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We consider generic derivative corrections to the Einstein gravity and find new classes of theories
without ghost around the Minkowski background by means of an extension of the spacetime geometry.
We assume the Riemann-Cartan geometry, i.e., a geometry with a nonvanishing torsion, and consider all
possible terms in the Lagrangian up to scaling dimension four. We first clarify the number, spins, and
parities of all particle species around the Minkowski background and find that some of those particle
species are ghosts for generic choices of parameters. For special choices of the parameters, on the other
hand, those would-be ghosts become infinitely heavy and thus can be removed from the physical content of
particle species. Imposing the conditions on the coupling constants to eliminate the ghosts, we find new
quadratic curvature theories which are ghostfree around the Minkowski background for a range of
parameters. A key feature of these theories is that there exist a nonghost massive spin-2 particle and a
nonghost massive spin-0 particle in the graviton propagator, as well as the massless spin-2 graviton. In the
limit of the infinite mass of the torsion, the Riemann-Cartan geometry reduces to the Riemannian geometry
and thus the physical content of particle species coincides with that of the well-known quadratic curvature
theory in the metric formalism, i.e., a massive spin-2 ghost, a massive spin-0 particle and the massless
spin-2 graviton. Ghostfreedom therefore sets, besides other constraints, an upper bound on the mass of the
torsion. In addition to the above mentioned particle species (a massive spin-2 particle, a massive spin-0
particle and the massless spin-2 graviton), the ghostfree theory contains either the set of a massive spin-1
and a massive spin-0 (Class I) or a couple of spin-1 (Class II). These additional particle species mediate
gravity sourced by the spin of matter fields.

DOI: 10.1103/PhysRevD.100.064061

I. INTRODUCTION

Although Einstein’s general relativity (GR) is one of the
most successful gravitational theories, it has been believed
that GR is incomplete in the ultraviolet (UV) regime and is
merely a low energy effective field theory (EFT). There are
several attempts to unify quantum theory and gravity such
as superstring theory, Hořava-Lifshiz gravity, ghostfree
nonlocal gravity and so on. While constructing a complete
quantum theory of gravity is certainly important, as a
complementary attempt one should keep exploring phe-
nomenological signatures of quantum gravity by means of

a low energy EFT of gravity with quantum corrections to
GR. One such example of this approach is the Starobinsky
model [1], where the Ricci scalar squared term is added to
the Einstein-Hilbert action. This model yields a successful
inflationary universe. Its predictions are in good agreement
with the current observations [2] and future observations
such as LiteBIRD [3] can achieve the sensitivity sufficient
to detect its inflationary prediction, the primordial gravi-
tational waves.
A common feature of quantum gravity in the low energy

regime is the appearance of derivative corrections to the
Einstein-Hilbert action. The Ricci scalar squared men-
tioned above is indeed one of them. However, not only
is the Ricci scalar squared but also other generic higher
curvature terms such as Ricci tensor squared are naturally
expected to appear if there is no mechanism to prohibit
them. Typical reasons to ignore them in the literature are for
simplicity and due to the ghost problem. Except fðRÞ
theories, higher curvature terms in the action generally lead
to higher derivatives of the graviton and then yields a
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massive spin-2 ghost as the Ostrogradsky ghost. If the ghost
gives a dominant contribution, the system is outside the
regime of validity of EFT and the theoretical control is lost.
Therefore, in order for a theory to be predictive, the mass of
the ghost (if exists) should be sufficiently heavier than the
energy scale of interest, e.g., the inflation scale in the
case of the inflationary universe. In particular, in the limit
where the ghosts due to generic higher curvature terms are
infinitely heavy, a higher curvature theory reduces to one of
fðRÞ theories, which can be recast to the form of scalar-
tensor theories [4]. For this reason, it appears that phe-
nomenologically interesting signatures of higher derivative
corrections to the Einstein gravity come only from the spin-
0 particle, at least in the context of the standard Riemannian
geometry.
In the present paper, we point out that derivative

corrections to the Einstein gravity can yield not only the
spin-0 particle but also a massive spin-2 particle, a massive
spin-1 particle and so on without suffering from light
ghosts. The no-go argument in the previous paragraph is
based on the Riemannian geometry, where the connection
is computed by the metric and thus the metric is the only
independent object that describes the spacetime geometry.
From the first principle of geometry, on the other hand, the
metric and the connection are in principle independent
objects. We thus treat the metric and the connection as
independent variables and study derivative corrections to
the Einstein gravity. Imposing some conditions on the
coupling constants of the theory, we find a new classes of
theories in which the massless spin-2 graviton, the mas-
sive spin-2 particle and the massive spin-0 particle, which
appear in the graviton propagator as in the usual quadratic
curvature theory, can coexist without any ghost instability
at least around the Minkowski background.
The construction of the new classes of higher curvature

theories that we shall explore in the present paper is
inspired by the recent developments of modified gravity,
which had revealed that some of no-go results of ghostfree
theories can be overturned. One of such examples is
ghostfree massive gravity: although it was for a long time
believed that a massive spin-2 field cannot be ghostfree
beyond the linear order due to the Boulware-Deser ghost
[5], the ghostfree nonlinear potential of the massive spin-2
field was found by de Rham et al. in 2010 [6,7]. Another
example is ghostfree scalar-tensor theories with higher
derivative terms: while it was for a long time supposed
that equations of motion must be second order differential
equations for a theory to avoid the Ostrogradsky ghost, the
discovery of the degenerate higher order scalar-tensor
(DHOST) theories [8–15] opened up a new window on
constructing ghostfree higher order theories via degen-
eracy of the kinetic matrix. Therefore, we consider it
worthwhile to revisit higher curvature theories in light of
these recent developments, in particular by combining the
ideas behind these recent successes and seeking possible

new signatures of higher curvature corrections to the
Einstein gravity.
The rest of the present paper is organized as follows. In

Sec. II, we first give a general discussion on a gravitational
Lagrangian receiving derivative corrections in the frame-
work beyond the Riemannian geometry. We then assume
the metric compatibility condition just for simplicity and
provide the explicit Lagrangian relevant to the perturbation
analysis around the Minkowski background. In Sec. III, we
compute the quadratic Lagrangian around the Minkowski
background and show the kinetic structure of the theory.
The number, spins, and parities of particle species in the
theory are then identified. Introducing a matter field, we
also compute the graviton propagator of the theory. The
main result is shown in Sec. IV, where the stability (no
ghost, no tachyon) conditions around the Minkowski
background are derived based on the 3þ 1 decomposition.
The stability conditions and the particle contents of the
ghostfree theories are summarized in Sec. IV D. Finally, we
give concluding remarks in Sec. V.

II. ACTION

A. General discussion

It is known that quantum corrections give rise to
derivative corrections to the Einstein-Hilbert action,

L ¼ Lðg; ∂g; ∂2gÞ ¼ LR þ LR2 þ � � � ; ð2:1Þ

where

LR ¼ M2
pl

2
R; ð2:2Þ

LR2 ¼ α1R2 þ α2RμνRμν þ α3RμνρσRμνρσ; ð2:3Þ

and � � � in (2.1) represent terms involving more than four
derivatives acted on the metric. Here, we have set the
cosmological constant to zero in order to admit the
Minkowski background solution. In four dimensions,
one of the parameters αi can be set to zero by means
of the Gauss-Bonnet theorem. From now on, we thus set
α3 ¼ 0 so that the theory is parametrized by the two
parameters ðα1; α2Þ in addition to the Planck mass. If terms
in � � � in (2.1) are suppressed byM2

pl then one may use (2.1)
to discuss a classical dynamics of gravity as long as
j∇α1 � � �∇αnRμνρσj ≪ Mnþ2

pl for all n ≥ 0 in tetrad basis.
From naturalness it is then expected that jα1;2j ¼ Oð1Þ.
Nonetheless, in some cases jα1j or/and jα2j might be
parametrically larger than Oð1Þ for some reasons.
Indeed, actual values of jα1j and jα2j depend on the UV
completion of GR, i.e., quantum gravity. In the lack of
complete understanding of quantum gravity, we should not
a priori exclude the possibility of large jα1j or/and jα2j. If
jα1j ≫ 1 or/and jα2j ≫ 1 and if terms in � � � of (2.1) are still
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suppressed by M2
pl then the quadratic curvature corrections

can give relevant contributions even in the classical regime
belowMpl and can give various interesting phenomenology
such as Starobinsky inflation [1]. However, it is known that
the theory (2.1) generically has a massive spin-2 ghost in
addition to a massive spin-0 degree and the massless spin-2
graviton.
A possible solution to the spin-2 ghost problem is to

assume the hierarchy jα1j ≫ jα2j (with α3 ¼ 0) as usually
postulated in the literature so that the mass of the spin-2
ghost is much heavier than that of the spin-0 degree. In this
case, one can safely integrate out the massive spin-2 ghost
in the regime of validity of the EFT describing the physics
of the spin-0 degree. In practice, if we assume α2 ¼ 0 then
the massive spin-2 ghost is infinitely heavy and the
gravitational sector of the low energy EFT has the massless
spin-2 graviton and the massive spin-0 degree only. In the
present paper, on the other hand, we shall deform the theory
so that the massive spin-2 mode becomes nonghost while
keeping the stable massive spin-0 mode and the massless
spin-2 graviton. A new ingredient in the present paper that
makes such deformation possible is an extension of the
spacetime geometry.
We shall treat the metric and the connection as inde-

pendent variables. The geometry with a metric and a
generic affine connection is called the metric-affine geom-
etry. In the low energy regime, it would be sufficient to
include terms up to scaling dimension four. The Lagrangian
is generally given by

