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Abstract. We present a manifest contract system PCFv∆H with inter-
section types. A manifest contract system is a typed functional calculus
in which software contracts are integrated into a refinement type system
and consistency of contracts is checked by combination of compile- and
run-time type checking. Intersection types naturally arise when a contract
is expressed by a conjunction of smaller contracts. Run-time contract
checking for conjunctive higher-order contracts in an untyped language
has been studied but our typed setting poses an additional challenge due
to the fact that an expression of an intersection type τ1 ∧ τ2 may have to
perform different run-time checking whether it is used as τ1 or τ2.
We build PCFv∆H on top of the ∆-calculus, a Church-style intersection
type system by Liquori and Stolze. In the ∆-calculus, a canonical expres-
sion of an intersection type is a strong pair, whose elements are the same
expressions except for type annotations. To address the challenge above,
we relax strong pairs so that expressions in a pair are the same except for
type annotations and casts, which are a construct for run-time checking.
We give a formal definition of PCFv∆H and show its basic properties as
a manifest contract system: preservation, progress, and value inversion.
Furthermore, we show that run-time checking does not affect essential
computation.

1 Introduction

Manifest contract systems [1, 10–13,15,19,24–26,31], which are typed functional
calculi, are one discipline handling software contracts [18]. The distinguishing
feature of manifest contract systems is that they integrate contracts into a type
system and guarantee some sort of satisfiability against contracts in a program
as type soundness. Specifically, a contract is embedded into a type by means
of refinement types of the form {x:τ | M}, which represents the subset of the
underlying type τ such that the values in the subset satisfy the predicate M ,
which can be an arbitrary Boolean expression in the programming language.
Using the refinement types, for example, we can express the contract of a division
function, which would say “... the divisor shall not be zero ...”, by the type
int → {x:int | x 6= 0} → int. In addition to the refinement types, manifest
contract systems are often equipped with dependent function types in order to
express more detailed contracts. A dependent function type, written (x:σ)→ τ
in this paper, is a type of a function which takes one argument of the type
σ and returns a value of the type τ ; the distinguished point from ordinary



function types is that τ can refer to the given argument represented by x. Hence,
for example, the type of a division function can be made more specific like
(x:int) → (y:{x′:int | x′ 6= 0}) → {z:int | x = z × y}. (Here, for simplicity,
we ignore the case where devision involves a remainder, though it can be taken
account into by writing a more sophisticated predicate.)

A manifest contract system checks a contract dynamically to achieve its
goal—as many correct programs as possible can be compiled and run; while
some studies [16, 23, 27, 28, 30, 33], which also use a refinement type system,
check contract satisfaction statically but with false positives and/or restriction
on predicates. The checks are done in the form of explicit casts of the form
(M : σ ⇒ τ); where M is a subject, σ is a source type (namely the type of M),
and τ is a target type.1 A cast checks whether the value of M can have the type
τ . If the check fails, the cast throws an uncatchable exception called blame, which
stands for contract violation. So, the system does not guarantee the absence
of contract violations statically, but it guarantees that the result of successful
execution satisfies the predicate of a refinement type in the program’s type. This
property follows subject reduction and a property called value inversion [26]—if
a value V has a type {x:τ |M}, then the expression obtained by substituting V
for x in M is always evaluated into true.

1.1 Motivation

The motivation of the integration of intersection types is to enrich the expressive-
ness of contracts by types. It naturally arises when we consider a contract stated
in a conjunctive form [3,9,14]. Considering parities (even/odd) of integers, for
example, we can state a contract of the addition as a conjunctive form; that is

“An even integer is returned if both given arguments are even integers;
and an odd integer is returned if the first given argument is even integer
and the second given argument is odd integer; and ...”

Using intersection types, we can write the contract as the following type.2

(even→ even→ even) ∧ (even→ odd→ odd)

∧ (odd→ even→ odd) ∧ (odd→ odd→ even)

In fact, a semantically equivalent contract could be expressed by using de-
pendent function types found in existing systems as follows, where evenp :=
λx:nat.x mod 2 = 0 and oddp := λx:nat.x mod 2 = 1.

(x:nat)→ (y:nat)→ {z:nat |if evenpx
then (if evenp y then evenp z else oddp z)

else (if evenp y then oddp z else evenp z)}
1 Many manifest contract systems put a unique label on each cast to distinguish which

cast fails, but we omit them for simplicity.
2 even := {x:nat | x mod 2 = 0} odd := {x:nat | x mod 2 = 1}



Thus, one might think it is just a matter of taste in how contracts are represented.
However, intersection types are more expressive, that is, there are contracts that
are hard to express in existing manifest contract systems. Consider the following
(a bit contrived) contract for a higher-order function.

((int→ {x:int | x 6= 0})→ {z:int | z = 1}) ∧ ((int→ int)→ {z:int | z = 0})

The result type depends on input as the parity contract does. This time, however,
it cannot be written with a dependent function type; there is no obvious way
to write a predicate corresponding to evenp (or oddp). Such a predicate must
check that a given function returns non-zero for all integers, but this is simply
not computable.

1.2 Our Work

We develop a formal calculus PCFv∆H, a manifest contract system with intersec-
tion types. The goal of this paper is to prove its desirable properties: preservation,
progress, value inversion; and one that guarantees that the existence of dynamic
checking does not change the “essence” of computation.

There are several tasks in constructing a manifest contract system, but a
specific challenge for PCFv∆H arises from the fact—manifest contract systems
are intended as an intermediate language for hybrid type checking [10]. Firstly,
consider the following definition with a parity contract in a surface language.

let succ′:odd→ even = λx.succ(x).

