
 

Revisiting Lorentz violation in Hořava gravity

A. Coates,1 C. Melby-Thompson,2,3 and S. Mukohyama4,5
1Theoretical Astrophysics, IAAT, University of Tübingen, Auf der Morgenstelle 10,

72076 Tübingen, Germany
2Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg,

Am Hubland, 97074 Würzburg, Germany
3Department of Physics, Fudan University, 220 Handan Road, 200433 Shanghai, China

4Center for Gravitational Physics, Yukawa Institute for Theoretical Physics,
Kyoto University, 606-8502 Kyoto, Japan

5Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo Institutes
for Advanced Study, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

(Received 2 June 2019; published 24 September 2019)

In the context of Hořava gravity, themost promising known scenarios to recover Lorentz invariance at low
energy are the possibilities that 1) the renormalization group flow of the system leads to emergent infrared
Lorentz invariance and 2) that supersymmetry protects infrared Lorentz invariance. A third scenario
proposes that a classically Lorentz-invariant matter sector with controlled quantum corrections may simply
coexist with Hořava gravity under certain conditions. However, for nonprojectable Hořava gravity in 3þ 1

dimensions, it is known that, in the absence of additional structures, this mechanism is spoiled by
unexpected power-law divergences. We confirm this same result in the projectable version of the theory by
employing the recently found gauge-fixing term that renders the shift and graviton propagators regular. We
show that the problem persists for all dimensionsD ≥ 3 and that the degree of fine-tuning in squared sound
speeds between a Uð1Þ gauge field and a scalar field increases with D. In particular, this difference in the
zero external momentum limit is proportional to ΛD−1 for D ≥ 3, where Λ is the ultraviolet momentum
cutoff for loop integrals, while the power-law divergences are absent for D ¼ 1 and D ¼ 2. These results
suggest that not only the gravity sector but also thematter sector should exhibit a transition to Lifshitz scaling
above some scale and that there should not be a large separation between the transition scales in the gravity
and matter sectors. We close with a discussion of other more promising scenarios, including emergent
Lorentz invariance from supersymmetry/strong dynamics and pointing out challenges where they exist.
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I. INTRODUCTION

Despite the empirical successes of General Relativity
(GR), there are reasons to believe that it is incomplete.
The major stumbling block from a theoretical perspective is
that quantum GR is not perturbatively renormalizable. One
approach to improving its UV properties is to relinquish
Lorentz invariance at short distances [1], allowing the
inclusion of higher order derivatives that render gravity
renormalizable without violating unitarity. Renormalization
group (RG) flow is organized around a fixed point with
“Lifshitz scaling,” which acts anisotropically on space
and time, so that higher order spatial derivatives scale

the same way as second order time derivatives in the
ultraviolet [1,2].1 We refer to such theories as Hořava
gravity. Hořava gravity comes in two basic flavors: the
“projectable” and “nonprojectable” varieties. Both versions
remain viable, and the most recent treatments of their
observational constraints can be found in Refs. [5] and
[6,7], respectively.
Lorentz violations in the matter sector, however, are very

tightly constrained. For example, the relative differences
among speed limits for different species of matter fields are
typically constrained to be smaller than 10−23 or so.
Moreover, thanks to the recent multimessenger observation
of a binary neutron star merger, we now know that even the
speed of gravitational waves cannot be different from that

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1The Lifshitz scaling is also the origin of interesting cosmo-
logical implications of the theory, such as a novel mechanism for
generating scale-invariant perturbations [3] and a solution to the
flatness problem [4]. See Ref. [5] for a review of cosmology
based on Hořava gravity.
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of photons by more than 10−15 or so. Therefore, naturalness
demands a mechanism either protecting infrared Lorentz
symmetry or causing it to emerge [8,9] in the infrared. If
Hořava gravity or something similar is the correct descrip-
tion of gravity in the nature, those constraints require the
RG flow of Lorentz-violating couplings to vanish rapidly in
the IR [10]. This may be the case if supersymmetry protects
infrared Lorentz invariance [11] and/or the system passes
through a strongly coupled region which speeds up the
otherwise logarithmic RG running of Lorentz-violating
couplings toward zero [12,13]. We briefly discuss these
possibilities in Sec. IV.
There is yet another possibility that, until recently,

seemed quite promising: the mechanism proposed in
Ref. [14]. The basic statement of this mechanism is that
if one assumes that matter is relativistic at tree level then
Planck suppression of interactions between gravity and
matter can lead to a suppression of Lorentz-violating
corrections by the ratio

δc2

c2
∼
�
M�
Mp

�
2

∼ 10−18
�

M�
1010 GeV

�
2

; ð1Þ

where M� is the scale suppressing the higher order spatial
derivatives in the gravity sector. However, it was already
shown in Ref. [14] that the vector sector of the non-
projectable version of Hořava gravity does not benefit from
this mechanism. Instead, one finds divergences of the form

δc2

c2
∼
�

Λ
Mp

�
2

; ð2Þ

where Λ is the ultraviolet momentum cutoff. There, where
the temporal gauge was used, this was attributed to the lack
of Lifshitz scaling in the vector sector.2

The authors of Ref. [14] proposed eliminating the power-
law divergences by introducing mixed derivatives into the
Hořava action, in the form of terms quadratic in ∇kKij (Kij
is the extrinsic curvature of the spatial slices); see also
Refs. [15,16]. In the nonprojectable model, however,
radiative corrections in the presence of mixed derivatives
are expected to give rise to terms quadratic in time
derivatives of the lapse N , leading to a new scalar degree
of freedom (d.o.f.) that is unstable in the IR [17]. The
viability of the mechanism, as presented in Ref. [14] for the
nonprojectable theory, therefore needs a more in-depth
analysis. We shall briefly discuss this point in Sec. IVA.
The present paper has two main goals. The first is to

investigate the same mechanism in the projectable version
of Hořava gravity in Dþ 1 dimensions. The projectable
theory has technical advantages over the nonprojectable
theory, not the least of which is that it is known to be

renormalizable [18], while renormalizability of the non-
projectable theory remains an open question. A technical
but crucial difference between the two theories is that only
in the projectable case does the gravity sector possess
propagators that are regular, explicitly respect the Lifshitz
scaling in the ultraviolet, and have no instantaneous
modes,3 provided we adopt the gauge fixing of [18].
It is therefore beneficial to revisit Lorentz violation in
the matter sector due to quantum corrections in the context
of the projectable version of the theory. We shall confirm
that the divergence structure is robust and that the problem
persists in Dþ 1 dimensions for any D ≥ 3.
Our second goal is to discuss possible resolutions of