LG ¼ LGðg; ∂g; ∂2g;Γ; ∂ΓÞ; ð2:4Þ

where the scaling dimensions of the metric and the
connection are supposed to be ½gαβ� ¼ 0 and ½Γα

βγ� ¼ 1,
respectively. Since the partial derivative is not a covariant
quantity, the diffeomorphism invariance then leads to the
requirement that the Lagrangian should be built out of
geometrical quantities and their covariant derivatives as

LG ¼ LGðg; R
Γ
; T;Q;∇ΓT;∇ΓQÞ; ð2:5Þ

where

R
Γ

μ
ναβðΓÞ ≔ ∂αΓ

μ
νβ − ∂βΓ

μ
να þ Γμ

σαΓσ
νβ − Γμ

σβΓσ
να; ð2:6Þ

Tμ
αβ ≔ Γμ

βα − Γμ
αβ; ð2:7Þ

Qμ
αβ ≔ ∇Γ μgαβ; ð2:8Þ

are the curvature, the torsion, and the nonmetricity tensors,
respectively. The covariant derivative of a vector is
defined as

∇Γ μAν ¼ ∂μAν þ Γν
ρμAρ: ð2:9Þ

We suppose that all gravitational degrees of freedom
(d.o.f.) except the standard massless spin-2 graviton are
massive so that the fifth force, existence of which is
strongly constrained by the solar system experiments
(see [16] for example), does not appear in the low energy
limit. In this case, it is useful to decompose the general
affine connection Γμ

αβ into the Riemannian part and the
deviations from it, namely the Levi-Civita connection f μ

αβg
and the distortion tensor κμαβ:

Γμ
αβ ¼

n μ

αβ

o
þ κμαβ: ð2:10Þ

The torsion and the nonmetricity are then expressed by

Tμ
αβ ¼ 2κμ½βα�; Qμ

αβ ¼ 2κðαβÞμ; ð2:11Þ

or, conversely, the distortion is given by

κμαβ ¼ −
1

2
ðTμ

αβ − Tβ
μ
α þ Tαβ

μÞ

−
1

2
ðQμ

αβ −Qβ
μ
α −Qαβ

μÞ: ð2:12Þ

Hence, the Lagrangian can be rewritten as

LG ¼ LGðg; R; T;Q;∇T;∇QÞ; ð2:13Þ

where Rμ
αβγ and ∇μ are the Riemann curvature and the

covariant derivatives defined by the Levi-Civita connec-
tion. In the form (2.13), we can regard the torsion tensor
and the nonmetricity tensor as independent variables
instead of parts of the connection. In energy scales below
the masses of the torsion and the nonmetricity, all compo-
nents of them may be integrated out; the gravitational
theory is then represented by the metric only. Therefore, in
the context of particle physics, what we did here is
introducing new heavy particles in UV regime (see [17]
for more details on this point).

B. Metric compatible theory

Hereafter, we impose the metric compatibility condition

Qμ
αβ ¼ 0; ð2:14Þ

just for simplicity. The geometry with a metric and a metric
compatible connection is then called Riemann-Cartan
geometry. This geometry particularly has gained attention
in the literature since one can choose the tetrad eaμ and
the anti-symmetric spin connection ωab

μ ¼ ω½ab�
μ, where

a; b; � � � are the Lorentz indices, as independent variables
and can regard them as gauge fields associated with the
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local translation and the local rotation, respectively. In this

picture, the curvature two-form 1
2
R
Γ
ab

μνdxμdxν and the
torsion two-form 1

2
Ta

μνdxμdxν are interpreted as the field
strengths of them (see [18,19] for reviews). Theories whose
Lagrangian is algebraically constructed by the curvature
and the torsion are called the Poincaré gauge theories
(PGTs). On the other hand, in the present paper we shall
include not only all the ingredients used in the Lagrangian
of PGTs but also terms quadratic in derivatives of the
torsion in the Lagrangian because there would be no reason
to exclude them since both the curvature squared and the
torsion derivative squared have scaling dimension four.
We assume that the cosmological constant vanishes to

admit the Minkowski spacetime as a vacuum solution and
study linear perturbations around the Minkowski back-
ground. The general parity preserving Lagrangian up to
scaling dimension four is then given by the following
pieces

LG ¼ LR þ LT2 þ LR2 þ Lð∇TÞ2 þ LR∇T
þ LRT2 þ Lð∇TÞT2 þ LT4 : ð2:15Þ

The last three parts, which include terms schematically
represented by the suffixes, are irrelevant to linear pertur-
bation analysis around the Minkowski spacetime. By the
use of the equivalence upon integration by parts and
the Bianchi identity, the most general expressions of the
relevant terms are

LR ¼ M2
pl

2
R; ð2:16Þ

LR2 ¼ α1R2 þ α2RμνRμν þ α3RμνρσRμνρσ; ð2:17Þ

LR∇T ¼ β1Rμν∇ρ T
ð1Þ

μνρ þ β2R∇μTμ; ð2:18Þ

LT2 ¼ M2
T

2
ða1 T

ð1Þ
μνρ T

ð1Þ
μνρ þ a2TμTμ þ a3T μT νÞ; ð2:19Þ

Lð∇TÞ2 ¼ b1∇μT
ð1Þ

νρσ∇μ T
ð1Þ

νρσ þ b2∇μT
ð1Þ

μρσ∇ν T
ð1Þ

ν
ρσ

þ b3∇μ T
ð1Þ

ρσμ∇ν T
ð1Þ

ρσ
ν þ b4∇μTν∇μTν

þ b5∇μTμ∇νTν þ b6∇μT ν∇μT ν þ b7∇μT μ∇νT ν

þ b8∇μ T
ð1Þ

μνρ∇νTρ þ b9ϵμνρσ∇α T
ð1Þ

α
μν∇ρT σ;

ð2:20Þ

where αi, βi, ai, and bi are dimensionless parameters. The
torsion tensor has been decomposed into three irreducible
pieces,

T
ð2Þ

μνρ ¼
2

3
gμ½νTρ�; ð2:21Þ

T
ð3Þ

μνρ ¼ ϵμνρσT σ; ð2:22Þ

T
ð1Þ

μνρ ¼ Tμνρ − T
ð2Þ

μνρ − T
ð3Þ

μνρ ð2:23Þ

with

Tμ ≔ Tν
νμ; ð2:24Þ

T μ ≔
1

6
ϵμνρσTνρσ: ð2:25Þ

The irreducible piece T
ð1Þ

μνρ satisfies

T
ð1Þ

μðνρÞ ¼ 0; T
ð1Þ

½μνρ� ¼ 0; T
ð1Þ

μ
μν ¼ 0 ð2:26Þ

and thus has 16 independent components. As we have
already stated, in light of the Gauss-Bonnet theorem we set
α3 ¼ 0 without loss of generality. Then, the remaining 16
dimensionless parameters ðαi; βi; ai; biÞ characterize linear
perturbations in addition to the two mass parameters Mpl

andMT . The terms LT2 act as the mass terms of the torsion.
Hence, we assume ai ≠ 0 throughout in order to recover
GR in the low energy limit.
There are a few general remarks on the Lagrangian

(2.15). (i) Solutions of (2.15) generally have a nonvanish-
ing torsion because LR∇T gives source terms of the
torsion equation of motion. Since the source terms are
proportional to

∇ρRμν; ∇μR; ð2:27Þ

an Einstein manifold Rμν ¼ R0

4
gμν with a constant R0 can be

a torsionless solution. In particular, Ricci flat spacetimes
with vanishing torsion are vacuum solutions of (2.15).
(ii) In the case of β1 ¼ β2 ¼ 0, the metric perturbations and
the torsion perturbations are decoupled from each other at
linear order around the Minkowski background. This case
is less interesting because the massive spin-2 ghost exists as
long as α2 ≠ 0. (iii) When we take the limit MT → ∞ with
finite βi and bi, all torsional d.o.f. become infinitely heavy
and thus can be integrated out, and the theory is represented
by the metric only. Then, the Lagrangian (2.1) is obtained
as an effective theory.
Before finishing this section, it would be worth mention-

ing the relation to the parity preserving quadratic PGT
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LPGTþ ¼ λR
Γ þ ðr4 þ r5ÞR

Γ
μνR

Γ
μν þ ðr4 − r5ÞR

Γ
μνR

Γ
νμ þ

�
r1
3
þ r2

6

�
R
Γ
μνρσR

Γ
μνρσ

þ
�
2r1
3

−
2r2
3

�
R
Γ
μνρσR

Γ
μρνσ þ

�
r1
3
þ r2

6
− r3

�
R
Γ

μνρσR
Γ
ρσμν

þ
�
λ

4
þ t1

3
þ t2
12

�
TμνρTμνρ þ

�
−
λ

2
−
t1
3
þ t2

6

�
TμνρTνρμ þ

�
−λ −

t1
3
þ 2t3

3

�
Tμ

μρTν
νρ; ð2:28Þ

where the term R
Γ
2 is omitted by the use of the Gauss-Bonnet theorem. We follow the parametrization used in [20,21]. The