Supposing the primitive operator succ(x) has the type nat→ nat, we need to
check subtyping relation odd <: nat and nat <: even to check well-typedness of
the definition. As we have mentioned, however, this kind of subtyping checking
is undecidable in general. So, (when the checking is impossible) we insert casts
to check the contract at run-time and obtain the following compiled definition.

let succ′:odd→ even = λx:odd.(succ((x : odd⇒ nat)) : nat⇒ even).

A problem arises when we consider the following definition equipped with a more
complicated parity contract.

let succ′:(odd→ even) ∧ (even→ odd) = λx.succ(x).

The problem is that we need to insert different casts into code according to how the
code is typed; and one piece of code might be typed in several essentially different
ways in an intersection type system since it is a polymorphic type system. For
instance, in the example above, λx:odd.(succ((x : odd ⇒ nat)) : nat ⇒ even)
is obtained by cast insertion if the function is typed as odd → even; while
λx:even.(succ((x : even ⇒ nat)) : nat ⇒ odd) is obtained when the body is
typed as even → odd. However, the function must have both types to have
the intersection type. It may seem sufficient to just cast the body itself, that
is, ((λx:nat.succ(x)) : nat → nat ⇒ (odd → even) ∧ (even → odd)). However,
this just shelves the problem: Intuitively, to check if the subject has the target
intersection type, we need to check if the subject has both types in the conjunction.
This brings us back to the same original question.



Contributions. Our contributions are summarized as follows:

– we design a manifest contracts calculus with refinement intersection types [27,
33], a restricted form of intersection types.

– we formalize the calculus PCFv∆H; and
– we state and prove type soundness, value inversion, and dynamic soundness.

The whole system including proofs is mechanized with Coq.3 We use locally
nameless representation and cofinite quantification [5] for the mechanization.

Disclaimer. To concentrate on the PCFv∆H-specific problems, we put the
following restrictions for PCFv∆H in this paper compared to a system one would
imagine from the phrase “a manifest contract system with intersection types”.

– PCFv∆H does not support dependent function types. As we will see, PCFv∆H

uses nondeterminism for dynamic checking. The combination of dependent
function types and nondeterminism poses a considerable challenge [19].

– We use refinement intersection types rather than general ones. Roughly
speaking, σ ∧ τ is a refinement intersection type if both σ and τ refine the
same type. So, for example, (even → even) ∧ (odd → odd) is a refinement
intersection types since types of both sides refine the same type nat→ nat,
while (nat→ nat) ∧ (float→ float) is not.

2 Overview of Our Language: PCFv∆H

Our language PCFv∆H is a call-by-value dialect of PCF [20], extended with
intersection types (derived from the ∆-calculus [17]) and manifest contracts
(derived from λH [10,12]). So, the baseline is that any valid PCF program is also
a valid PCFv∆H program; and a PCFv∆H program should behave as the same
way as (call-by-value) PCF. In other words, PCFv∆H is a conservative extension
of call-by-value PCF.

2.1 The ∆-calculus

To address the challenge discussed in Section 1, PCFv∆H is strongly influenced
by the ∆-calculus by Liquori and Stolze [17], an intersection type system à la
Church. Their novel idea is a new form called strong pair, written 〈M,N〉. It is a
kind of pair and used as a constructor for expressions of intersection types. So,
using the strong pair, for example, we can write an identity function having type
(even→ even) ∧ (odd→ odd) as follows.

〈λx:even.x, λx:odd.x〉

3 The Coq scripts are available through the following URL: https://www.fos.kuis.
kyoto-u.ac.jp/~igarashi/papers/manifest-intersection.html.

https://www.fos.kuis.kyoto-u.ac.jp/~igarashi/papers/manifest-intersection.html
https://www.fos.kuis.kyoto-u.ac.jp/~igarashi/papers/manifest-intersection.html


Unlike product types, however, M and N in a strong pair cannot be arbitrarily
chosen. A strong pair requires that the essence of both expressions in a pair be
the same. An essence oM o of a typed expression M is the untyped skeleton of M .
For instance, oλx:τ.xo = λx.x. So, the requirement justifies strong pairs as the
introduction of intersection types: that is, computation represented by the two
expressions is the same and so the system still follows a Curry-style intersection
type system. Strong pairs just give a way to annotate expressions with a different
type in a different context.

We adapt their idea into PCFv∆H by letting an essence represent the contract-
irrelevant part of an expression, rather than an untyped skeleton. For instance,
the essence of λx:odd.(succ((x : odd ⇒ nat)) : nat ⇒ even) is λx:nat.succ(x)
(the erased contract-relevant parts are casts and predicates of refinement types).
Now, we can (ideally automatically) compile the succ′ definition in Section 1 into
the following PCFv∆H expression.

let succ′:(odd→ even) ∧ (even→ odd) =

〈λx:odd.(succ((x : odd⇒ nat)) : nat⇒ even),

λx:even.(succ((x : even⇒ nat)) : nat⇒ odd)〉

This strong pair satisfies the condition, that is, both expressions have the same
essence.

2.2 Cast Semantics for Intersection Types

Having introduced intersection types, we have to extend the semantics of casts
so that they handle contracts written with intersection types. Following Keil and
Thiemann [14], who studied intersection (and union) contract checking in the
“latent” style [12] for an untyped language, we give the semantics of a cast to an
intersection type by the following rule:

(V : σ ⇒ τ1 ∧ τ2) −→ 〈(V : σ ⇒ τ1), (V : σ ⇒ τ2)〉

The reduction rule should not be surprising: V has to have both τ1 and τ2 and a
strong pair introduces an intersection type τ1∧ τ2 from τ1 and τ2. For the original
cast to succeed, both of the split casts have to succeed.