these problems. These fall into three classes: mixed
derivative terms in the projectable Hořava gravity, super-
symmetry, and strong dynamics. The mixed derivative
terms proposed in Ref. [14] for the nonprojectable model
do not introduce a new scalar d.o.f. in the projectable theory
because there the offending term does not exist. One is
instead faced with infrared instabilities, imposing strong
conditions on the value of λ. The viability of the mechanism
then reduces to the RG properties of λ, together with
the existence of an analogue of the Vainshtein mechanism
rendering the dynamics at λ near 1 regular. A second
option, first investigated in Ref. [11], is the use of
supersymmetry to control Lorentz violation in the infrared,
and we comment on the possibility of combining the
mechanisms of Refs. [11,14,19] to suppress the loop con-
tributions of the shift variable. Finally, we briefly discuss
the strong coupling mechanism studied in Refs. [12,13].
The rest of the paper is organized as follows. Section II

introduces our models, consisting of Hořava gravity
coupled to a free scalar and a Uð1Þ gauge field, respec-
tively; gives their propagators in the gauge fixing of
Ref. [18], and lists the integrals that appear when calculat-
ing divergent contributions to the one-loop effective action.
Section III computes the one-loop corrections to the scalar
and gauge limiting speeds induced by the gravitational
sector. Possible solutions to the naturalness problem for
Lorentz symmetry are discussed in Sec. IV, and Sec. V
summarizes our conclusions and discusses interesting
directions for future work.

II. SETUP AND NOTATION

Our treatment of Hořava gravity follows the setup of
Ref. [18] closely. We shall only take the extrinsic curvature
terms and the terms which are of order 2D in spatial
derivatives, as we are interested only in the UV contribu-
tions of gravitational degrees to loop integrals. We shall use
the gauge-fixing prescription of Ref. [18], for which all

2The authors state, however, that they verified their compu-
tations in a generalization of the Rξ gauge.

3In the nonprojectable theory, there exist modes of which the
momentum space correlators diverge with respect to spatial
momentum even at nonzero frequency ω, which leads to
instantaneous propagation.
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propagators are regular. On the other hand, we need not
worry about introducing Faddeev-Popov ghost fields, since
at one loop they do not contribute to the matter sector
effective action. As we consider the projectable version of
the theory, we are also free to set the lapse, N , to 1
throughout the paper. We shall work in the Euclidean
signature, so LV below has a minus sign relative to the real
time action. We then add a matter sector that (before Wick
rotation) is Lorentz invariant at the classical level and
investigate Lorentz-violating quantum corrections in the
zero external momentum limit.

A. Gravity action

Hořava gravity starts with a fixed foliation of spacetime
by constant time slices. In terms of a coordinate system
ðt; xiÞ respecting the foliation, it is built from the ADM
fields N , N i, and gij. We work solely with the so-called
projectable theory, where N ¼ N ðtÞ is constant on spatial
slices. Its action is

SHL ¼ 1

2κ2

Z
dtdDxN

ffiffiffi
g

p ½KijKij − λK2 þ LV þ Lg:f:�;

ð3Þ

where Kij ¼ 1
2N ð _gij −∇iN j −∇jN iÞ and LV is built from

the Riemann curvature tensor of the spatial slice using
terms containing 2D spatial derivatives. The coupling
constants λ and κ2 are dimensionless under the UV scaling.
To compute the leading divergent contributions to the

matter effective action, it is enough to set the cosmological
constant to zero and expand around a flat background,

N ¼ 1; N i ¼ Ni; gij ¼ δij þ hij; ð4Þ

where Ni and hij are small perturbations. The gauge-fixing
term of Ref. [18] has two free parameters, σ and ξ, and
takes the form

Lg:f: ¼ σFiOijFj; ð5Þ

where

Oij ¼ Δ−Dþ2½δijΔþ ξ∂i∂j�−1; ð6Þ

Fi ¼ _Ni þ 1

2σ
O−1

ij ∂khjk −
λ

2σ
O−1

ij ∂jh: ð7Þ

This specific choice for the gauge-fixing term decouples the
shift and metric perturbations at quadratic order and renders
all propagators regular. That this gauge-fixing term takes a
universal form depending in a simple way on dimension
can be traced to the fact that Ni only appears in the kinetic
term, which is independent of dimension and the choice of
potential in the projectable theory.

B. Matter action

Following Ref. [14], we take the matter sector to be
Lorentz invariant at the Hořava-Lifshitz (HL) scale and
evaluate the leading Lorentz-violating quantum corrections
in the limit of small external momentum. We will consider
two types of matter: a massless scalar and a Uð1Þ gauge
field, both taken to be Lorentz invariant in the UV. After
Wick rotation, the scalar action takes the form

Sϕ ¼ 1

2

Z
dDþ1x½ð∂tϕ − Ni∂iϕÞ2 þ β2δij∂iϕ∂jϕ�; ð8Þ

plus terms OðhijÞ, while the gauge field has the action

SA ¼
Z

dDþ1x

�
1

2
ðEi − NkFkiÞ2 þ

β2

4
FijFij

�
; ð9Þ

again with additional termsOðhijÞ and with the definitions,

Ei ¼ DE μ
i Aμ; Fij ¼ DF μ

ijAμ; ð10Þ

where DE μ
i ¼ ∂0δ

μ
i − ∂iδ

μ
0 and DF μ

ij ¼ ∂iδ
μ
j − ∂jδ

μ
i . Here,

we have suppressed the couplings to hij because, as we
argue in the following sections, h loops contribute only
logarithmic divergences. The parameter β (> 0) is the bare
propagation speed of ϕ and Aμ, which we include for
bookkeeping purposes.