Lagrangian has 8 parameters in addition to the gravitational constant λ. This Lagrangian contains up to the first derivative of
the tetrad and the antisymmetric spin connection, while the previous Lagrangian (2.15) contains the second derivative of the
tetrad due to the presence of the derivatives of the torsion. Therefore, PGTs are clearly a subset of the general Lagrangian
(2.15). Indeed, (2.28) is obtained from (2.15) by setting

λ ¼ M2
pl

2
; α1 ¼ −r1 þ r3; α2 ¼ 2ð2r1 − 2r3 þ r4Þ; β1 ¼ −4ð2r1 − 2r3 þ r4Þ; β2 ¼ −

4

3
ðr1 − r3 þ 2r4Þ;

a1 ¼
1

M2
T
ðt1 þ 2λÞ; a2 ¼

4

3M2
T
ðt3 − 2λÞ; a3 ¼ −

3

M2
T
ðt2 − 2λÞ;

b1 ¼ r1; b2 ¼
1

2
ð−4r1 þ 4r3 − r4 þ r5Þ; b3 ¼ 2ðr1 − 2r3 þ r4Þ;

b4 ¼
4

9
ðr1 þ r4 þ r5Þ; b5 ¼

4

9
ð2r1 − 3r3 þ 5r4 − r5Þ; b6 ¼ −2r3 − r5; b7 ¼ −

3

2
r2 þ 2r3 þ r5;

b8 ¼ −
4

3
ðr1 þ r4 þ r5Þ; b9 ¼ 2r3 þ r5; ð2:29Þ

and appropriately choosing the remaining Lagrangian
LRT2 , Lð∇TÞT2 , and LT4 , where we have used the Gauss-
Bonnet theorem to eliminate the Riemann squared term.

III. GRAVITATIONAL DEGREES OF FREEDOM
AND CRITICAL CONDITIONS

A. Quadratic Lagrangian

We study perturbations around the Minkowski back-
ground

gμν ¼ ημν þ δgμν; ð3:1Þ
where we consider the torsion itself as a perturbation
quantity since the background is torsionless. The metric
perturbation can be decomposed into

δgμν ¼ hTTμν þ 2∂ðμhTνÞ þ
�
∂μ∂ν −

1

4
ημν□

�
σ þ 1

4
ημνh;

ð3:2Þ
where the suffix TT of a tensor stands for the transverse-
traceless and the suffix T of a vector stands for the
transverse, that is,

∂μhTTμν ¼ 0; hTTμμ ¼ 0; ∂μhTμ ¼ 0: ð3:3Þ

The torsion can be also decomposed into

Tμ ¼ AT
μ þ ∂μϕ; ð3:4Þ

T μ ¼ AT
μ þ ∂μφ; ð3:5Þ

T
ð1Þ

μνρ ¼ 2∂ ½νtTTρ�μ þ 2

�∂μ∂ ½ν
□

−
1

3
ημν

�
BT
ρ�

þ ϵνρ
αβ

�
∂ατ

TT
βμ þ

�∂β∂μ

□
−
1

3
ηβμ

�
BT
α

�
: ð3:6Þ

These decompositions classify the metric perturbations and
the torsion with respect to their spins and parities.
The quadratic action around the Minkowski background

is then given by

Lð2Þ
G ¼ L2þ þ L2− þ L1þ þ L1− þ L0þ þ L0− ; ð3:7Þ

where

L2þ ¼ 1

2
ðhTTαβ ; tTTαβ Þ

� 1
4
M2

pl þ 1
2
α2□

1
2
β1□

� −2a1M2
T þ 2ð2b1 þ b3Þ□

�
□

�
hTTαβ

tTTαβ

�
; ð3:8Þ
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L2− ¼ 1

2
τTTαβ ð2a1M2

T − 4b1□Þ□τTTαβ; ð3:9Þ

L1þ ¼ 1

2
ðAT

α ;BT
αÞ
� a3M2

T − 2b6□ − 4
3
b9□

� − 4
3
a1M2

T þ 4
9
ð6b1 þ 4b2 þ b3Þ□

��
ATα

BTα

�
; ð3:10Þ

L1− ¼ 1

2
ðAT

α ; BT
αÞ
� a2M2

T − 2b4□ − 2
3
b8□

� 4
3
a1M2

T − 8
9
ð3b1 þ 2b2 þ b3Þ□

��
ATα

BTα

�
; ð3:11Þ

L0þ ¼ 1

2
ðΦ;ϕÞ

�− 1
2
M2

pl þ 2ð3α1 þ α2Þ□ −
ffiffiffi
3

p
β2□

� −a2M2
T þ 2ðb4 þ b5Þ□

�
□

�Φ
ϕ

�
; ð3:12Þ

L0− ¼ 1

2
φð−a3M2

T þ 2ðb6 þ b7Þ□Þ□φ; ð3:13Þ

with

Φ ¼ 4ffiffiffi
3

p ðh −□σÞ ¼ 1ffiffiffi
3

p θμνhμν ð3:14Þ

and θμν ≔ ημν −
∂μ∂ν
□
. The symbol * is attached to omit the symmetric parts of the matrices. In the momentum space, we

define the following quantities

K2þ ≔ −q2
� 1

4
M2

pl −
1
2
α2q2 − 1

2
β1q2

� −2a1M2
T − 2ð2b1 þ b3Þq2

�
; ð3:15Þ

K2− ≔ −q2ð2a1M2
T þ 4b1q2Þ; ð3:16Þ

K1þ ≔
� a3M2

T þ 2b6q2 4
3
b9q2

� − 4
3
a1M2

T − 4
9
ð6b1 þ 4b2 þ b3Þq2

�
; ð3:17Þ

K1− ≔
� a2M2

T þ 2b4q2 2
3
b8q2

� 4
3
a1M2

T þ 8
9
ð3b1 þ 2b2 þ b3Þq2

�
; ð3:18Þ

K0þ ≔ −q2
�− 1

2
M2

pl − 2ð3α1 þ α2Þq2
ffiffiffi
3

p
β2q2

� −a2M2
T − 2ðb4 þ b5Þq2

�
; ð3:19Þ

K0− ≔ −q2ð−a3M2
T − 2ðb6 þ b7Þq2Þ: ð3:20Þ

Then, the number of poles of K−1
a ða ¼ 0�; 1�; 2�Þ

basically correspond to the number of particle species in
each sector although there are unphysical poles at q ¼ 0 in
K−1

2− ; K
−1
0− ; K

−1
0þ . The unphysical poles of K−1

2− ; K
−1
0− are due

to the presence of the derivative in the expressions (3.5) and
(3.6) while that of K−1

0þ is due to not only the derivatives but
also the remaining gauge mode. A more rigorous counting
of the number of particle species will be performed based
on the 3þ 1 decomposition in the next section. For generic
choices of parameters, the number of particle species in
each sector is as follows:

2þ∶ 2þ 1 particle species ð2 massiveþ 1 masslessÞ;
2−∶ 1 particle species ðmassiveÞ;
1þ∶ 2 particle species ðmassiveÞ;
1−∶2 particle species ðmassiveÞ;
0þ∶ 2 particle species ðmassiveÞ;
0−∶ 1 particle species ðmassiveÞ:
Here, s� on the left denotes the spin s and the parity �. In
any Lorentz-invariant theories the number of local physical
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d.o.f. for each particle species for s ¼ ð2; 1; 0Þ is Nm≠0
s ¼

ð5; 3; 1Þ for massive cases, and Nm¼0
s ¼ ð2; 2; 1Þ for mass-

less cases. Therefore the total number of local physical
d.o.f. is ð2 × 5þ 1 × 2Þ þ ð1 × 5Þ þ ð2 × 3Þ þ ð2 × 3Þ þ
ð2 × 1Þ þ ð1 × 1Þ ¼ 32. For the massive cases the masses
of these particles can be evaluated by the locations of
the poles.
When the coupling constants satisfy a critical condition,

a pole vanishes correspondingly to a reduction of the
number of d.o.f.1 In the 2þ; 1�; 0þ sectors, after assuming
the critical condition, the d.o.f. can be further reduced by
imposing an additional critical condition. We shall call
these critical conditions the primary critical condition and
the secondary critical condition in order. All critical
conditions are summarized in Table I.
In the case of PGT, the coupling constants satisfy all

primary critical conditions and then the number of particle
species in each sector is

2þ∶ 1þ 1 particle species ð1 massiveþ 1 masslessÞ;
2−∶ 1 particle species ðmassiveÞ;
1þ∶ 1 particle species ðmassiveÞ;
1−∶ 1 particle species ðmassiveÞ;
0þ∶ 1 particle species ðmassiveÞ;
0−∶ 1 particle species ðmassiveÞ;

when no additional assumptions are imposed. Other critical
conditions in PGT are summarized in Table II. In the limit
MT → ∞, the locations of some poles go to infinity and
thus the dynamical ones in this limit are

2þ∶ 1þ 1 particle species ð1 massiveþ 1 masslessÞ;
0þ∶1 particle species ðmassiveÞ;

and there is no particle species in the 2−, 1� and 0− sectors.
This is, needless to say, consistent with the well-known
content of particle species for the Riemannian quadratic
curvature theory (2.1).