A basic strategy of a cast from an intersection type is expressed by the
following two rules.

(V : σ1 ∧ σ2 ⇒ τ) −→ (π1(V ) : σ1 ⇒ τ)

(V : σ1 ∧ σ2 ⇒ τ) −→ (π2(V ) : σ2 ⇒ τ)

The cast tests whether a nondeterministically chosen element in a (possibly
nested) strong pair can be cast to τ .

One problem, however, arises when a function type is involved. Consider the
following expression.

(λf :nat→ nat.f 0 + f 1)Mcast



σ, τ ::= nat | bool | σ → τ
L,M,N ::= O | succ(M) | pred(M) | iszero(M) | true | false | ifL thenM elseN |

x |M N | λx:τ.M | µf :σ1 → σ2.λx:τ.M
n ::= O | succ(n)
V ::= n | true | false | λx:τ.M
E ::= succ(�) | pred(�) | iszero(�) | if� thenM elseN | �M | V �

Fig. 1. Syntax of PCFv.

where

Mcast := (V : (even→ nat) ∧ (odd→ nat)⇒ nat→ nat).

V can be used as both even→ nat and odd→ nat. This means V can handle
arbitrary natural numbers. Thus, this cast should be valid and evaluation of the
expression above should not fail. However, with the reduction rules presented
above, evaluation results in blame in both branches: the choice is made before
calling λf : nat→ nat. · · · , the function being assigned into f only can handle
either even or odd, leading to failure at either f 1 or f 0, respectively.

To solve the problem, we delay a cast into a function type even when the
source type is an intersection type. In fact, Mcast reduces to a wrapped value
Vcast below

Vcast := 〈〈V : (even→ nat) ∧ (odd→ nat)⇒ nat→ nat〉〉,

similarly to higher-order casts [8]. Then, the delayed cast fires when an actual
argument is given:

(λf :nat→ nat.f 0 + f 1)Mcast

−→ (λf :nat→ nat.f 0 + f 1)Vcast

−→ Vcast 0 + Vcast 1

−→∗ (V : even→ nat⇒ nat→ nat) 0 + (V : odd→ nat⇒ nat→ nat) 1

−→∗ 1

3 Formal Systems

In this section, we formally define two languages PCFv and PCFv∆H, an extension
of PCFv as sketched in the last section. PCFv is a call-by-value PCF. We only
give operational semantics and omit its type system and a type soundness proof,
because we are only interested in how its behavior is related to PCFv∆H, the
main language of this paper.

3.1 PCFv

The syntax of PCFv is shown in Figure 1. Metavariables x, y, z, f , and g range
over term variables (f and g are intended for ones bound to functions); σ and



pred(O) −→PCF O (PCF-Pred-Z)

pred(succ(n)) −→PCF n (PCF-Pred)

iszero(O) −→PCF true (PCF-IsZero-T)

iszero(succ(n)) −→PCF false (PCF-IsZero-F)

if true thenM elseN −→PCF M (PCF-If-T)

if false thenM elseN −→PCF N (PCF-If-F)

(λx:τ.M)V −→PCF M [x 7→ V ] (PCF-Beta)

µf :σ1 → σ2.λx:τ.M −→PCF (λx:τ.M)[f 7→ µf :σ1 → σ2.λx:τ.M ] (PCF-Fix)

M −→PCF M
′

E [M ] −→PCF E [M ′]
(PCF-Ctx)

Fig. 2. Operational semantics of PCFv.

τ range over types; L, M , and N range over expressions; V ranges over values;
and E ranges over evaluation frames. The definition is fairly standard, except for
one point: instead of introducing a constant for the general fix-point operator,
we introduce a form µf :σ1 → σ2.λx:τ.M for recursive functions.

Definition 1 (Bound and free variables). An occurrence of x in M of
λx:τ.M and f in M of µf :σ1 → σ2.λx:τ.M is called bound. The set of free
variables in M is the variables of which there are free occurrence in M . We
denote the free variables by fv(M).

Convention. We define α-equivalence in a standard manner and identify α-
equivalent expressions.

Definition 2 (Substitution). Substitution of N for a free variable x in M ,
written M [x 7→ N ], is defined in a standard capture-avoiding manner.

Definition 3 (Context application). Given an evaluation frame E and an
expression M , E [M ] denotes the expression obtained by just replacing the hole �
in E with M .

A small-step operational semantics of PCFv is inductively defined by the rules
in Figure 2. Those rules consist of standard (call-by-value) PCF axiom schemes
and one rule scheme (PCF-Ctx), which expresses the call-by-value evaluation
strategy using the evaluation frames.

3.2 PCFv∆H

PCFv∆H is an extension of PCFv. Through abuse of syntax, we use the metavari-
ables of PCFv for PCFv∆H, though we are dealing with the two different
languages.