C. Propagators

Because of the particular form of the gauge-fixing term,
the shift propagator in Fourier space takes a simple form
valid in any dimension,

G̃ij
NðPμÞ ¼ a1ðδij − p̂ip̂jÞP1ðPμÞ þ a2p̂ip̂jP2ðPμÞ;

a1 ¼
κ2

σ
; a2 ¼

κ2ð1þ ξÞ
σ

; ð11Þ

where Pμ ¼ ðω; piÞ is the 4-momentum, p̂i ¼ pi=p,

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijpipj

q
, and

P1;2ðPμÞ ¼
p2ðD−1Þ

ω2 þ α21;2p
2D ;

α21 ¼
1

2σ
; α22 ¼

ð1 − λÞð1þ ξÞ
σ

: ð12Þ

For the graviton hij, any potential LV satisfying physically
reasonable inequalities leads to a well-behaved Lifshitz
dispersion relation, ω2 ∝ k2D, for all modes. This leads to a
Fourier-space propagator of the form

Gh
ijklðPμÞ ¼

X
n

MðnÞ
ijklP

0
nðPμÞ; ð13Þ
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where MðnÞ
ijkl runs over a set of tensor structures (projecting

onto transverse traceless, divergenceless vector, and two
scalar modes), and the P0

n are all of the form

P0
nðPμÞ ¼

a0n
ω2 þ α02np2D : ð14Þ

The gauge-fixing term is such that the mixed propagator
hNihjki vanishes.
For a scalar ϕ with the action (8), the Fourier space

propagator is

G̃ϕðPμÞ ¼
1

ω2 þ β2p2
; ð15Þ

while a vector field Aμ in Feynman gauge with the action
(9) has Fourier-space propagator

G̃A μνðPρÞ ¼
ηEμν

ω2 þ β2p2
; ð16Þ

where ηE00 ¼ β2, ηE0i ¼ ηEi0 ¼ 0 and ηEij ¼ δij.

D. Loop integrals

The leading divergence of the one-loop effective action
for ϕ and Aμ will be derived in the next section. They can be
expressed in terms of the following loop integrals:

J ðIÞ
1 ≡ aI

Z
dDþ1P
ð2πÞDþ1

PIðPμÞ;

J ðIÞ
2 ≡ aI

Z
dDþ1P
ð2πÞDþ1

ω2G̃ϕðPμÞPIðPμÞ;

J ðIÞ
3 ≡ aI

Z
dDþ1P
ð2πÞDþ1

p2G̃ϕðPμÞPIðPμÞ;

J ðnÞ
4 ≡

Z
dDþ1P
ð2πÞDþ1

P0
nðPμÞ;

J ðnÞ
5 ≡

Z
dDþ1P
ð2πÞDþ1

ω2G̃ϕðPμÞP0
nðPμÞ;

J ðnÞ
6 ≡

Z
dDþ1P
ð2πÞDþ1

p2G̃ϕðPμÞP0
nðPμÞ;

J 7 ≡
Z

dDþ1P
ð2πÞDþ1

G̃ϕðPμÞ: ð17Þ

These integrals are regularized and evaluated in Appendix.

III. ONE-LOOP CORRECTIONS
IN D SPATIAL DIMENSIONS

Our goal is to compute the power-law divergent con-
tributions to the shift in the limiting speeds of the fields ϕ
and Aμ. This is done by computing the one-loop effective
action for each field. Wewill see in Secs. III B and III D that

the divergence from hij is logarithmic, and so the power-
law divergence comes entirely from the shift Ni. We
therefore begin with loop corrections from the shift field.

A. Shift field loop corrections to the scalar action

To compute the contribution of shift loops, we may set
hij ¼ 0 and consider the action

Sðϕ; NiÞ ¼
1

2

Z
dDþ1x½ð∂tϕ − Ni∂iϕÞ2

þ β2δij∂iϕ∂jϕþ NiKijNj�; ð18Þ

where Kij is the gauge-fixed kinetic term for Ni. We are
interested in the one-loop effective action for ϕ,

Γ1ðϕÞ ¼
1

2
trðlog Sð2Þ½ϕ� − log Sð2Þ½0�Þ; ð19Þ

where Sð2Þ½ϕ� is the fluctuation operator, with matrix
components

½Sð2Þ½ϕ� · f�ðxÞ ¼
Z

dDþ1y
δ2SðφÞ

δφðxÞδφðyÞ
����
Ni¼0

fðyÞ; ð20Þ

φ stands for ðϕ; NiÞ; and f is a test function. Let G denote
the propagator matrix, and define the differential operator
U½ϕ� by

G · Sð2Þ½ϕ� ¼ 1þG ·U½ϕ�: ð21Þ

Note that U½0� ¼ 0. Taylor expanding to second order in ϕ,
we obtain

Γ1ðϕÞ ¼
1

2
tr

�
G ·U½ϕ� − 1

2
G ·U½ϕ� · G ·U½ϕ�

�
: ð22Þ

The components of U are given by

Z
ddþ1xddþ1yfðxÞU½ϕ�ϕðxÞϕðyÞgðyÞ ¼ 0;

Z
ddþ1xddþ1yfðxÞU½ϕ�ϕðxÞNiðyÞviðyÞ

¼
Z

ddþ1xfðxÞ½∂0ðviðxÞ∂iϕðxÞÞ þ ∂iðviðxÞ∂0ϕðxÞÞ�;Z
ddþ1xddþ1yviðxÞU½ϕ�NiðxÞϕðyÞfðyÞ

¼
Z

ddþ1xfðxÞ½∂0ðviðxÞ∂iϕðxÞÞ þ ∂iðviðxÞ∂0ϕðxÞÞ�;Z
ddþ1xddþ1yviðxÞU½ϕ�NiðxÞNjðyÞujðyÞ

¼
Z

ddþ1xviðxÞujðxÞ∂iϕðxÞ∂jϕðxÞ; ð23Þ
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where f, g, ui, and vi are test fields. Since the ϕNi Green’s
function vanishes, the effective action is given to quadratic
order in ϕ by

Γð2Þ
1 ðϕÞ ¼ 1

2
trðGij

NUNiNjÞ − 1

2
trðGϕUϕNiGij

NUNjϕÞ: ð24Þ

Consider the first trace in (24), corresponding to the
diagram in Fig. 1. In the Lifshitz gauge fixing [18], the
(momentum space) propagator for Ni is a sum of two terms
as shown in (11). When Gij

N appears inside an integral
multiplying a scalar expression, rotational invariance
allows us to replace pipj ↦ p2δij=D. The relevant inte-
grals are defined in Sec. II D and evaluated in Appendix.
The final form of the divergent contribution to the effective
action from the first term of (24) is thereforeZ

dDþ1xGij
Nðx; xÞ∂iϕ∂jϕðxÞ

¼ 1

2

Z
dDþ1xζ3δij∂iϕðxÞ∂jϕðxÞ ð25Þ

with

ζ3 ¼
δij
D

Gij
Nðx; xÞ ¼

X2
I¼1

AIJ
ðIÞ
1 ;