B. Matter scattering via gravitational interaction

By the use of the tetrad eaμ ¼ δaμ þ δeaμ and the spin
connection ωab

μ, the matter coupling to gravity is given by

Lint ¼ δeaμΘμ
a −

1

2
ωab

μSμab ð3:21Þ

where Θμ
a and Sμab are the canonical energy-momentum

tensor and the canonical spin tensor defined by

Θμ
a ≔

1

det e
δSm
δeaμ

; Sμab ≔ −
2

det e
δSm
δωab

μ
: ð3:22Þ

The canonical spin tensor has the antisymmetric indices
Sμab ¼ −Sμba while the canonical energy-momentum ten-
sor is not symmetric, in general. Around the Minkowski
background, one does not need to distinguish the spacetime
indices, α; β; μ; ν; � � �, and the Lorentz indices, a; b; � � �,
since they are just transformed by δaα. The energy, momen-
tum and angular momentum of the matter are supposed to
be conserved on shell:

∂μΘμ
ν ¼ 0; ∂μSμαβ þ Θαβ − Θβα ¼ 0: ð3:23Þ

On the other hand, after changing the variables
ðδeaμ;ωab

μÞ → ðδgμν; TμνρÞ, we find

Lint ¼
1

2
δgμνTμν −

1

4
TμνρðSμνρ − Sνρμ þ SρνμÞ ð3:24Þ

where Tμν is the Belinfante tensor,

Tμν ¼ Θμν þ 1

2
∂ρðSρμν − Sμρν þ SνμρÞ; ð3:25Þ

which is symmetric and conserved

TABLE II. Critical conditions in Poincaré gauge theory.

Critical conditions

2þ ð2r1 − 2r3 þ r4Þðt1 þ λÞ ¼ 0
2− r1 ¼ 0
1þ ð2r3 þ r5Þðt1 þ t2Þ ¼ 0
1− ðr1 þ r4 þ r5Þðt1 þ t3Þ ¼ 0
0þ ðr1 − r3 þ 2r4Þðt3 − λÞ ¼ 0
0− r2 ¼ 0

TABLE I. Critical conditions in general theory.

Critical conditions

2þ 4α2ð2b1 þ b3Þ − β21 ¼ 0 (primary)
ð2b1 þ b3ÞM2

pl − 2a1α2M2
T ¼ 0 (secondary)

2− b1 ¼ 0
1þ b6ð6b1 þ 4b2 þ b3Þ þ 2b29 ¼ 0 (primary)

a3ð6b1 þ 4b2 þ b3Þ þ 6a1b6 ¼ 0 (secondary)
1− 4b4ð3b1 þ 2b2 þ b3Þ − b28 ¼ 0 (primary)

a2ð3b1 þ 2b2 þ b3Þ þ 3a1b4 ¼ 0 (secondary)
0þ 4ð3α1 þ α2Þðb4 þ b5Þ − 3β22 ¼ 0 (primary)

ðb4 þ b5ÞM2
pl þ 2a2ð3α1 þ α2ÞM2

T ¼ 0 (secondary)

0− b6 þ b7 ¼ 0

1The limit to satisfy a critical condition, say b1 → 0, leads to
the infinite mass of the corresponding particle specie. Therefore,
in the sense of EFT, the critical conditions are not necessary to
hold exactly for the reduction of the number of particle species. It
suffices to satisfy the critical condition approximately, as far as
the mass of the corresponding particle species is sufficiently
heavier than the energy scale of interest.
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Tμν ¼ Tνμ; ∂μTμν ¼ 0: ð3:26Þ

Due to the conservation law, only the sectors 2þ and 0þ
are mediators of gravity via the coupling δgμνTμν at tree
level. A matter particle with a nonvanishing canonical spin
tensor is scattered by exchanging not only the graviton but
also the torsion, called tordion, via the coupling to the spin
tensor. As an example, let us consider the Dirac field

LD ¼ i
2
ðψ̄γμ∇Γ μψ − ð∇Γ μψ̄ÞγμψÞ −mψ̄ψ ; ð3:27Þ

where γa is the gamma matrix with fγa; γbg ¼ −2ηab. The
covariant derivative of a Dirac spinor is

∇Γ μψ ¼
�
∂μ þ

1

8
ωab

μ½γa; γb�
�
ψ : ð3:28Þ

The canonical spin tensor of a Dirac field is given by

Sμνρ ¼ 1

2
ϵμνρσj5σ; ð3:29Þ

where j5μ ¼ ψ̄γμγ
5ψ is the axial current which is not con-

served in general. As a result, the gravitational coupling is

Lint ¼
1

2
δgμνTμν −

3

4
T μj5μ; ð3:30Þ

and then the particle species with 1þ and 0− in the gravity
sector are mediators of gravity as well.
For simplicity, we consider a matter field whose canoni-

cal spin tensor vanishes, e.g., a minimal scalar field. The
tree level scattering amplitude is then

M ¼ T̃μνðp1; p2ÞΔhh
μν;ρσðqÞT̃ρσðp3; p4Þ; ð3:31Þ

where T̃μν is the Fourier transform of the source with the
external momenta pi (i ¼ 1, 2, 3, 4) and q is the internal
momentum. The gauge independent part of the graviton
propagator is

−iΔhh
μν;ρσ ¼ iðK−1

2þ Þ11P
ð2Þ
μν;ρσ þ iðK−1

0þ Þ11P
ð0Þ
μν;ρσ; ð3:32Þ

where ðK−1
2þ Þ11 and ðK−1

0þ Þ11 are the upper left component

of K−1
2þ ; K

−1
0þ . The projection operators Pð2Þ

μν;ρσ; P
ð0Þ
μν;ρσ are

defined by

Pð2Þ
μν;ρσ ≔ θμðρθσÞν −

1

3
θμνθρσ; ð3:33Þ

Pð0Þ
μν;ρσ ≔

1

3
θμνθρσ: ð3:34Þ

In general, the propagator has a q−4 behavior in the high
energy limit,

ðK−1
2þ Þ11 → 8

�
4α2 −

β21
2b1 þ b3

�−1 1

q4
þOðq−6Þ; ð3:35Þ

ðK−1
0þ Þ11 → 2

�
4ð3α1 þ α2Þ −

3β22
b4 þ b5

�−1 1

q4
þOðq−6Þ;

ð3:36Þ

which suggests there would be Ostrogradsky ghosts. On the
other hand, when the primary critical conditions are
imposed

4α2ð2b1 þ b3Þ − β21 ¼ 0;

4ð3α1 þ α2Þðb4 þ b5Þ − 3β22 ¼ 0; ð3:37Þ

the Ostrogradsky ghost modes may be eliminated and then
the propagator recovers a q2 behavior.2 We recall that these
conditions are automatically satisfied in PGTs. This could
be understood by the fact that PGTs do not have the second
derivatives of the tetrad in the Lagrangian (although this
property is certainly spoiled by radiative corrections), and
thus they are not higher derivative theories. The graviton
propagator is then

−iΔhh
μν;ρσ ¼

4

M2
pl

Dμν;ρσ þ
8m2

2þα2
M4

pl

−i
q2 þm2

2þ
Pð2Þ
μν;ρσ

þ 8m2
0−ð3α1 þ α2Þ

M4
pl

−i
q2 þm2

0þ
Pð0Þ
μν;ρσ; ð3:38Þ

where Dμν;ρσ is the graviton propagator of the Einstein
gravity,

Dμν;ρσ ¼
−i
q2

�
θμðρθσÞν −

1

2
θμνθρσ

�
: ð3:39Þ

The masses of the massive spin-2 mode and of the massive
spin-0 mode are

m2
2þ ¼ 4a1α2M2

plM
2
T

M2
plβ

2
1 − 8a1α22M

2
T
;

m2
0þ ¼ 2a2ð3α1 þ α2ÞM2

plM
2
T

8a2ð3α1 þ α2Þ2M2
T þ 3β22M

2
pl

: ð3:40Þ

In the limit MT ≫ Mpl, the masses become m2
2þ →

−M2
pl=2α2 and m2

0þ → M2
pl=4ð3α1 þ α2Þ, and then the

propagator becomes

2Precisely, the second condition of (3.37) is not required to be
free from the Ostrogradsky ghost. There is a massless spin-0
ghost but this massless ghost is harmless since this is just related
to the remaining gauge mode as mentioned before (see [22] for
example). It will, however, turn out in the next section that the
second condition is indeed required in order that all dynamical
modes are ghostfree. We therefore assume the second one as well.
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−iΔhh
μν;ρσjMT→∞ ¼ 4

M2
pl

Dμν;ρσ −
4

M2
pl

−i
q2 þm2

2þ
Pð2Þ
μν;ρσ

þ 2

M2
pl

−i
q2 þm2

0þ
Pð0Þ
μν;ρσ: ð3:41Þ

This is indeed the well-known graviton propagator of the
quadratic curvature theory (2.1) with a massive spin-2
ghost. We note that the spin-2 part of (3.41) has a q−4

behavior in the high energy limit which makes the theory
renormalizable although the corresponding energy scale
goes beyond the mass of the ghost mode [23].
One may recover the q−4 behavior if one removes

the critical conditions (3.37). However, in this case the
Ostrogradsky ghosts appear below the scale at which the
q−4 behavior is realized. Therefore, in the present paper, we
shall not discuss the renormalizability of graviton loops any
more. Instead, we simply interpret the scale at which a
ghost appears as the cutoff scale of the theory.3