The syntax of PCFv∆H is shown in Figure 3. We introduce some more
metavariables: I ranges over interface types, a subset of types; B ranges over



σ, τ ::= nat | bool | σ → τ | σ ∧ τ | {x:τ |M}
I ::= σ → τ | I1 ∧ I2

L,M,N ::= O | succ(M) | pred(M) | iszero(M) | true | false | ifL thenM elseN |
x | M N | λx:τ.M | µf :I.B | 〈M,N〉 | π1(M) | π2(M) | (M : σ ⇒ τ) |
〈〈V : σ ⇒ τ1 → τ2〉〉 | 〈〈M ? {x:τ | N}〉〉 | 〈〈M =⇒ V : {x:τ | N}〉〉

B ::= λx:τ.M | 〈B1, B2〉
n ::= O | succ(n)

V ::= n | true | false | λx:τ.M | 〈V1, V2〉 | 〈〈V : σ ⇒ τ1 → τ2〉〉
C ::= M | blame
E ::= succ(�) | pred(�) | iszero(�) | if� thenM elseN | �M | V � |

π1 (�) | π2 (�) | (� : σ ⇒ τ) | 〈〈� ? {x:τ |M}〉〉
Γ ::= ∅ | Γ, x:τ

Fig. 3. Syntax of PCFv∆H.

recursion bodies, a subset of expressions; C ranges over commands ; and Γ ranges
over typing contexts. Shaded parts show differences (extensions and modifications)
from PCFv. Types are extended with intersection types and refinement types;
the restriction that a well-formed intersection type is a refinement intersection
type is enforced by the type system. The variable x in N of {x:τ | N} is bound.
An interface type, which is a single function type or (possibly nested) intersection
over function types, is used for the type annotation for a recursive function.
Expressions are extended with ones for: strong pairs (namely, pair construction,
left projection, and right projection); casts; and run-time expressions of the form
〈〈. . .〉〉 that can occur at run time for dynamic checking and not in source code.
Recursion bodies are (possibly nested strong pairs) of λ-abstractions.

Run-time expressions deserve detailed explanation. A delayed check 〈〈V : σ ⇒
τ1 → τ2〉〉 denotes a delayed cast into a function type, which is used in cases such
as those discussed in Section 1 for instance. A waiting check 〈〈M ? {x:τ | N}〉〉
denotes a state waiting for the check M against N untilM is evaluated into a value.
An active check 〈〈M =⇒ V : {x:τ | N}〉〉 is a state running test M to see if V
satisfies N . The variable x in N of 〈〈M ? {x:τ | N}〉〉 and 〈〈M =⇒ V : {x:τ | N}〉〉
is bound.

We do not include blame in expressions, although existing manifest contract
systems usually include it among expressions. As a consequence, the evaluation
relation for PCFv∆H is defined between commands. This distinction will turn out
to be convenient in stating correspondence between the semantics of PCFv∆H

and that of PCFv, which does not have blame.

Convention. We assume the index variable i ranges over {1, 2} to save space.

Definition 4 (Terms). We call the union of the sets of types and expressions
as terms.

Notation. M � N denotes that M is a sub-expression of N .

Convention. We define α-equivalence in a standard manner and identify α-
equivalent terms.



onato = nat oifL thenM elseN o = if oLo then oM o else oN o
oboolo = bool oxo = x

oσ → τ o = oσo → oτ o oM N o = oM o oN o
oσ ∧ τ o = oσo oλx:τ.M o = λx:oτ o.oM o
o{x:τ |M}o = oτ o o〈M,N〉o = oM o

oOo = O oπi(M)o = oM o
osucc(M)o = succ(oM o) oµf :I.Bo = µf :oIo.oBo
opred(M)o = pred(oM o) o(M : σ ⇒ τ)o = oM o

oiszero(M)o = iszero(oM o) o〈〈V : σ ⇒ τ1 → τ2〉〉o = oV o
otrueo = true o〈〈M ? {x:τ | N}〉〉o = oM o
ofalseo = false o〈〈M =⇒ V : {x:τ | N}〉〉o = oV o

Fig. 4. Essence of a PCFv∆H term.

Convention. We often omit the empty environment. We abuse a comma for the
concatenation of environments like Γ1, Γ2. We denote a singleton environment,
an environment that contains only one variable binding, by x:τ .

Definition 5 (Free variables and substitution). Free variables and substi-
tution are defined similarly to PCFv; and we use the same notations. Note that
since the types and expressions of PCFv∆H are mutually recursively defined, the
metaoperations are inductively defined for terms.

Definition 6 (Domain of typing context). The domain of Γ , written dom(Γ ),
is defined by: dom(∅) = ∅ and dom(Γ, x:τ) = dom(Γ ) ∪ {x}. We abbreviate
x 6∈ dom(Γ ) to x # Γ .

The essence of a PCFv∆H term is defined in Figure 4, which is mostly
straightforward. The choice of which part we take as the essence of a strong pair
is arbitrary because for a well-typed expression both parts have the same essence.
Note that the essence of an active check 〈〈M =⇒ V : {x:τ | N}〉〉 is V rather
than M . This is because V is the subject of the expression.

3.3 Operational Semantics of PCFv∆H

The operational semantics of PCFv∆H consists of four relations M ⇀p N ,
M ⇀c C, M −→p N , and M −→c C. Bearing in mind the inclusion relation
among syntactic categories, these relations can be regarded as binary relations
between commands. The first two are basic reduction relations, and the other
two are contextual evaluation relations (relations for whole programs). Further-
more, the relations subscripted by p correspond to PCFv evaluation, that is,
essential evaluation; and ones subscripted by c correspond to dynamic contract
checking. Dynamic checking is nondeterministic because of (RC-WedgeL/R),
(EC-PairL), and (EC-PairR).