A1 ¼ 1 −
1

D
; A2 ¼

1

D
: ð26Þ

From the second term in (24) (with the diagram in
Fig. 2), we obtain a contribution to Γ1ðϕÞ of the form

−
1

2

Z
dDþ1x

Z
dDþ1y½ð− _ϕ∂j − ∂jϕ∂τÞðxÞGϕðx; yÞ

× ð _ϕ∂i þ ∂iϕ∂τ þ 2∂i
_ϕÞðyÞGij

Nðy; xÞ�: ð27Þ
From the shift symmetry of ϕ, we know that all contribu-
tions to the Lagrangian must be of the form D1ϕD2ϕ,
where D1 and D2 are differential operators of order at
least 1. We are interested in the coefficients of _ϕ2 and
ð∂ϕÞ2. (Note that by time reversal, parity, and rotational
symmetry all other contributions to the effective action are
less divergent and have more derivatives acting on ϕ). This
leaves the leading divergent contribution

1

2

Z
dDþ1x½ζ1ð _ϕÞ2 þ ζ2ð∂ϕÞ2�: ð28Þ

For ζ1, we find

ζ1 ¼
�Z

dDþ1y∂ðxÞ
j Gϕðx; yÞ∂ðyÞ

i Gij
Nðy; xÞ

�
div
; ð29Þ

which is −J ð2Þ
3 ; note that P1 does not contribute because its

prefactor ðδij − p̂ip̂jÞ inside Gij
N is transverse. For ζ2, both

P1 and P2 contribute as

ζ2 ¼ −
�
δij
D

Z
dDþ1y∂ðxÞ

τ Gϕðx; yÞ∂ðyÞ
τ Gij

Nðy; xÞ
�
div
; ð30Þ

which is −
P

2
I¼1 AIJ

ðIÞ
2 . We thus find the divergent

contribution to the effective action quadratic both in ϕ
and in derivatives to be

Γquad
1;divðϕÞ

¼ 1

2

Z
dDþ1x½ζ1 _ϕ2 þ ðζ2 þ ζ3Þð∂ϕÞ2�

¼ 1

2

Z
dDþ1x

�
−J ð2Þ

3
_ϕ2 þ

X2
I¼1

AIðJ ðIÞ
1 − J ðIÞ

2 Þð∂ϕÞ2
�
:

ð31Þ

Renormalizing so that ϕ has canonical kinetic term 1
2
_ϕ2, we

may read off theNi-loop contribution to the infrared shift in
the limiting speed,

δc2ϕ ¼ ζ2 þ ζ3 þ β2δZð1Þ
ϕ ¼ ζ2 þ ζ3 − β2ζ1

¼
X2
I¼1

AIðJ ðIÞ
1 − J ðIÞ

2 Þ þ β2J ð2Þ
3

¼ β2
��

1 −
1

D

�
J ð1Þ

3 þ
�
1þ 1

D

�
J ð2Þ

3

�
; ð32Þ

where δZð1Þ
ϕ is the OðℏÞ part of the field renormalization

constant. The last equality follows from the first identity
of Eq. (A8).

B. Graviton loop corrections to scalar action

We now show that the one-loop contributions from
the graviton hij to δc2ϕ do not contain power-law diver-
gences. One-loop gravitational contributions to the matter
propagator come in two types, each of which is summed
over the contributions of the two graviton modes. [By
“graviton,” we mean here the modes contributing to the
hijhkl correlator (13).] The first is the single-vertex loop,
and the second is the two-vertex loop describing the
emission and subsequent reabsorption of a virtual graviton
(see Figs. 1 and 2).

FIG. 1. Single-vertex diagram.

FIG. 2. Two-vertex diagram.
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In the first case, the loop integral involves only a factor of
the graviton propagator, contributing a linear combination
of integrals of the form J ðnÞ

4 , as defined in Sec. II D. These
integrals are shown in Appendix to be free from power-law
divergences.
The second diagram involves in addition a factor of the

scalar propagator. The hϕϕ vertices are a sum of _ϕ2 and
∂iϕ∂jϕ contributions, and as a result, the diagrams are built
from sums of the scalar and graviton propagators, weighted
by the square of either the internal scalar energy or
momentum. As a result, the leading divergence of these
diagrams is given by a linear combination of integrals of the

form J ðnÞ
5 and J ðnÞ

6 , also defined in Sec. II D. Again, these
contributions are free from power-law divergences, as
shown in Appendix. We have thus established that the
power-law divergence of the one-loop correction to the
infrared limiting speed of the scalar field ϕ is given by (32).

C. Shift field loop corrections to gauge field action

For shift loop contributions to the gauge field, we once
again set hij ¼ 0 and consider

S ¼
Z

dDþ1x

�
1

2
ðEi − NkFkiÞ2 þ

β2

4
FijFijþNiKijNj

�

þ Sgauge−fixing; ð33Þ
where Ei and Fij are defined in (9), Kij is the gauge-fixed
kinetic term for Ni, and β is the same bare propagation
speed as before. We adopt the Feynman gauge for A, so the
propagator is given by (16), although the final result is
gauge invariant.
This time, we are interested in the quadratic one-loop

effective action for A,

Γð2Þ
1 ðAÞ ¼ 1

2
tr

�
G · U½A� − 1

2
G · U½A� ·G ·U½A�

�
; ð34Þ

where the U operator has components

Z
ddþ1xddþ1yXμðxÞU½A�AμðxÞAνðyÞYνðyÞ¼ 0;

Z
ddþ1xddþ1yXμðxÞU½A�AμðxÞNjðyÞvjðyÞ

¼
Z

ddþ1xXμðxÞ½EkDF μ
jkv

jþFjkDE μ
kv

jþ2ðDE μ
kFjkÞvj�;Z

ddþ1xddþ1yviðxÞU½A�NiðxÞAμðyÞY
μðyÞ

¼−
Z

ddþ1xviðxÞ½EkDF μ
ikXμðxÞþFikDE μ

kXμðxÞ�;Z
ddþ1xddþ1yviðxÞU½A�NiðxÞNjðyÞujðyÞ

¼
Z

ddþ1xviðxÞujðxÞFikFjk: ð35Þ

Here, DE μ
i ¼ ∂0δ

μ
i − ∂iδ

μ
0 and DF μ

ij ¼ ∂iδ
μ
j − ∂jδ

μ
i as in

Sec. II B, and Xμ, Yμ, ui, and vi are test fields. We first
compute

1

2
trðG ·U½A�Þ ¼ 1

2
trNðGN ·UNN ½A�Þ

¼ 1

2

Z
dDþ1xGij

Nðx; xÞðFikFjkÞðxÞ

¼ 1

4
ζA3

Z
dDþ1xFijFij; ð36Þ

where ζA3 ¼ 2ζϕ3 . Next, we have the E2
i contribution.