IV. STABILITY CONDITIONS

The propagator (3.38) implies that the theory can be
ghostfree if the inequalities m2

2þ > 0, m2
0þ > 0 and α2 > 0,

3α1 þ α2 > 0 are satisfied. However, gravity is also medi-
ated by particles of other sectors when the canonical spin
tensor does not vanish. We thus investigate ghostfree
conditions for all sectors of the Lagrangian (2.15) under
the assumptions

α1 ≠ 0; α2 ≠ 0: ð4:1Þ

We have already set α3 ¼ 0 by using the Gauss-Bonnet
theorem.
As discussed in the previous section, there still exists a

remaining gauge mode when the metric perturbations are
decomposed as (3.2). We thus give up the explicit Lorentz
invariance here; instead, we adopt the 3þ 1 decomposi-
tions and then decompose perturbations into scalar-vector-
tensor (SVT) components commonly used in the context of
the cosmological perturbation theory. Although we discuss
the perturbations around the Minkowski background, the
3þ 1 decomposition can be straightforwardly extended to
an arbitrary spacetime (see Appendix A).
We denote the 3þ 1 components of the torsion as

follows:

T0 ¼ ϕ; Ti ¼ Ai; ð4:2Þ
T 0 ¼ φ; T i ¼ Ai; ð4:3Þ

T
ð1Þ

00i ¼ Bi; T
ð1Þ

0ij ¼ ϵijkBk;

T
ð1Þ

ij0 ¼ tij −
1

2
ϵijkBk; T

ð1Þ
ijk ¼ δi½jBk� þ ϵjk

lτil; ð4:4Þ

where tij and τij are symmetric and traceless. The metric
perturbations δgμν ¼ gμν − ημν are

δg00 ¼ −2α; δg0i ¼ βi; δgij ¼ 2ðhij þ ζδijÞ;
ð4:5Þ

where hii ¼ δijhij ¼ 0.
When α2 ≠ 0, the quadratic order Lagrangian Lð2Þ

contains the second time derivative of hij. It is then useful
to eliminate second time derivatives and to reduce the
action to the form that depends on perturbation variables
and their first derivatives only by introducing auxiliary
fields and by writing the action as

L0 ¼ Lð2Þjḧij¼Φij
þHijðΦij − ḧijÞ; ð4:6Þ

where Hij;Φij are symmetric and traceless. The variation
with respect to Hij yields the constraint Φij ¼ ḧij and thus
the new Lagrangian is equivalent to the original one.
Instead, one can take the integration by part so that

L0 ¼ Lð2Þjḧij¼Φij
þHijΦij þ _Hij

_hij þ ðtotal derivativeÞ;
ð4:7Þ

and can take the variation with respect to Φij. One then
obtains the constraint which determines Φij in terms of
other variables. After substituting the constraint into the
Lagrangian, one finds the Lagrangian with up to the first
order time derivative of hij.
In the SVT decompositions, a scalar, a vector and a

traceless tensor are decomposed into scalar type (S), vector
type (V), and tensor type (T) perturbations in terms of the
spatial rotation:

ϕ ¼ ϕðSÞ; Ai ¼ ∂iAðSÞ þ AðVÞ
i ;

tij ¼
�
∂i∂j −

1

3
δij∂2

�
tðSÞ þ ∂ðit

ðVÞ
jÞ þ tðTÞij ; ð4:8Þ

where

∂iAðVÞ
i ¼ ∂itðVÞi ¼ 0; ∂itðTÞij ¼ 0; tðTÞii ¼ 0; ð4:9Þ

and SVT perturbations are decoupled from each other at the
linear order in perturbations. The spatial dependence of the
variables can be Fourier transformed and then each Fourier
sector is characterized by the spatial momentum ki. For
each ki, the vector type and the tensor type perturbations

3Alternatively, there are attempts to obtain the Lorentzian
metric signature from a Euclidean metric as a macroscopic
effective description [24,25]. In this case, higher derivatives do
not necessarily lead to the ghost problem. Another attempt is a
modification of a quantization prescription to turn a ghost particle
into a fake particle [26].
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have two different modes which can be chosen as the
helicity �1 modes and the helicity �2 modes, respectively.
Let us denote two helicity basis Yi

RðkÞ; Yi
LðkÞ for vectors

and Yij
RðkÞ; Yij

LðkÞ for tensors, respectively. The vector

perturbations (AðVÞ
i , BðVÞ

i , tðVÞi ) and the pseudovector per-

turbations (AðVÞ
i , BðVÞ

i , τðVÞi ) can be decomposed as

AðVÞi ¼ ALYi
L þ ARYi

R;

BðVÞi ¼ BLYi
L þ BRYi

R;

tðVÞi ¼ tðVÞL Yi
L þ tðVÞR Yi

R; ð4:10Þ

AðVÞi ¼ ALYi
L −ARYi

R;

BðVÞi ¼ BLYi
L − BRYi

R;

τðVÞi ¼ τðVÞL Yi
L − τðVÞR Yi

R: ð4:11Þ

Similarly, tensor perturbations tðTÞij and pseudotensor per-

turbations τðTÞij are decomposed as

tðTÞij ¼ tLY
ij
L þ tRY

ij
R ; ð4:12Þ

τðTÞij ¼ τLY
ij
L − τRY

ij
R : ð4:13Þ

Note that there are couplings such as

ϵijkAi∂jAk; ϵijktil∂jτk
l; ð4:14Þ

due to the presence of the pseudovectors and the pseudo-
tensors which give mixings between vectors and pseudo-
vectors and those between tensors and pseudotensors, e.g.,
couplings between AL andAL. Needless to say, the L sector
and the R sector are still decoupled from each other. Also,
the L sector and the R sector obey the same equations of
motion because of the absence of parity violating operators.
In order to make this fact manifest, the minus sign has been
inserted in front of the R modes in the above decomposition
of the pseudovector and pseudotensor perturbations so that

−
1

k
ϵijk∂jA

ðVÞ
k ¼ ALYi

L þARYi
R; ð4:15Þ

−
1

k
ϵðijjk∂jτ

ðTÞ
k
lÞ ¼ τLYil

L þ τRYil
R; ð4:16Þ

and so on. Contrary to the vector and tensor perturbations,
the scalar perturbations have only one helicity mode. The
parity preservation then guarantees that the (true) scalar
perturbations and the pseudoscalar perturbations are
decoupled. As a result, the general perturbations can be
classified into four decoupled sectors, namely the tensor
perturbations (which include both the truetensor and pseu-
dotensor perturbations), the vector perturbations (which
include both truevector and pseudovector perturbations),

the (true) scalar perturbations, and the pseudoscalar pertur-
bations. In Appendix B, we summarize how to confirm
absence or existence of a ghost instability and how to
evaluate masses of the particles from the quadratic
Lagrangian of each sector.

A. Tensor perturbations

As discussed in Sec. III, there generally exists the
Ostrogradsky ghost due to the presence of higher time
derivatives. However, this can be removed by imposing the
critical condition

4α2ð2b1 þ b3Þ − β21 ¼ 0: ð4:17Þ

This kind of conditions is called degeneracy conditions in
the context of higher order scalar-tensor theories [11] since
these are conditions under which the kinetic matrix is
degenerate. In Appendix C, we study a toy model that
explains the reason why higher time derivatives lead to the
Ostrogradsky ghost and the reason why the ghost can be
removed by the degeneracy condition. In this sense, what
we seek here is a degenerate higher order spin-2 theory.
After integrating out Φij from (4.7), we confirm that

there exists the Ostrogradsky ghost when (4.17) is not
imposed. We then impose (4.17) under which the tensor
perturbations of tij are nondynamical. After integrated out
tij, the quadratic Lagrangian of the tensor perturbations
becomes

LT ¼M2
pl

2
½ _̃h2ij − k2h̃2ij�

þ
�ð2b1 þ b3Þ2

a1β21M
2
T

−
1

2M2
pl

�
½ _H2

ij − ðk2 þm2
2þÞH2

ij�

−
2a1b1M2

T

2b1k2 þ a1M2
T

�
_̃τ2ij −

�
k2 þ a1

2b1
M2

T

�
τ̃2ij

�
; ð4:18Þ

with new variables

h̃ij ¼ hij þ
1

M2
pl

Hij; ð4:19Þ

τ̃ij ¼ τij −
2b1 þ b3
a1β1M2

T
ϵðijkl∂kHjÞl; ð4:20Þ

where the suffix (T) has been dropped for simplicity of
notation. In the limit k2 ≫ a1M2

T=b1, Hij or τ̃ij is a ghost
depending on whether a1 < 0 or a1 > 0. In the case a1 < 0,
one cannot assume the critical condition of 2þ to remove
the ghostHij. Therefore, we have to assume a1 > 0 and the
critical condition of the 2− sector,

b1 ¼ 0: ð4:21Þ
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Regardless of whether the massive 2þ mode is dynamical
or not, the 2− sector must be nondynamical in order to be
ghostfree if α2 ≠ 0.
As a result, the stability conditions of the tensor

perturbations require the conditions (4.17) and (4.21),
namely the primary critical condition of 2þ and the critical
condition of 2−. The ghostfree and tachyonfree conditions
are then

α2 > 0; 0 < a1M2
T <

β21
8α22

M2
pl: ð4:22Þ

B. Scalar and pseudoscalar perturbations

Analysis of vector perturbations is usually easier than
analysis of scalar ones because the number of independent
multiplets of the vector ones is usually less than that of the
scalar ones. However, in the present case, perturbations of
(true) scalars and pseudoscalars are decoupled due to the
parity conservation while the perturbations of (true) vectors
and pseudovectors are coupled. As a result, the analysis of
the vector perturbations are more involved compared with
the scalar and pseudoscalar ones. In practice, the easiest
one among the three (vector, scalar, and pseudoscalar)
types of perturbations is the analysis of the pseudoscalar
perturbations in the present case. We therefore first present
the analysis of the pseudoscalar perturbations and then the
scalar perturbations. After imposing the stability conditions
for these two sectors, it is relatively easy to show the
stability of the vector perturbations. Indeed, it will turn out
that the stability of the vector perturbations does not require
additional conditions, provided that the stability conditions
for the pseudoscalar and scalar perturbations are imposed in
advance.