Essential Evaluation −→p. The essential evaluation, defined in Figure 5,
defines the evaluation of the essential part of a program; and thus, it is similar to



pred(succ(n)) ⇀p n (RP-Pred)

iszero(O) ⇀p true (RP-IsZero-T)

iszero(succ(n)) ⇀p false (RP-IsZero-F)

if true thenM elseN ⇀p M (RP-If-T)

if false thenM elseN ⇀p N (RP-If-F)

(λx:τ.M)V ⇀p M [x 7→ V ] (RP-Beta)

µf :I.B ⇀p B[f 7→ µf :I.B] (RP-Fix)

M ⇀p N
(EP-Red)

M −→p N

M −→p N
(EP-Ctx)

E [M ] −→p E [N ]

M −→p M
′ N −→p N

′

(EP-PairS)
〈M,N〉 −→p 〈M ′, N ′〉

Fig. 5. Operational semantics of PCFv∆H (1): essential evaluation.

−→PCF. There are just three differences, that is: there are two relations; there is
no reduction rule for pred(O); and there is a distinguished contextual evaluation
rule (EP-PairS), which synchronizes essential reductions of the elements in a
strong pair. The synchronization in (EP-PairS) is important since a strong pair
requires the essences of both elements to be the same. The lack of predecessor
evaluation for O is intentional: Our type system and run-time checking guarantee
that O cannot occur as an argument to pred.

Dynamic Checking −→c. Dynamic checking is more complicated. Firstly,
we focus on reduction rules in Figure 6. The side-conditions on some rules are
set so that an evaluation is less nondeterministic (for example, without the
side conditions, both (RC-Forget) and (RC-Delay) could be applied to one
expression).

The rules irrelevant to intersection types ((RC-Nat), (RC-Bool), (RC-
Forget), (RC-Delay), (RC-Arrow), (RC-Waiting), (RC-Activate), (RC-
Succeed), and (RC-Fail)) are adopted from Sekiyama et al. [26], but there is
one difference about (RC-Delay) and (RC-Arrow). In the original definition
delayed checking is done by using lambda abstractions, that is,

(V : σ1 → σ2 ⇒ τ1 → τ2) −→ λx:τ1.(V (x : τ1 ⇒ σ1) : σ2 ⇒ τ2).

The reason we adopt a different way is just it makes technical development easier.
Additionally, the way we adopt is not new—It is used in the original work [8] on
higher-order contract calculi.

The other rules are new ones we propose for dynamic checking of intersection
types. As we have discussed in Section 2, a cast into an intersection type is
reduced into a pair of casts by (RC-WedgeI). A cast from an intersection type
is done by (RC-Delay), (RC-WedgeL/R) if the target type is a function type.
Otherwise, if the target type is a first order type, (RC-WedgeN) and (RC-
WedgeB) are used, where we arbitrarily choose the left side of the intersection



πi(〈V1, V2〉) ⇀c Vi (RC-Proj)

(V : nat⇒ nat) ⇀c V (RC-Nat)

(V : bool⇒ bool) ⇀c V (RC-Bool)

(V : {x:σ |M} ⇒ τ) ⇀c (V : σ ⇒ τ) (RC-Forget)

(∀xτM.σ 6= {x:τ |M})
(V : σ ⇒ τ1 → τ2) ⇀c 〈〈V : σ ⇒ τ1 → τ2〉〉

(RC-Delay)

〈〈V1 : σ1 → σ2 ⇒ τ1 → τ2〉〉V2 ⇀c (V1 (V2 : τ1 ⇒ σ1) : σ2 ⇒ τ2) (RC-Arrow)

〈〈V1 : σ1 ∧ σ2 ⇒ τ1 → τ2〉〉V2 ⇀c (πi(V1) : σi ⇒ τ1 → τ2)V2 (RC-WedgeL/R)

(V : σ1 ∧ σ2 ⇒ nat) ⇀c (π1(V ) : σ1 ⇒ nat) (RC-WedgeN)

(V : σ1 ∧ σ2 ⇒ bool) ⇀c (π1(V ) : σ1 ⇒ bool) (RC-WedgeB)

(∀xτM.σ 6= {x:τ |M})
(V : σ ⇒ τ1 ∧ τ2) ⇀c 〈(V : σ ⇒ τ1), (V : σ ⇒ τ2)〉

(RC-WedgeI)

(∀xτM.σ 6= {x:τ |M})
(V : σ ⇒ {x:τ |M}) ⇀c 〈〈(V : σ ⇒ τ) ? {x:τ |M}〉〉

(RC-Waiting)

〈〈V ? {x:τ |M}〉〉⇀c 〈〈M [x 7→ V ] =⇒ V : {x:τ |M}〉〉 (RC-Activate)

〈〈true =⇒ V : {x:τ |M}〉〉⇀c V (RC-Succeed)

〈〈false =⇒ V : {x:τ |M}〉〉⇀c blame (RC-Fail)

Fig. 6. Operational semantics of PCFv∆H (2): reduction rules for dynamic checking.

type and the corresponding part of the value since the source type is not used
for dynamic checking of first-order values.

The contextual evaluation rules, defined in Figure 7, are rather straightforward.
Be aware of the use of metavariables, for instance, the use of N in (EC-Ctx);
it implicitly means that M has not been evaluated into blame (so the rule does
not overlap with (EB-Ctx)). The first rule lifts the reduction relation to the
evaluation relation. The next six rules express the case where a sub-expression is
successfully evaluated. The rules (EC-ActiveP) and (EC-ActiveC) mean that
evaluation inside an active check is always considered dynamic checking, even
when it involves essential evaluation. The rules (EC-PairL) and (EC-PairR)
mean that dynamic checking does not synchronize because the elements in a
strong pair may have different casts. The other rules express the case where
dynamic checking has failed. An expression evaluates to blame immediately—in
one step—when a sub-expression evaluates to blame. Here is an example of
execution of failing dynamic checking.