Pulling this out of the analog of (27), we have

−
1

2
trðGN ·UNA ·GA · UANÞ

���
E2

¼ 1

2

Z
dDþ1x

Z
dDþ1y½ðElDF μ

jlÞðxÞGA
μνðx; yÞ

× ðEkDF ν
ikÞðyÞGij

Nðy; xÞ�: ð37Þ

As before, the dominant divergence is

1

2

Z
dDþ1xEkElZkl; ð38Þ

where Zkl ¼ ðZ̃kl þ Z̃lkÞ=2 and

Z̃kl ¼
Z

dDþ1yDF μðxÞ
jl GA

μνðx; yÞDF νðyÞ
ik Gij

Nðy; xÞ: ð39Þ

By rotational invariance, Zkl ¼ δklζ
A
1 , where

ζA1 ¼ 1

D
δklZkl

¼ 1

D

Z
dDþ1y

Z
dDþ1yDF μðxÞ

jk GA
μνðx; yÞDF νðyÞ

ik Gij
Nðy; xÞ

¼ −
1

D

Z
dωdDp
ð2πÞDþ1

ðpjη
E
kν − pkη

E
jνÞðpiδ

ν
k − pkδ

ν
i Þ

ω2 þ β2p2

× ½a1ðδij − p̂ip̂jÞP1 þ a2p̂ip̂jP2�

¼ −
�
1 −

1

D

�Z
dωdDp
ð2πÞDþ1

p2

ω2 þ β2p2

× δij½a1ðδij − p̂ip̂jÞP1 þ a2p̂ip̂jP2�

¼ −
�
1 −

1

D

�X2
I¼1

J ðIÞ
3 : ð40Þ

Similarly, the F2 term is

1

2

Z
dDþ1x

Z
dDþ1y½ðFjlDE μ

lÞðxÞGA
μνðx; yÞ

× ðFikDE ν
kÞðyÞGij

Nðy; xÞ�; ð41Þ
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with leading divergence

1

4

Z
d3xFikFjlZik;jl; ð42Þ

where Zik;jl ¼ ½ðZ̃ik;jl − Z̃ik;lj − Z̃ki;jl þ Z̃ki;ljÞ þ ðZ̃jl;ik−
Z̃jl;ki − Z̃lj;ik þ Z̃lj;kiÞ�=8 and Z̃ik;jl is given by

2

Z
dDþ1yDE μðxÞ

l GA
μνðx; yÞDE νðyÞ

k Gij
Nðy; xÞ

����
div
: ð43Þ

Using ηE00 ¼ β2, ηE0i ¼ ηEi0 ¼ 0, and ηEij ¼ δij, we obtain

Z̃ik;jl ¼ −2
Z

dωdDp
ð2πÞDþ1

ðωδμl − δμ0plÞηEμν
ω2 þ β2p2

ðωδνk − pkδ
ν
0Þ

× ½a1ðδij − p̂ip̂jÞP1 þ a2p̂ip̂jP2�

¼ −2
Z

dωdDp
ð2πÞDþ1

ω2δkl þ β2pkpl

ω2 þ β2p2

× ½a1ðδij − p̂ip̂jÞP1 þ a2p̂ip̂jP2�: ð44Þ

For each tensor structure inside the integral, we can replace

pipj →
1

D
p2δij; pipjpkpl → 0; ð45Þ

where the latter comes from contracting with Fik. Taking
into account index symmetries, the final result can be
written as Zik;jl ¼ ζA2 ðδijδkl − δilδkjÞ=2. The contribution
to ζA2 from the P1 term is

− 2

Z
dωdDp
ð2πÞDþ1

p2ðD−1Þðω2ð1 − 1
DÞ þ β2p2ð1DÞÞ

ðω2 þ α21p
2DÞðω2 þ β2p2Þ

¼ −2
��

1 −
1

D

�
J ð1Þ

1 −
�
1 −

2

D

�
β2J ð1Þ

3

�
; ð46Þ

while the contribution from the P2 term is

−
2

D

Z
dωdDp
ð2πÞDþ1

ω2p2ðD−1Þ

ðω2 þ α21p
2DÞðω2 þ β2p2Þ ; ð47Þ

which is simply − 2
DJ

ð2Þ
2 . This gives the net result

ζA2 ¼ −2
��

1 −
1

D

�
J ð1Þ

1 − β2
�
1 −

2

D

�
J ð1Þ

3 þ 1

D
J ð2Þ

2

�
:

ð48Þ

Combining these results and the contribution from field
renormalization, one obtains

δc2A ¼ ðζA2 þ ζA3 Þ − β2ζA1

¼ β2
��

3 −
5

D

�
J ð1Þ

3 þ
�
1þ 1

D

�
J ð2Þ

3

�
: ð49Þ

Once again, we have used the first identity of (A8).

D. Graviton loop corrections to gauge field action

The argument given in Sec. III B that the graviton modes
do not contribute power-law divergences to δc2ϕ carries over
to the gauge field without modification. Therefore, the
power-law divergence of the one-loop correction to the
infrared limiting speed of the gauge field Aμ is given
by (49).

E. Lorentz-violating quantum corrections

To summarize, we find that the shift loop contributions
(32) and (49) generate power-law divergences in the
difference in squared sound speeds between a Uð1Þ gauge
field and a scalar field, of the form

δc2A − δc2ϕ ¼ 2ðD − 2Þ
D

J ð1Þ
3 : ð50Þ

This vanishes only forD ¼ 1, where J ð1Þ
3 vanishes because

of the absence of the first term [∝ðp2δij − pipjÞ ¼ 0] in
(11), and for D ¼ 2. As shown in Appendix, the integral

J ð1Þ
3 diverges as approximately ΛD−1, where Λ is the

ultraviolet momentum cutoff. Therefore, we have a natu-
ralness problem for all D ≥ 3. For D ¼ 3 (where
M2

p ¼ 1=κ2), this reduces to

δc2A − δc2ϕ ¼ 1

4π2

�
Λ
Mp

�
2

: ð51Þ

IV. POSSIBLE SOLUTIONS

In this section, we discuss some possible resolutions
coming from modification of the gravity theory. Since we
have shown that the naturalness problem for Lorentz-
violating couplings only becomes worse for D > 3, in
what follows, we shall focus on D ¼ 3.