1. Pseudoscalar perturbations

There are four variables from Ai;Bi;φ and τij in the
pseudoscalar perturbations. We have seen that the ghostfree
condition of the tensor perturbations requires b1 ¼ 0 so that
τij is nondynamical. After integrating out pseudoscalar
perturbations of τij, we still find a ghost instability in the
limit k → ∞. We thus assume one of the conditions

b6ð4b2 þ b3Þ þ 2b29 ¼ 0; ð4:23Þ

or

b6 þ b7 ¼ 0; ð4:24Þ

namely the primary critical condition of 1þ or the critical
condition of 0−. In either case, the pseudoscalar perturba-
tions can be stable in an appropriate parameter space. Let us
call theories with (4.23) Class I and theories with (4.24)
Class II, respectively. We recall that PGTs satisfy all

primary critical conditions and thus they are automatically
classified into Class I.
In Class I theories, the critical conditions of 2− and 1þ

have been assumed and thus the pseudoscalar perturbations
must have the particles with 1þ and 0− only. Indeed, we
confirm that there are two dynamical variables with masses

m2
1þ ¼ 3a1a3

a3ð4b2 þ b3Þ þ 6a1b6
M2

T;

m2
0− ¼ a3

2ðb6 þ b7Þ
M2

T; ð4:25Þ

whose values are consistent with those obtained by the
positions of the poles of K−1

1þ and K−1
0− under the critical

conditions. The stability conditions of these modes are

a3 >
12a1b29

ð4b2 þ b3Þ2
; 4b2 þ b3 > 0; b6 þ b7 > 0:

ð4:26Þ
Note that a3 has to be positive since a1 > 0 has been
imposed from the stability condition of the tensor
perturbations.
On the other hand, the 0− sector is non-dynamical while

both particles in the 1þ sector are dynamical in Class II
theories. In this case, T μ has the Maxwell-type kinetic
term:

b6ð∇μT ν∇μT −∇μT μ∇νT νÞ

¼ b6
2
F μνF μν þ ðtotal derivativeÞ; ð4:27Þ

where F μν ¼ 2∇½μT ν�. The ghost and tachyonfree con-
ditions are

a3 < 0; ð4b2 þ b3Þb6 þ 2b29 < 0; 4b2 þ b3 > 0:

ð4:28Þ
The masses of these particles are given by the roots of

f4b29 þ 2b6ð4b2 þ b3Þgm4

− fa3ð4b2 þ b3Þ þ 6a1b6gm2M2
T þ 3a1a3M4

T ¼ 0:

ð4:29Þ
In particular, when b9 ¼ 0, T μ is decoupled and the masses
are

m2
T ¼ a3

2b6
M2

T; m2
1− ¼ 3a1

4b2 þ b3
M2

T: ð4:30Þ

It is worth mentioning that both Class I and Class II
theories have to satisfy the inequality

4b2 þ b3 > 0 ð4:31Þ
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to be free from the ghost. Combining the ghostfree
condition of the tensor mode b3 > 0, one obtains an
inequality

2b2 þ b3 > 0 ð4:32Þ

which will be imposed hereafter, especially for the analysis
of stability conditions of the scalar perturbations.

2. Scalar perturbations

We then analyze (true) scalar perturbations which gen-
erally contain d.o.f. from the 2þ; 1−; 0þ sectors. Note that
there are gauge d.o.f. in scalar perturbations. We choose the
gauge βi ¼ 0, ζ ¼ 0 so that the quadratic order Lagrangian
(4.7) contains time derivatives up to first order.4 After
eliminating nondynamical variables ðα; tij;ΦijÞ under the
ghostfree conditions obtained from tensor perturbations,
we find a quadratic Lagrangian in terms of the variables
ðhij; Hij; Ai; Bi;ϕÞ and confirm that there is still a ghost, in
general.
We do not assume the secondary critical condition of 2þ

so that the massive spin-2 particle is dynamical. There are
then two possibilities to get a degenerate kinetic matrix:
imposing the critical condition of 1−

4b4ð2b2 þ b3Þ − b28 ¼ 0; ð4:33Þ

or imposing the critical condition of 0þ,

4ð3α1 þ α2Þðb4 þ b5Þ − 3β22 ¼ 0; ð4:34Þ

both of which lead to a degenerate kinetic matrix. Contrary
to the pseudoscalar perturbations, it will turn out that both
conditions (4.33) and (4.34) have to be simultaneously
imposed to obtain a ghostfree theory. Furthermore, we have
to also impose the secondary critical condition of the 1−

sector

3a1b4 þ a2ð2b2 þ b3Þ ¼ 0: ð4:35Þ

For instance, let us assume (4.33) is satisfied so that ϕ
becomes nondynamical. After integrating out ϕ, we find
that there still exists a ghost mode in the limit k → ∞.
Therefore, we further require the degeneracy of the kinetic
matrix. There are again two possibilities to degenerate the
kinetic matrix; one is, of course, the condition (4.23) and
the other is the secondary critical condition of 0þ,

ðb4 þ b5ÞM2
pl þ 2a2ð3α1 þ α2ÞM2

T ¼ 0: ð4:36Þ

Even if (4.36) is assumed, the ghost cannot be removed.
Therefore, we have to assume (4.33) in order to remove the

ghost d.o.f. On the other hand, when the condition (4.33) is
firstly assumed without imposing (4.34), there is a non-
dynamical variable which is a linear combination of the
variables ðHij; hij; Ai; BiÞ. The variation with respect to it
yields a constraint equation which generally determines
the nondynamical variables in terms of other variables.
However, after the nondynamical variable is eliminated by
using the constraint equation, the ghost cannot be removed.
The only way to remove the ghost is to impose the
conditions (4.34) and (4.35) simultaneously so that the
nondynamical variable becomes a Lagrangian multiplier.5

Imposing three critical conditions (4.33), (4.34), and
(4.35), we find that there are two nondynamical variables,
one of which is a Lagrangian multiplier. Therefore, three of
five variables ðhij; Hij; Ai; Bi;ϕÞ can be eliminated by
solving the constraint equations. We finally obtain the
quadratic order Lagrangian which contains two dynamical
d.o.f. from the 2þ; 0þ sectors. The stability conditions are,
as expected, the inequalities m2

2þ > 0, m2
0þ > 0, α2 > 0,

3α1 þ α2 > 0. Note that a1 > 0, 2b2 þ b3 > 0 have to be
satisfied from the stability conditions of the tensor and
pseudoscalar perturbations which then lead to b4 > 0,
a2 < 0 via (4.33) and (4.35). As a result, the inequality
m2

0þ > 0 is guaranteed by

a2M2
T < −

3

8

β22
ð3α1 þ α2Þ2

M2
pl: ð4:37Þ

C. Vector perturbations

We assume the ghost and tachyonfree conditions
obtained from the tensor, scalar, and pseudoscalar pertur-
bations. It is then relatively straightforward to confirm that
there is no unstable modes in the vector perturbations in this
case. We also confirm that Class I theory has two dynamical
d.o.f. in the vector perturbations while Class II theory has
three dynamical d.o.f. This is consistent with the discussion
of Sec. III: vector perturbations of Class I theory are
originated from 2þ and 1þ while those of Class II are from
2þ and two of 1þ.

D. Summary of the stability conditions

Let us summarize the conditions for Class I and Class II
theories and their particle contents. The common critical
conditions are

b1 ¼ 0; ð4:38Þ

4α2b3 − β21 ¼ 0; ð4:39Þ

4Even if choosing another gauge, say βi ¼ 0, hij ¼ 0, the
second time derivatives of ζ disappear after integrating out α.