(0 : nat⇒ {x:nat | x > 0}) + 1 −→ 〈〈0 ? {x:nat | x > 0}〉〉+ 1

−→ 〈〈0 > 0 =⇒ 0 : {x:nat | x > 0}〉〉+ 1

−→ 〈〈false =⇒ 0 : {x:nat | x > 0}〉〉+ 1

−→ blame



M ⇀c C (EC-Red)
M −→c C

M −→c N (EC-Ctx)
E [M ] −→c E [N ]

M −→p M
′

(EC-ActiveP)
〈〈M =⇒ V : {x:τ | N}〉〉 −→c 〈〈M ′ =⇒ V : {x:τ | N}〉〉

M −→c M
′

(EC-ActiveC)
〈〈M =⇒ V : {x:τ | N}〉〉 −→c 〈〈M ′ =⇒ V : {x:τ | N}〉〉
M −→c M

′
(EC-PairL)

〈M,N〉 −→c 〈M ′, N〉
N −→c N

′
(EC-PairR)

〈M,N〉 −→c 〈M,N ′〉
M −→c blame (EB-Ctx)
E [M ] −→c blame

M −→c blame (EB-Active)
〈〈M =⇒ V : {x:τ | N}〉〉 −→c blame

Mi −→c blame (EB-PairL/R)
〈M1,M2〉 −→c blame

Fig. 7. Operational semantics of PCFv∆H (3): contextual rules for dynamic checking.

∅ ok (V-Empty)
Γ ok  τ (x # Γ )

(V-Push)
Γ, x:τ ok

 nat (W-Nat)  bool (W-Bool)
 σ  τ (W-Arrow)
 σ → τ

 σ  τ (oσo = oτ o)
(W-Wedge)

 σ ∧ τ
x:τ `M : bool (W-Refine)
 {x:τ |M}

Fig. 8. Type system of PCFv∆H (1): well-formedness rules.

Definition 7 (Evaluation). The one-step evaluation relation of PCFv∆H, de-
noted by −→, is defined as −→p ∪ −→c. The multi-step evaluation relation of
PCFv∆H, denoted by −→∗, is the reflexive and transitive closure of −→.

3.4 Type System of PCFv∆H

The type system consists of three judgments: Γ ok,  τ , and Γ `M : τ , read “Γ
is well-formed”, “τ is well-formed”, and “M has τ under Γ ,” respectively. They
are defined inductively by the rules in Figures 8, 9 and 10.

The rules for well-formed types check that an intersection type is restricted to
a refinement intersection type by the side condition oσo = oτ o in (W-Wedge) and
that the predicate in a refinement type is a Boolean expression by (W-Refine).
Note that, since PCFv∆H has no dependent function type, all types are closed
and the predicate of a refinement type only depends on the parameter itself.

The typing rules, the rules for the third judgment, consist of two more
sub-categories: compile-time rules and run-time rules. Compile-time rules are
for checking a program a programmer writes. Run-time rules are for run-time
expressions and used to prove type soundness. This distinction, which follows,
Belo et al. [1], is to make compile-time type checking decidable.



Γ ok (T-Zero)
Γ ` O : nat

Γ `M : nat (T-Succ)
Γ ` succ(M) : nat

Γ `M : {x:nat | if iszero(x) then false else true}
(T-Pred)

Γ ` pred(M) : nat

Γ `M : nat (T-IsZero)
Γ ` iszero(M) : bool

Γ ok (T-True)
Γ ` true : bool

Γ ok (T-False)
Γ ` false : bool

Γ ` L : bool Γ `M : τ Γ ` N : τ (T-If)
Γ ` ifL thenM elseN : τ

Γ ok (x:τ ∈ Γ )
(T-Var)

Γ ` x : τ

Γ, x:σ `M : τ
(T-Abs)

Γ ` λx:σ.M : σ → τ
Γ `M : σ → τ Γ ` N : σ (T-App)

Γ `M N : τ
Γ `M : σ Γ ` N : τ (oM o = oN o) (oσo = oτ o)

(T-Pair)
Γ ` 〈M,N〉 : σ ∧ τ

Γ `M : σ ∧ τ (T-Fst)
Γ ` π1(M) : σ

Γ `M : σ ∧ τ (T-Snd)
Γ ` π2(M) : τ

Γ, f :I ` B : I
(T-Fix)

Γ ` µf :I.B : I

Γ `M : σ  τ (oσo = oτ o)
(T-Cast)

Γ ` (M : σ ⇒ τ) : τ

Fig. 9. Type system of PCFv∆H (2): compile-time typing rules.

A large part of the compile-time rules are adapted from PCF, Sekiyama
et al. [26], and Liquori and Stolze [17]. Here we explain some notable rules.
As an intersection type system, (T-Pair), (T-Fst), and (T-Snd) stands for
introduction and elimination rules of intersection types (or we can explicitly
introduce and/or eliminate an intersection type by a cast). The rule (T-Pair)
checks a strong pair is composed by essentially the same expressions by oM o = oN o.
The rule (T-Pred) demands that the argument of predecessor shall not be zero.
The premise oσo = oτ o of the rule (T-Cast) for casts requires the essences of the
source and target types to agree. It amounts to checking the two types σ and τ
are compatible [26].

The run-time rules are from Sekiyama et al. [26] with one extra rule (T-
Delayed). The rule (T-Delayed) is for a delayed checking for function types,
which restrict the source type so that it respects the evaluation relation (there is
no evaluation rule for a delayed checking in which source type is a refinement type),
and inherits the condition on the source and target types from (T-Cast). The side
condition N [x 7→ V ] −→∗ M on (T-Active) is an invariant during evaluation,
that is, M is an intermediate state of the predicate checking. This invariant lasts
until the final (successful) run-time checking state 〈〈true =⇒ V : {x:τ | N}〉〉
and guarantees the checking result V (obtained by (RC-Succeed)) satisfies the
predicate N by (T-Exact).



