̂0;c ¼ 0 within the numeri-
cal error of order 10−16. In numerical calculations, we solve
(4.17) in terms of ẑ rather than ẑ� to avoid the numerical
error caused by the interpolating function ẑ ¼ ẑðẑ�Þ. For
errors associated with the numerical integration of two
differential equations (4.11) and (4.17) for the background
and the perturbation, respectively, we require that the
relative errors remain less than 10−16. Consequently we
find out that down to the order of the numerical error, the
system exhibits the scalarization for β̂0 < −10−16, whereas
the GR solution is stable for β̂0 > 10−16. These are con-
sistent with the analytically obtained value of β̂0;c ¼ 0.
This result highlights the shape dependence of the

spontaneous scalarization explicitly. For the spherically
symmetric profile shown in Fig. 2, β̂0;c ≳Oð1Þ for

0 < d̂ < 0.8, meaning that the spontaneous scalarization
requires a sufficiently large radius, dense profile, or large
tachyon mass due to the conformal factor. In contrast, for
the planar symmetric profile (such as the one shown in
Fig. 4), the scalarization occurs for β̂0 < 0, whereas the GR
solution is stable for β̂0 > 0. So long as the conformal
factor Ω contributes negatively to the effective mass
squared of the scalar field, regardless of the amplitude
of the tachyon mass and the density profile ρ, the
scalarization occurs. This shape dependence matches the
physical intuition acquired from the analogous Schrödinger
problem for the square well potential in the spherically
symmetric profile and the planar symmetric profile. As
mentioned in Sec. I, for the former case a bound state with
negative energy exists if the depth and width of the well
exceed a critical value, whereas in the latter case the critical
value is 0.

V. CONCLUSION AND DISCUSSIONS

We have investigated the canonical scalar-tensor theory
with coupling to the matter sector via a conformally
transformed metric and highlighted how essential the
morphology of the matter profile is for the realization of
the spontaneous scalarization. The model allows for a GR
solution with a constant scalar field profile, which remains
unchanged at the linear order of the perturbation of the
scalar field. We have studied the stability of the linear
perturbation of the scalar field, where the instability
amounts to the spontaneous scalarization. Since the evo-
lution equation of the perturbation takes the form of the
Schrödinger equation with an effective potential depending
on the mass due to the conformal factor and the stress
energy tensor of matter, the instability/stability of scalar
perturbation is translated into the existence/absence of the
bound state with negative energy. Using the theorem of the
Strum-Liouville theory, the boundary between the exist-
ence and the absence of a bound state with negative energy
is obtained by simply demanding that there is a bound state
of zero energy without nodes, corresponding to the ground
state. In this way we derived the critical value β̂0;c of the
normalized mass squared due to the conformal factor,
below which the zero energy bound state has a node,
namely, the spontaneous scalarization occurs.
We focused on the spherically and planar symmetric

profiles of matter configuration and clarified that the critical
value β̂0;c has sensitive dependency on the morphology of
the matter profile. For the spherically symmetric step
function profile of the matter density, the background
GR solution is given by the interior and exterior
Schwarzschild solutions. We numerically solved the per-
turbation equation and obtained the critical value β̂0;c
shown in Fig. 2 as a function of the radius d̂ of the sphere
normalized by the Jeans length. The fitting function of the
critical values is given by −β̂0;c ≈ 2d̂−2 in (3.18), which
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precisely matches the physical intuition from (1.3), and can
also be understood from the simple estimation of the
dispersion relation. This implies that the spontaneous
scalarization requires a sufficiently large radius, dense
profile, or large tachyon mass due to the conformal factor.
On the other hand, for the planar symmetric profile, for a
general density profile that satisfies a > 0, 3ρþ Pz ≥ 0,
and ð3ρþ PzÞjz¼0 > 0, we analytically proved that
β̂0;c ¼ 0 as in (4.21), which matches the physical intuition
from (1.4). Therefore, the spontaneous scalarization occurs
so long as β̂0 < 0 however small the tachyonic mass from
the conformal factor is. Our proof applies to general density
profile (4.13) respecting the Z2 and planar symmetries,
which can be originated from an external source, a scalar
field, or curvature invariants such as the Gauss-Bonnet or
the Chern-Simons terms. These results explicitly clarify the
shape dependence of the spontaneous scalarization. As
already mentioned in Sec. I, our result matches the physical
intuition acquired from the analogous simple Schrödinger
problem with the square well potential in the spherically
symmetric and planar symmetric setups.
The models of the spontaneous scalarization have been

extensively explored for spherically symmetric profiles.
Our results suggest that with a different morphology of the
matter profile, the spontaneous scalarization may occur
more easily. To retain consistency to cosmology it is
important to take into account the bare mass of the scalar
field. While the analysis in the main text focused on the
massless scalar field and a detailed analysis of the massive
case is beyond the scope of the present paper, here we
provide a simple estimation that our statement is expected
to be robust even with the bare mass of the scalar field.
From the result of Sec. IV, the critical value for the planar
symmetric case is expected to be obtained approximately
by the condition m2