5The linearity of the action with respect to a nondynamical
variable is indeed crucial for the removal of the Boulware-Deser
ghost in massive spin-2 theories (see [27,28] for reviews and
references therein).
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4ð3α1 þ α2Þðb4 þ b5Þ − 3β22 ¼ 0; ð4:40Þ

4b4ð2b2 þ b3Þ − b28 ¼ 0; ð4:41Þ

3a1b4 þ a2ð2b2 þ b3Þ ¼ 0; ð4:42Þ

and both theories must satisfy the inequalities

3α1 þ α2 > 0; ð4:43Þ

α2 > 0; ð4:44Þ

4b2 þ b3 > 0; ð4:45Þ

and

0 <
3

−8a2
β22

ð3α1 þ α2Þ2
M2

pl < M2
T <

1

8a1

β21
α22

M2
pl; ð4:46Þ

in order that the Minkowski spacetime is stable. Class I
theory is defined by the further critical condition

b6ð4b2 þ b3Þ þ 2b29 ¼ 0; ð4:47Þ

with the stability conditions

a3 >
12a1b29

ð4b2 þ b3Þ2
; b6 þ b7 > 0: ð4:48Þ

On the other hand, Class II theory is obtained by imposing
the critical condition,

b6 þ b7 ¼ 0; ð4:49Þ

and the stability conditions,

a3 < 0; ð4b2 þ b3Þb6 þ 2b29 < 0: ð4:50Þ

As a result, Class I and Class II theories have the following
massive d.o.f.

2þ; 1þ; 0þ; 0− ðClass IÞ;
2þ; 1þ; 1þ; 0þ ðClass IIÞ;

in addition to the massless spin-2 graviton. The particles
with 2þ and 0þ are mediators of gravity via the coupling to
the energy-momentum tensor while the 1þ and 0− particles
can be mediators when the spin tensor of matter fields does
not vanish.
It would be worth noting thatMT is bounded from above

and below. The value of MT is not completely independent
from the Planck mass. For simplicity, we assume jαij ∼ α,
jβij ∼ β, jbij ∼ b where α, β, b represent the order of
magnitude of each group of parameters. If all ai are the

same order of the magnitude, the modulus of ai can be
Oð1Þ by normalizing MT . The ghostfree conditions then
constrain αb ∼ β2 and MT ∼ α−1βMpl. As a result, all
massive particles have masses of the order of α−1=2Mpl.
Most of the critical conditions are the primary ones. In

particular, all primary critical conditions have to be
imposed in Class I theory. Recall that the primary critical
conditions are satisfied in PGTs and there are following
relations

b1 ¼ r1; ð4:51Þ

3b1 þ 2b2 þ b3 ¼ r1 þ r4 þ r5; ð4:52Þ

3

−8a2
β22

ð3α1 þ α2Þ2
¼ M2

T

4λ − 2t3
; ð4:53Þ

1

8a1

β21
α22

¼ M2
T

4λþ 2t1
: ð4:54Þ

The ghostfreeness of Class I theory requires the critical
condition of 2− and 1− which are written as

r1 ¼ 0; ðr1 þ r4 þ r5Þðt1 þ t3Þ ¼ 0; ð4:55Þ

in PGTs. Since 3b1 þ 2b2 þ b3 ¼ ðr1 þ r4 þ r5Þ > 0must
hold from the stability conditions, the second condition
turns out to be

t1 ¼ −t3: ð4:56Þ

This indicates that the ghostfree condition (4.46) cannot be
satisfied in PGTs. In that case, one should further assume a
critical condition to remove a ghost. Indeed, a ghost free
theory can be found in PGTs when the critical condition of
the 0þ sector,

ðr1 − r3 þ 2r4Þðt3 − λÞ ¼ 0; ð4:57Þ

is imposed. When we assume the branch t3 ¼ λ, the critical
condition of 2þ is also satisfied and then the massive spin-2
mode becomes nondynamical. On the other hand, the
branch r1 − r3 þ 2r4 ¼ 0, which corresponds to 3α1 þ
α2 ¼ β2 ¼ 0, yields a ghostfree theory with a dynamical
massive spin-2 mode. This model has been discussed in the
literature [20,29–33].
This fact gives us an interesting observation. Both of the

metric theory (2.1) and PGTs (2.28) have the massive spin-
2 particle and the massive spin-0 particle in their graviton
propagator in general. The ghostfree condition of the metric
theory requires α2 ¼ 0 which kills the d.o.f. of the massive
spin-2 mode of the propagator. On the other hand, in PGTs
a ghostfree theory with the massive spin-2 particle can be
obtained by imposing 3α1 þ α2 ¼ 0; this condition kills the
massive spin-0 mode of (3.38), instead. In either cases, all
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particles species that generically appear in the propagator
(3.38) cannot be simultaneously nonghost. However, in the
extended theories introduced in the present paper, thanks to
the new terms in the Lagrangian that depend on derivatives
of the torsion, i.e., second derivatives of the tetrad, both
massive spin-2 and massive spin-0 modes in (3.38) can
coexist.

V. CONCLUDING REMARKS

The present paper has discussed derivative corrections
to the Einstein gravity in the framework beyond the
Riemannian geometry and found new classes of higher
curvature theories with nonghost massive spin-2 and spin-0
particle species around the Minkowski background. We
firstly assume that the metric and the connection (or, the
tetrad and the spin connection) are independent. In the
particle physics sense, this extension of the spacetime
geometry corresponds to the introduction of massive par-
ticles encoded in the torsion and the nonmetricity tensors. If
these massive particles are heavy enough to be integrated
out then the Riemannian description of the spacetime is
effectively recovered. Just for simplicity, we have consid-
ered theories with a metric compatible connection. We then
take into account all possible terms in the Lagrangian up to
scaling dimension four and identify the conditions under
which ghosts and tachyons are avoided around the
Minkowski background. The stability conditions and the
particle contents of the ghostfree theories are summarized
in Sec. IV D. A key feature of the new classes of theories is
that both massive spin-2 and spin-0 particles can coexist
with the massless spin-2 graviton without any instability.
This cannot be achieved by either the metric theories or the
PGTs. As a result, the matter is gravitationally scattered by
exchanging not only the massless spin-2 graviton but also
the additional massive spin-2 and spin-0 particles sourced
by the energy and momentum of the matter. The ghostfree
theories are classified into two classes where the difference
appears when a matter has a nonvanishing spin tensor like a
Dirac field. Class I theory has additional massive spin-1
and spin-0 particle species which mediate the force sourced
by the spin of matter fields. On the other hand, Class II
theory has two spin-1 particle species which are also
the mediators via the coupling to the spin. All massive
particles would have the masses of the same order of the
magnitude when no additional hierarchy of the para-
meters is assumed. For instance, the masses are of order
of 1013 GeV if the coefficients of the quadratic curvature
terms are of the same order of the magnitude as the
Starobinsky inflationary model.
Therefore, the result of the present paper potentially

opens up a new window to phenomenological signatures of
derivative corrections to the Einstein gravity within the
regime of validity of an effective field theory EFT. In
particular, the torsionful quadratic curvature theory predicts
that a matter field with a nonvanishing spin tensor and one

without the spin tensor feel different gravitational forces
due to the 1þ and 0− particle species that mediate gra-
vitational forces via the spin tensor. This aspect of the no-
ghost torsionful theory is completely different from the
torsionless theory. Therefore new types of experimental
constraints may be obtained via the tests of the equivalence
principle if the extra particle species in the gravitational
sector are light enough.
Even if the extra particle species in the gravitational

sector are relatively heavy, signatures of derivative correc-
tions to the Einstein gravity in this framework may be
found in the early universe. For example, it would be
interesting to investigate implications of the extra massive
particle species to the cosmological collider physics [34]
in the context of the Starobinsky inflationary model.
However, for quantitative analysis, some extensions of
the present result are required in order to apply it to cos-
mological scenarios. This is because we have only con-
sidered the linear perturbations around the Minkowski
background and thus our results cannot be applied directly
to other backgrounds, around which terms such as LRT2 ;
Lð∇TÞT2 and LT4 may contribute to the quadratic action for
perturbations. For example, to consider the inflationary
universe, although Lð∇TÞT2 and LT4 could be negligible as
long as a torsionless de Sitter background is considered,
LRT2 has to be taken into account to study quantum
fluctuations. The quantitative analysis on the cosmological
perturbations with such new contributions is certainly
important to seek observational signatures of the theory.
However, this is beyond the scope of the present paper and
we hope to study it in future publications.
Under the critical conditions that we have found, ghosts

are absent around the flat background in the sense that their
masses are infinitely heavy. In a generic curved back-
ground, the ghosts may reappear but should remain heavy
as far as the deviation of the background from the flat one is
not too large. In particular, it is expected that the masses of
the ghosts should be roughly proportional to the inverse of
the background curvature scale and that the ghosts are
therefore harmless in the context of EFT as long as the
curvature is small enough so that the masses of the ghosts
are sufficiently heavier than the energy scale of physical
processes of interest. There is also a possibility that all
ghost modes can be removed even around a curved back-
ground by tuning remaining terms such as LRT2 , Lð∇TÞT2

and LT4 . In particular, it is quite interesting if the torsionful
quadratic curvature theory can be made ghostfree at fully
nonlinear order by tuning a series of higher curvature/
derivative terms and resumming them, similarly to the case
of massive gravity where the de Rham-Gabadadze-Tolley
(dRGT) theory provides a nonlinear completion of the
Fierz-Pauli linear theory.
Theoretically, it is important to investigate the robustness