Γ ok ` V : σ  τ1 → τ2 (∀xτM.σ 6= {x:τ |M}) (oσo = oτ1 → τ2o)
Γ ` 〈〈V : σ ⇒ τ1 → τ2〉〉 : τ1 → τ2

(T-Delayed)

Γ ok `M : τ  {x:τ | N}
Γ ` 〈〈M ? {x:τ | N}〉〉 : {x:τ | N}

(T-Waiting)

Γ ok `M : bool ` V : τ  {x:τ | N} N [x 7→ V ] −→∗ M
Γ ` 〈〈M =⇒ V : {x:τ | N}〉〉 : {x:τ | N}

(T-Active)

Γ ok ` V : {x:τ | N}
Γ ` V : τ

(T-Forget)

Γ ok ` V : τ  {x:τ | N} N [x 7→ V ] −→∗ true
Γ ` V : {x:τ | N}

(T-Exact)

Fig. 10. Type system of PCFv∆H (3): run-time typing rules.

4 Properties

We start from properties of evaluation relations. As we have mentioned, −→p is
essential evaluation, and thus, it should simulate −→PCF; and −→c is dynamic
checking, and therefore, it should not change the essence of the expression. We
formally state and show these properties here. Note that most properties require
that the expression before evaluation is well typed. This is because the condition
of strong pairs is imposed by the type system.

Lemma 1. If M −→PCF N and M −→PCF L, then N = L.

Proof. The proof is routine by induction on one of the given derivations. ut

Lemma 2. If `M : τ and M −→p N , then oM o −→PCF oN o.

Proof. The proof is by induction on the given evaluation derivation. ut

The following corollary is required to prove the preservation property.

Corollary 1. If ` M : σ, ` N : τ , M −→p M
′, N −→p N

′, and oM o = oN o;
then oM ′o = oN ′o.

Lemma 3. If `M : τ and M −→c N , then oM o = oN o.

Proof. The proof is by induction on the given evaluation derivation. ut

Now we can have the following theorem as a corollary of Lemma 2 and
Lemma 3. It guarantees the essential computation in PCFv∆H is the same as
the PCFv computation as far as the computation does not fail. In other words,
run-time checking may introduce blame but otherwise does not affect the essential
computation.

Theorem 1. If `M : τ and M −→ N , then oM o −→∗PCF oN o.



4.1 Type Soundness

We conclude this section with type soundness. Firstly, we show a substitution
property; and using it, we show the preservation property.

Lemma 4. If Γ1, x:σ, Γ2 `M : τ and Γ1 ` N : σ, then Γ1, Γ2 `M [x 7→ N ] : τ .

Proof. The proof is by induction on the derivation for M . ut

Theorem 2 (Preservation). If `M : τ and M −→ N , then ` N : τ .

Proof. We prove preservation properties for each −→p and −→c and combine
them. Both proofs are done by induction on the given typing derivation. For the
case in which substitution happens, we use Lemma 4 as usual. For the context
evaluation for strong pairs, we use Corollary 1 and Lemma 3 to guarantee the
side-condition of strong pairs. ut

Next we show the value inversion property, which guarantees a value of a
refinement type satisfies its predicate. For PCFv∆H, this property can be quite
easily shown since PCFv∆H does not have dependent function types, while
previous manifest contract systems need quite complicated reasoning [19, 24,
26]. The property itself is proven by using the following two, which are for
strengthening an induction hypothesis.

Definition 8. We define a relation between values and types, written V |= τ , by
the following rules.

V |= τ M [x 7→ V ] −→∗ true
V |= {x:τ |M}

(τ 6= {x:σ |M})
V |= τ

Lemma 5. If ` V : τ , then V |= τ .

Proof. The proof is by induction on the given derivation. ut

Theorem 3 (Value inversion). If ` V : {x:τ | M}, then M [x 7→ V ] −→∗
true.

Proof. Immediate from Lemma 5. ut

Remark 1. As a corollary of value inversion, it follows that a value of an intersec-
tion type must be a strong pair and its elements satisfy the corresponding predicate
in the intersection type: For example, if ` 〈V1, V2〉 : {x:σ |M} ∧ {x:τ | N}, then
M [x 7→ V1] −→∗ true and N [x 7→ V2] −→∗ true. In particular, for first-order
values, every element of the pair is same. That means the value satisfies all con-
tracts concatenated by ∧. For example, ` V : {x:nat |M1} ∧ · · · ∧ {x:nat |Mn},
then Mk[x 7→ oV o] −→∗ true for any k = 1..n. This is what we have desired for
a contract written by using intersection types.

Lastly, the progress property also holds. In our setting, where pred(M) is
partial, this theorem can be proved only after Theorem 3.



Theorem 4 (Progress). If `M : τ , then M is a value or M −→ C for some
C.

Proof. The proof is by induction on the given derivation. Since the evaluation
relation is defined as combination of −→p and −→c, the proof is a bit tricky, but
most cases can be proven as usual. An interesting case is (T-Pair). We need to
guarantee that if one side of a strong pair is a value, another side must not be
evaluated by −→p since a value is in normal form. This follows from Lemma 2
and proof by contradiction because the essence of a PCFv∆H value is a PCFv
value and it is normal form. ut

5 Related Work

Intersection types were introduced in Curry-style type assignment systems by
Coppo et al. [6] and Pottinger [21] independently. In the early days, intersection
types are motivated by improving a type system to make more lambda terms
typeable; one important result towards this direction is that: a lambda term
has a type iff it can be strongly normalized [21, 29]. Then, intersection types
are introduced to programming languages to enrich the descriptive power of
types [2, 7, 22].