eff ¼ 0, i.e., jβ̂0;cj ¼ Oðm2M2
Pl=ρÞ. The

allowed range of the mass of the scalar field is 10−15 eV≲
m≲ 10−9 eV [3]. Since the upper bound is determined by
guaranteeing the spontaneous scalarization at a spherically
symmetric configuration, we do not use it and focus on the
lower bound, which translates to

jβ̂0;cj ≳Oð1Þ
�

ρ

MeV4

�
−1
: ð5:1Þ

As an example, a cosmologically viable model of a domain
wall considered in [21] has energy density ρ0 ∼OðMeV4Þ
and the width d ∼OðMeV−1Þ, for which jβ̂0;cj≳Oð1Þ. It
corresponds to the case with d̂≡ dð8πGρ0=3Þ1=2 ∼ 10−21.
On the other hand, for the spherically symmetric configu-
ration, since the critical value for the massless scalar case is
jβ̂0;cj ∼ 1010 for d̂ ¼ 10−5, the massive scalar case for
d̂ ∼ 10−21 is at least expected to be jβ̂0;cj ≫ 1010 (see
Fig. 2). Further, if we extrapolate Fig. 2 using the scaling
relation jβ̂0;cj ∝ d̂−2, it is expected that jβ̂0;cj ∼ 1042 for

d̂ ¼ 10−21 for the massless case, and hence the massive
case is expected to have jβ̂0;cj > 1042. Therefore, this
estimation suggests that in the context of scalar-tensor
theories, the shape dependence of the spontaneous scala-
rization should be taken into account to understand the
properties of domain walls.
There are other interesting generalizations of the result of

the present paper. In this paper, as the simplest and extreme
cases, we focused on the spherically and planar symmetric
profiles and analytically showed that β̂0;c ¼ 0 for the latter
case for any matter profile. It is intriguing to consider other
morphology of the matter profile, such as a configuration
around a rotating object or a string structure created as a
topological defect, and to see how the critical value β̂0;c
varies depending on the morphology. Similar analysis
would also apply to the shape dependence of other
variations of the spontaneous scalarization, e.g., with
coupling to matter via a disformally transformed metric
or coupling to the Maxwell invariant. It would also be
interesting to consider an application of our analysis to the
dynamical scalarization [22,23] and the screening mecha-
nisms such as the chameleon mechanism [24] and symme-
tron mechanism [25] since they are also based on the
action (2.1). It is natural to expect that these mechanisms
possess a similar shape dependence. We leave these topics
as future works.
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APPENDIX: STATIC PLANAR
SYMMETRIC SPACETIME

In this appendix, we consider the static planar symmetric
spacetime

ds2 ¼ −a2ðzÞdt2 þ b2ðzÞðdx2 þ dy2Þ þ dz2; ðA1Þ

and show that there exists a curvature singularity for the
step function density profile.
The Einstein equation is given by

Gt
t ¼

2b00

b
þ b02

b2
¼ −8πGρ;

Gx
x ¼ Gy

y ¼ a00

a
þ b00

b
þ a0b0

ab
¼ 8πGPx;

Gz
z ¼

b02

b2
þ 2a0b0

ab
¼ 8πGPz: ðA2Þ
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For the step function density profile

ρðzÞ ¼
�
ρ0 ðjzj ≤ dÞ;
0 ðjzj > dÞ; ðA3Þ

we can derive the following analytic solution:

aðẑÞ ¼ bðẑÞ−1=2 ¼

8>>>>>><
>>>>>>:

�
ẑc−d̂

ðẑc−ẑÞ cosð3d̂=2Þ

�
1=3

ðẑ > d̂Þ;

cos−1=3ð3ẑ=2Þ ð−d̂ < ẑ < d̂Þ;�
ẑc−d̂

ðẑcþẑÞ cosð3d̂=2Þ

�
1=3

ðẑ < −d̂Þ;

ðA4Þ

where ẑc ≡ d̂þ 2=3 cotð3d̂=2Þ. We also note that jaðẑÞj →
∞ and bðẑÞ → 0 for ẑ → �ẑc, which is different from the
time dependent solution considered in Sec. IV as in that
case aðẑÞ ¼ bðẑÞ → 0 for z → �zh. Since the solution
satisfies the vacuum Einstein equation, Rμν ¼ 0 for
jzj > d. Therefore, the Kretschmann scalar RμνρσRμνρσ ¼
CμνρσCμνρσ þ 2RμνRμν − R2=3 is determined by the con-
traction of the Weyl tensor, which is given by

CμνρσCμνρσ ¼ 64

27ðẑ − ẑcÞ4
; ðA5Þ

suggesting the curvature singularity at ẑ ¼ ẑc.
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