A. Mixed derivatives

The first proposed solution to this naturalness problem,
presented in the original paper, was to introduce mixed
derivative terms [14]. In nonprojectable Hořava gravity, the
T-invariant mixed derivative terms of lowest dimension are
quadratic in the objects

∇iKjk; Ai ≡ 1

2N
ð _ai −N j∇jai − aj∇iN jÞ; ð52Þ
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where ai ≡ ∂i lnN . Unfortunately, the term quadratic in
the latter object,

M2
pσ1
M2

gijAiAj; ð53Þ

generates a new scalar d.o.f. possessing an IR instability
[17]. If we preserve the stability criteria of the theory
without mixed derivatives while avoiding ghosts, the
instability comes from the relative sign of the A2 term
and the term proportional to a2.
In the projectable version of Hořava gravity, on the other

hand, the lapse function N is constant in space, and thus
the offending term (53) does not arise. However, the
projectable version of Hořava gravity without mixed
derivative terms is also known to have an infrared gradient
instability. Since mixed derivative terms are irrelevant in the
infrared, their presence does not affect the nature of infrared
instabilities. For the theory to be phenomenologically
viable, the timescale of the infrared instability must be
longer than either the Hubble timescale or the standard
Jeans timescale. In 3þ 1 dimensions, this leads to the
following nontrivial condition on the RG flow of λ [5],

0 <
λ − 1

3λ − 1
< max

�
H2

k2
; jΦj

�
; ð54Þ

for,

H < k < min

�
M;

1

0.01 mm

�
;

where k is the momentum scale of interest, H is the Hubble
expansion rate of the background, Φ is the Newton
potential, and M is the Lifshitz scale. This in particular
implies that λ should run toward 1 sufficiently rapidly in the
infrared. In the limit λ → 1, the perturbative expansion
breaks down, and a fully nonlinear analysis is needed.
In general, such nonlinear analyses are technically difficult.
Fortunately, in some simple cases, such as stationary
spherically symmetric configurations [5] and nonlinear
superhorizon perturbations [20,21], fully nonlinear analy-
ses have been performed, and it has been shown that
general relativity (plus “dark matter as integration constant”
[22,23]) is recovered in the limit λ → 1. It is therefore
worthwhile to investigate the naturalness problem in the
projectable theory with mixed derivative terms.
A similar constraint can be placed in the nonprojectable

theory, giving

0 < M2
α

σ1
<

1

4
max ½H2; k2jΦj� ð55Þ

for

H < k < min

�
M;

1

0.01 mm

�
;

where σ1 was defined in (53) and α is the coefficient of aiai

[24]. Treating this is as a constraint on the IR behavior of α,
one obtains

α≲ 10−104
�
1010 GeV

M

�
2
�
σ1
1

�
max

�
H2

H2
0

;
k2jΦj
H2

0

�
; ð56Þ

where H0 ∼ 10−42 GeV is the present value of H.
If one likes to avoid technical complications due to

nonlinearity of the scalar graviton in establishing the low-
energy recovery of general relativity, then the Uð1Þ
extension [25] may provide a way out since there is no
scalar graviton in theUð1Þ extension with projectability.4 In
this case, matter can couple universally to a gauge-invariant
variable constructed from the gauge field and the so-called
Newtonian prepotential at low energy, e.g., after integrating
out heavy fields.5 It has been shown that all the solar system
tests carried out so far are satisfied in a large region of the
parameter space [26]. It is therefore worthwhile to inves-
tigate the naturalness problem in the context of the project-
able Uð1Þ extension, with or without mixed derivative
terms, in future work.

B. Supersymmetry

One promising mechanism to protect infrared Lorentz
invariance is to impose supersymmetry [11]. While the
supersymmetry (SUSY) algebra is usually treated as an
extension of Poincaré symmetry, supersymmetry does not
imply Lorentz symmetry. It was shown in Refs. [11,28]
that, in a four-dimensional theory with N ¼ 1 SUSY, if all
fields are charged under a gauge symmetry and there is at
most one Uð1Þ gauge field, then Lorentz-violating (LV)
operators have dimension greater than or equal to 5. If CPT
is imposed,6 the lower bound on LV operator dimensions
becomes 6. We assume CPT in what follows since CPT
violation is rather strongly constrained, e.g., by observation
of polarized gamma rays from distant gamma-ray bursts
(see Ref. [29] and references therein).
If SUSY is a UV symmetry of nature, then it must be

broken at some point, generating LV effects below the
breaking scale. These effects must be suppressed in order to
maintain IR Lorentz invariance. When SUSY is softly
broken at scale msoft, dimension-4 operators are generated
but are suppressed by the ratio m2

soft=Λ2
LV, where ΛLV is the

LV scale [14,19]. This protects IR Lorentz symmetry,

4On the other hand, there is a scalar graviton in the non-
projectable version of the Uð1Þ extension [26,27].

5See Appendix C of Ref. [26] for a simple example.
6The CPT theorem assumes Lorentz invariance. Therefore, in

a Lorentz-violating theory, CPT invariance is a nontrivial
condition we are free to impose.
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provided thatmsoft ≪ ΛLV and that ΛLV is sufficiently large
that the dimension-6 operators satisfy observational con-
straints. Taking energy dependence of gamma-ray burst
light curves [30], the suppression scale of the dimension-6
operator, which is expected to be of order ΛLV unless fine
tuned, is constrained as MQG;2 > 1011 GeV [31]. Unfor-
tunately, as it stands, this argument only works if the UV
theory is supersymmetric, which requires Hořava gravity to
be supersymmetric as well. It is not known whether such a
supersymmetrization exists.
An alternative was suggested in Ref. [19], in which it

was proposed that supersymmetry breaking in the matter
sector could be initiated by LV gravity. As a result, both
SUSY breaking and Lorentz violation arise from the same
coupling, and the contributions of graviton loops are
controlled by a single dimensionless ratio,