Intersection Contracts for Untyped Languages. One of the first attempts
at implementing intersection-like contracts is found in DrRacket [9]. It is, however,
a naive implementation, which just enforces all contracts even for functional
values, and thus the semantics of higher-order intersection contracts is rather
different from ours.

Keil and Thiemann [14] have proposed an untyped calculus of blame assign-
ment for a higher-order contract system with intersection and union. As we have
mentioned, our run-time checking semantics is strongly influenced by their work,
but there are two essential differences. On the one hand, they do not have the
problem of varying run-time checking according to a typing context; they can
freely put contract monitors4 where they want since it is an untyped language.
On the other hand, their operational semantics is made rather complicated due
to blame assignment.

More recently, Williams et al. [32] have proposed more sorted out semantics
for a higher-order contract system with intersection and union. They have mainly
reformed contract checking for intersection and union “in a uniform way”; that is,
each is handled by only one similar and simpler rule. As a result, their presentation
becomes closer to our semantics, though complication due to blame assignment
still remains. A similar level of complication will be expected if we extend our
calculus with blame assignment.

It would be interesting to investigate the relationship between their calculi
and PCFv∆H extended with blame labels, following Greenberg et al. [12].

4 A kind of casts in their language.



Gradual Typing with Intersection Types. Castagna and Lanvin [3] have
proposed gradual typing for set-theoretic types, which contain intersection types,
as well as union and negation. A framework of gradual typing is so close to
manifest contract systems that there is even a study unifying them [31]. A
gradual typing system translates a program into an intermediate language that is
statically typed and uses casts. Hence, they have the same problem—how casts
should be inserted when intersection types are used. They solve the problem
by type-case expressions, which dynamically dispatch behavior according to
the type of a value. However, it is not clear how type-case expressions scale to
a larger language. In fact, the following work [4], an extension to parametric
polymorphism and type inference, removes (necessity of) type-case expressions
but imposes instead a restriction on functions not to have an intersection type.
Furthermore, the solution using type-case expressions relies on strong properties
of set-theoretic types. So, it is an open problem if their solution can be adopted
to manifest contract systems because there is not set-theoretic type theory for
refinement types and, even worse, dependent function types.

Nondeterminism for Dependently Typed Languages. As we have noted
in Section 1, PCFv∆H has no dependent function types. In fact, no other work
discussed in this section supports both dependent function contracts and intersec-
tion contracts. To extend PCFv∆H to dependent function types, we have to take
care of their interaction with nondeterminism, which we studied elsewhere [19]
for a manifest calculus λH‖Φ with a general nondeterministic choice operator.

A technical challenge in combining dependent function types and nondeter-
minstic choice comes from the following standard typing rule for (dependent)
function applications:

Γ `M : (x:σ)→ τ Γ ` N : σ

Γ `M N : τ [x 7→ N ]

The problem is that the argument N , which may contain nondeterministic choice,
may be duplicated in τ [x 7→ N ] and, to keep consistency of type equivalence,
choices made in each occurrence of N have to be “synchronized.” To control syn-
chronization, λH‖Φ introduces a named choice operator so that choice operators
with the same name make synchronized choice. However, λH‖Φ puts burden on
programmers to avoid unintended synchronization caused by accidentally shared
names.

If we incoporate the idea above to PCFv∆H, it will be natural to put names
on casts so that necessary synchronization takes place for choices made by
(RC-WedgeL) and (RC-WedgeR). It is not clear, however, how unintended
synchronization can be avoided systematically, without programmers’ ingenuity.

6 Conclusion

We have designed and formalized a manifest contract system PCFv∆H with
refinement intersection types. As a result of our formal development, PCFv∆H



guarantees not only ordinary preservation and progress but also the property
that a value of an intersection type, which can be seen as an enumeration of
small contracts, satisfies all the contracts.

The characteristic point of our formalization is that we regard a manifest
contract system as an extension of a more basic calculus, which has no software
contract system, and investigate the relationship between the basic calculus
and the manifest contract system. More specifically, essential computation and
dynamic checking are separated. We believe this investigation is important
for modern manifest contract systems because those become more and more
complicated and the separation is no longer admissible at a glance.

Future Work. Obvious future work is to lift the restriction we have mentioned
in Section 1. That aside, the subsumption-free approach is very naive and has
an obvious disadvantage, that is, it requires run-time checking even for a cast
like (M : σ ∧ τ ⇒ σ), which should be able to checked and removed at compile
time. To address the disadvantage, some manifest contract systems provide the
property known as up-cast elimination [1]—a cast from subtype into supertype
can be safely removed at compile-time. An interesting fact is that a well-known
up-cast (subtyping) relation for a traditional intersection type system is defined
syntactically; while a usual up-cast relation for a manifest contract system
depends on semantics. So, focusing on only the traditional subtyping relation,
the property might be proven more easily.

Towards a practice language, our cast semantics using strong pairs and
nondeterminism needs more investigation. For the strong pairs, it will be quite
inefficient to evaluate both sides of a strong pair independently since its essence
part just computes the same thing. The inefficiency might be reduced by a kind
of sharing structures. For the nondeterminism, our theoretical result gives us
useful information only for successful evaluation paths; but we have not given a
way to pick up a successful one. One obvious way is computing every evaluation
path, but of course, it is quite inefficient.
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