δc
c
∼
Λ2
HL

M2
p
; m2

soft ∼ Λ2
UV ·

Λ2
HL

M2
p
: ð57Þ

The analysis of Ref. [19] does not, however, take into
account the loop contribution from the vector modes of
the gravity sector. As these were the source of difficulty in
our analysis and in the analysis of Ref. [14], an alterna-
tive mechanism—such as the mixed derivative terms
discussed in Sec. IVA—is presumably required to guar-
antee naturalness.
We comment briefly on an additional possibility. The

power-law divergence of δc2 discussed in Sec. III E can be
attributed, in part, not to a non-Lifshitz dispersion relation
of Ni, but rather to the scaling behavior of the matter field.
The divergence can, however, be reduced by increasing the
dimension of the inverse scalar propagator, corresponding
to the introduction of higher-dimension LV operators. The
authors of Ref. [14] avoided introducing higher-dimension
LV operators because in typical field theories loop effects
lead to Oð1Þ values of δc2. Since SUSY protects the
infrared value of δc2, however, if the split in scales between
SUSY breaking and Lorentz violation is sufficiently large,
it may be possible to suppress LVeffects from matter loops
and gravity loops simultaneously. If SUSY is broken as in
Ref. [19] by interaction with Hořava gravity, it is possible
that naturalness can be preserved without mixed derivative
terms. We leave a detailed investigation of this scenario to
future work.

C. Strong dynamics

Another proposal is that if one allows for strong
dynamics then Lorentz invariance can be restored in the
infrared [10,12,13]. Suppose we have a matter sector with
modes which have different sound speeds and are coupled
with coupling constant g. Parametrizing their relative speed
difference as

η ¼ β1
β2

− 1; ð58Þ

near β1 ≈ β2 ≈ c, one has the typical behavior

∂η
∂ log μ ¼ b

4π2c3
g2η; ð59Þ

where μ is the renormalization scale and b ¼ Oð1Þ [12].
If g is a classically marginal coupling, then it will run
logarithmically, g2 ∼ ðAþ B logM=μÞ−1, causing η to run
according to

η ∼
1

ðAþ B logM=μÞ# ; ð60Þ

where M is some large mass scale [12]. In this case, η may
flow to zero, but much too slowly to be consistent with
observational constraints. If the coupling constant does not
run, however, then η runs with a power law of which the
exponent is proportional to g2, as

η ∝
�
μ

M

� b
4π2c3

g2

: ð61Þ

Thus, when two modes spend a long RG time near a
strongly coupled fixed point, their sound speeds rapi-
dly converge as we flow to the infrared [12,13].7

Finally, if a similar mechanism functions for the gravity
sector as well, it might help fulfill the phenomenological
constraints on the renormalization group flow presented in
(54) and (55).
Before concluding, it is worth commenting on the

possibility of reducing the degree of divergence by intro-
ducing additional fields unrelated to any symmetry [unlike
the Uð1Þ extension or a hypothetical supersymmetric
version of Hořava gravity]. As it is the vector modes
which are problematic, the symmetry of the background
requires we introduce a vector field Bi. To modify the
propagators, we should couple Bi to Ni locally (the theory
should be local before gauge fixing), but such a coupling is
strongly constrained by the foliation preserving diffeo-
morphisms and CPT symmetry. Given the existence of a
suitable coupling, there is another problem. To suppress the
problematic divergence requires the diagonalized vector
system to have propagators that scale like 1=k2z (or be
suppressed even further) in the UV. This then requires the
new spin-1 mode to have a Lifshitz scaling propagator with

7Another construction that speeds up the flow is to introduce
many additional matter/gauge fields [12]. This can lead effec-
tively to a power-law running, but it requires the addition of a
large hidden sector, together with a mechanism decoupling it at
experimental energies from the Standard Model fields. It is
therefore unlikely that this possibility is feasible phenomeno-
logically.
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z ≥ D. Without some symmetry principle, one could then
write infinitely many independent terms, and thus the
theory would be nonpredictive, and hence we do not find
this a viable option.

V. SUMMARY

This paper considered the mechanism proposed in
Ref. [14] for obtaining a matter sector with natural IR
Lorentz invariance coupled to nonprojectable Hořava
gravity and applied it to the projectable theory. We showed
that, as in the nonprojectable model, in the absence of
additional ingredients, this mechanism is spoiled by con-
tributions from the vector modes. Our analysis, valid for
any number of spatial dimensions D, shows that the
problem exists for any D > 2 and grows worse as D
increases.8 In particular, the naturalness problem cannot be
avoided by compactifying a higher-dimensional theory.
Our computation furthermore used the gauge fixing of
Ref. [18], in which all propagators are regular and have
Lifshitz scaling, further supporting the results of Ref. [14]
and suggesting that something more than the irregularity of
the shift propagator lies at the heart of the mechanism’s
failure. Namely, the source of difficulty is simply the lack
of Lifshitz scaling in the matter sector in the UV, combined
with the fact that the shift propagator in the UV is less
suppressed than the graviton propagator.
We discussed several possible approaches to this prob-

lem. One modification proposed already in Ref. [14] was
the addition of mixed derivative terms, which for the
nonprojectable theory was found in Ref. [17] to generate
a new propagating d.o.f. with IR instabilities. As a result,
the success of the mechanism relies on whether the IR
couplings satisfy the stability condition (55). The offending
extra mode does not exist in the projectable model with
mixed derivatives, but the gradient (IR) instability of the
original model without mixed derivatives persists. For this
model to have viable phenomenology requires both an
analogue of the Vainshtein mechanism and the couplings to
flow in the IR to values satisfying the phenomenological
constraints (55) [5]. We leave the investigation of these
issues to future work.
A second possibility, proposed in Refs. [11,14,19], is

based on supersymmetry. It is therefore interesting to seek a
supersymmetric version of Hořava gravity. (For work
relevant to this direction, see Refs. [32,33] on the super-
symmetrization of field theories with Lifshitz scaling and
the æther vector, respectively.) Meanwhile, one conceivable
solution would combine UV supersymmetry in the matter
sector (without Lorentz invariance), together with soft
SUSY breaking by interaction with Hořava gravity.

The remaining mechanism appearing in the literature
posits that RG flow is responsible for IR emergent Lorentz
symmetry [10,12,13]. For weakly coupled models, the flow
is too slow to be phenomenologically viable, requiring the
RG flow to pass near a strongly coupled fixed point. Such
behavior is expected in some beyond–Standard Model
scenarios, such as walking technicolor. Detailed models
with the necessary properties thus need to be developed and
studied.
Let us now comment on the scenario of emergent

Lorentz symmetry and its relation to our results. In the
literature [10,12,13], emergent Lorentz symmetry was
investigated without including higher spatial derivative
terms. We thus need to extend the analysis to systems
with higher spatial derivative terms, so that all fields enjoy
the Lifshitz scaling with a common value of the dynamical
critical exponent z in the UV. That is, we need to consider
dispersion relations satisfying ω2 ≃ k2z=M2ðz−1Þ for k ≫ M
and ω2 ≃ c2sk2 for k ≪ M, whereM is the suppression scale
of the higher spatial derivative term. In principle,M can be
different for different species. The main result of the present
paper, namely the failure of the mechanism proposed in
Ref. [14], clearly excludes the case with Mmatter ≫ Mgrav

since in this case the matter sector would have the z ¼ 1

scaling all the way up toΛ ∼Mmatter as in the mechanism of
Ref. [14]. On the other hand, if Mmatter ∼Mgrav, then the
main result of the present paper does not apply to the
scenario of emergent Lorentz symmetry, and it is generi-
cally expected that Lorentz invariance in the matter sector
may emerge at low energy as a consequence of the RG
flow. In summary, the results of the present paper suggest
that not only the gravity sector but also the matter sector
should exhibit Lifshitz scaling above some scale and that
there should not be a large separation between the transition
scales in the gravity and matter sectors.
Our discussion so far has been limited to the matter

sector. The recent multimessenger observations of a binary
neutron star merger [34], however, constrain the difference
between the speed of gravitational waves cgw and the speed
of light cγ to the level ofOð10−15Þ [6,35–39]. In the context
of the scenario of emergent Lorentz symmetry, it is there-
fore important to see under what conditions (if any) there
can be a fast RG flow toward cgw ¼ cγ.
It is, finally, worth comparing the naturalness of Lorentz

symmetry to some better-known naturalness problems in
cosmology: the cosmological constant and curvature prob-
lems. The cosmological constant is relevant in the IR, so the
cosmological constant problem should be more severe than
the curvature problem (as evidenced by the ability of
inflation to solve the latter and not the former). Since
λ and cgw are classically marginal in the IR, power counting
suggests that the naturalness problems discussed in this
paper will also be less severe than the cosmological
constant problem.

8Curiously, although power counting suggests a linear depend-
ence on Λ for D ¼ 2, these terms cancel, and we find only
logarithmic divergences in this case. We have only verified this
special feature for spins 0 and 1.
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APPENDIX: REGULATOR AND
LOOP INTEGRALS

We regulate the integrals introduced in Sec. II D as
follows. We first integrate over all ω ¼ P0 and then cut
off the upper limit of the p integrals at p ¼ Λ, where
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δijpipj

q
and pi ¼ Pi. While this regularization

scheme is not gauge invariant and modifies the long-range
behavior of propagators, it suffices for the purpose of
computing the general behavior of ultraviolet divergences,
as we are taking ΛD ≫ ΛMD−1� , where M� is the scale at
which anisotropic scaling begins to dominate. With this
regularization scheme, we have

a−1J 1 ¼
Z

dωdDp
ð2πÞDþ1

p2ðD−1Þ

ω2 þ α2p2D ¼
Z

dDp
2Dþ1πD

pD−2

α

¼ Λ2ðD−1Þ

2Dþ1πD=2ΓðD=2ÞðD − 1Þα ; ðA1Þ

a−1J 2 ¼
Z

dωdDp
ð2πÞDþ1

ω2p2ðD−1Þ

ðω2 þ β2p2Þðω2 þ α2p2DÞ

¼
Z

dDp
2Dþ1πD

p2ðD−1Þ

αpD þ βk

¼
ðΛ2ðD−1Þ

2
− ΛðD−1Þ β

α þ β2

α2
log α

βΛ
D−1Þ

2DπD=2ΓðD=2ÞðD − 1Þα ; ðA2Þ

a−1J 3 ¼
Z

dωdDp
ð2πÞDþ1

p2D

ðω2 þ β2p2Þðω2 þ α2p2DÞ

¼
Z

dDp
2Dþ1πD

pD−1

αβðαpD þ kβÞ

¼
ðΛD−1

β − 1
α log ðαβΛD−1ÞÞ

2DπD=2ΓðD=2ÞðD − 1Þα2 ; ðA3Þ

having dropped any convergent pieces, where J 1;2;3, a,

and α stand for J ðIÞ
1;2;3, aI , and αI (> 0) (I ¼ 1, 2),

respectively,

a0−1J 4 ¼
Z

dωdDp
ð2πÞDþ1

1

ω2 þ α02p2D ¼
Z

dDp
2Dþ1πD

1

α0pD

¼ 1

2DπD=2ΓðD=2Þα0 log
�
Λ
m

�
; ðA4Þ

a0−1J 5 ¼
Z

dωdDp
ð2πÞDþ1

1

ω2 þ α02p2D

ω2

ω2 þ β2p2

¼
Z

dDp
2Dþ1πD

1

α0pD þ βk

¼
log ðα0β ΛD−1Þ

2DπD=2ΓðD=2ÞðD − 1Þα0 ; ðA5Þ

a0−1J 6 ¼
Z

dωdDp
ð2πÞDþ1

1

ω2 þ α02p2D

p2

ω2 þ β2p2

¼
Z

dDp
2Dþ1πD

1

α0βpD−1
1

α0pD þ βk

¼ ðfinite inΛÞ; ðA6Þ

again having dropped any convergent pieces and where

J 4;5;6, a0, and α0 stand for J ðnÞ
4;5;6, a0n, and α0n (> 0),

respectively, and

J 7 ¼
Z

dωdDp
ð2πÞDþ1

1

ω2 þ β2p2

¼ ΛD−1

2DπD=2ΓðD=2ÞðD − 1Þβ : ðA7Þ

The integrals J 4 and J 6 suffer from infrared divergences,
so we have introduced an IR cutoff m. As integral J 6 has
only infrared divergences, its inclusion is not required for
an analysis of UV properties, but presumably it is required
if one wants to keep track of the cancellation of infrared
divergences.
We also have the following identities,

J 2 þ β2J 3 ¼ J 1; J 5 þ β2J 6 ¼ J 4; ðA8Þ

and the following approximate relation that holds up to
parts which vanish as Λ → ∞ and m → 0:

J 5

a0
þ α2

J 3

a
¼ J 7 þ

ðα − α0Þ½ln ðαβΛD−1Þ�
2DπD=2ΓðD=2ÞðD − 1Þαα0 : ðA9Þ
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