of the ghostfreeness against radiative corrections. In the
context of the scalar-tensor theories, it was recently found
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that an additional local symmetry of the connection is
associated with the ghostfree structure when the spacetime
geometry is extended from Riemannian one [35,36]. Similar
considerations are certainly worthwhile in the context of
higher curvature theories. Another possibility to provide the
robustness is a consequence of unitarity, Lorentz invariance,
causality, and locality, called the positivity bounds [37].
For example, although the dRGT potential is originally
discovered by just assuming the ghostfreeness up to the scale
Λ3, the positivity bounds do not accept the presence of the
ghost at the scale Λ5ð< Λ3Þ and then enforce the structure
of the dRGT potential at least up to quartic order [38].
Furthermore, the recent paper [39] argues that the same
assumptions predict a leading order deviation to the coupling
of gravity to fermions that can be explained by the existence
of the torsion. Although the present paper has used a bottom-
up approach and thus has not discussed any fundamental
origins of the theory, it would be interesting to investigate
the connections between candidate fundamental theories of
gravity and their low energy predictions about derivative
corrections to the Einstein gravity in the framework beyond
the Riemannian geometry. In particular, it is worthwhile to
see if there are any relations between the requirements from
UV theories (such as the positivity bounds) and the critical
conditions summarized in Table I. Yet another approach to
the robustness of the ghostfreeness is to keep the masses of
possible Ostrogradsky ghosts to be heavy enough. Namely,
even if radiative corrections introduce failures of the critical
conditions and thus reintroduce Ostrogradsky ghosts, one
can still make robust predictions as far as the deviations are
small enough to ensure that the masses of the Ostrogradsky
ghosts are heavier than the energy scale of phenomenologi-
cal interest.
In summary, we provide two new phenomenologically

viable parameter spaces of the quadratic curvature theory,
Class I and Class II, by means of the extension of the
spacetime geometry in which not only the massive spin-0
particle and the massless graviton but also other massive
spin-0,1,2 particles exist without any instability at least
around the Minkowski background. It would be worth
mentioning again that the present theory is not a class of
PGTs since the derivatives of the torsion are explicitly
included in the Lagrangian which are naturally expected
from the dimensional analysis. It is thus interesting to
explore phenomenological and theoretical aspects of the
new type of derivative corrections to the Einstein gravity
beyond the Riemannian geometry, which are left for
future works.
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APPENDIX A: 3 + 1 DECOMPOSITION

Introducing a unit timelike vector nμ, one can define the
spatial metric γμν via

γμν ≔ gμν þ nμnν: ðA1Þ

The three dimensional Levi-Civita tensor ϵμνρ is defined by

ϵμνρ ≔ ϵμνρσnσ; ðA2Þ

where ϵμνρσ is the four dimensional Levi-Civita tensor.
Then, the 3þ 1 components of the vector Tμ are

ϕ ≔ Tμnμ; Aα ≔ Tμγ
μ
α; ðA3Þ

where Aα is a spatial vector, Aαnα ¼ 0. The pseudovector
T μ is similarly decomposed while the 3þ 1 components of

T
ð1Þ

μνρ are defined by

Bα ≔ T
ð1Þ

μνρnαnβγ
ρ
α; tαβ ≔ T

ð1Þ
μνργ

μ
ðαγ

ν
βÞn

ρ;

Bα ≔
1

2
T
ð1Þ

μνρnμϵνρα; ταβ ≔
1

2
T
ð1Þ

μνργ
μ
ðαϵβÞνρ; ðA4Þ

where tαβ and ταβ are symmetric and traceless by defini-
tion. Conversely, the four dimensional quantities are
expressed by

Tμ ¼ −nμϕþ Aμ; ðA5Þ

T
ð1Þ

μνρ ¼ 2nμn½νBρ� − nμϵνρσBσ − 2tμ½νnρ�

þ Bσϵμ½νσnρ� þ γμ½νBρ� þ ϵνρ
στμσ: ðA6Þ

APPENDIX B: GHOSTFREE CONDITIONS
AND MASSES

After expanding the spatial dependence in terms of
harmonics and eliminating nondynamical variables, the
quadratic action of each SVT components is generally
given by the form,

S2 ¼
Z

dt
X

L; L ¼ 1

2
½ _qTK _qþ 2 _qTMq − qTVq�;

ðB1Þ

where q ¼ fqigði ¼ 1; 2;…; NÞ is the set of dynamical
variables and K, M, V are N × N constant matrices with
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detK ≠ 0, detV ≠ 0. Here, the suffix T stands for trans-
pose as usual. The sum runs over different helicity modes as
well as spatial momenta. The corresponding Hamiltonian is

H ¼ 1

2
½ðp −MqÞTK−1ðp −MqÞ þ qTVq�; ðB2Þ

where

p ¼ ∂L
∂ _qT : ðB3Þ

Therefore, the stability conditions are that K and V are
positive definite in high k limit. The equation of motion is

Kq̈þ ðM −MTÞ _qþ Vq ¼ 0; ðB4Þ

from which we can obtain the dispersion relation via

det½ω2Kþ iωðM−MTÞ− V� ∝
YN
i

½ω2 − ðk2 þm2
i Þ� ¼ 0;

ðB5Þ

where the proportionality to the product of ω2 − ðk2 þm2
i Þ

is a consequence of the Lorentz invariance. The tachyon
free conditions are obtained from m2

i ≥ 0.
One may worry about the existence of the friction terms

in the equations of motion, that breaks the Lorentz
invariance, since the equations of motion must be given
by forms of the Klein-Gordon equation. However, this is
just due to the choice of the variable. By means of a change
of the variables q → Pq where P is a nondegenerate
matrix, the matrices can be given by following element
block matrices6

K ¼
�
K11 0

0 K22

�
; M ¼

�
0 M12

0 0

�
;

V ¼
�
V11 0

0 V22

�
: ðB6Þ

The Lagrangian is thus

L ¼ 1

2
ð _q1 þK11M12q2ÞTK11ð _q1 þK−1

11M12q2Þ

þ 1

2
_qT2K22 _q2 −

1

2
qT1V11q1

−
1

2
qT2 ðV22 þMT

12K
−1
11M12Þq2 ðB7Þ

where q1 ¼ fqigði ¼ 1; 2;…; nÞ and q2 ¼ fqigði ¼ nþ 1;
nþ 2;…; NÞ. We introduce new variables Q1 and write

L ¼ 1

2
½2QT

1K11ð _qq þK11M12q2Þ − QT
1K11Q1�

þ 1

2
_qT2K22 _q2 −

1

2
qT1V11q1

−
1

2
qT2 ðV22 þMT

12K
−1
11M12Þq2; ðB8Þ

which is equivalent to the original Lagrangian when Q1 are
integrated out [40]. We instead take integration by part to
eliminate _q1 from the Lagrangian and then integrate q1 out.
The Lagrangian is then

L ¼ 1

2
_QT
1K11V−1

11K11
_Q1 þ

1

2
_q2K22 _q2

−
1

2
ðQ1 −K−1

11M12q2ÞTK11ðQ1 −K−1
11M12q2Þ

−
1

2
qT2V22q2; ðB9Þ

which does not yield the friction term. The variables can be
further changed Q ≔ fQ1; q2g → P0Q so that both the
kinetic matrix and the mass matrix are diagonalized.
Since we are studying a Lorentz invariant theory, the final
Lagrangian must be

L ¼ 1

2
_QTI _Q −

1

2
k2QTIQ −

1

2
QTMTIMQ ðB10Þ

where I ¼ diagðλ1; λ2;…; λNÞ with λi ¼ �1 and M ¼
diagðm1; m2;…; mNÞ. The ghostfreeness of the theory is
the positiveness of λi and the masses of the particles
are mi. However, this requires cumbersome calculations.
The easiest way to evaluate the ghostfreeness and the
masses is, as explained before, just to check the positive-
ness ofK and V in high k limit and to compute the nodes of
the determinant (B5).
Note that only the positiveness of K does not guarantee

the ghostfreeness. This is because one needs to change the
variables to obtain the Klein-Gordon form (B10) after
which the sign of λi depends on V as well. The positiveness
of the kinetic matrix of (B10) is guaranteed by the
positiveness of not only K but also V.

APPENDIX C: A TOY MODEL OF
DEGENERATE THEORY

We study a toy model

L ¼ 1

2
_ϕ2 þ c1

2
ϕ̈2 þ c2ϕ̈ _qþ c3

2
_q2 −

1

2
m2q2; ðC1Þ

in classical mechanics. We introduce a new variable Φ and
reduce the Lagrangian into the first order system

6A systematic way is that one can first take an orthogonal
transformation to diagonalize K and then normalize the variables
so that the elements of K become �1. Then, V can be
diagonalized via an indefinite orthogonal transformation. The
matrix M can be an upper triangular matrix via integration
by part.
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L ¼ 1

2
_ϕ2 þ c1

2
Φ2 þ c2Φ _qþ c3

2
_q2 þ λðϕ̈ −ΦÞ − 1

2
m2q2:

ðC2Þ

SinceΦ is nondynamical, it can be eliminated by the use of
its equation of motion. We then obtain

L ¼ 1

2
_ϕ2 − _ϕ _λþ 1

2c1
ðc1c3 − c22Þ _q2

þ c2
c1

λ _q −
1

2c1
λ2 −

1

2
m2q2: ðC3Þ

The kinetic matrix always has a negative eigenvalue and
thus there exists a ghost. However, if the Lagrangian is
degenerate, that is if c2 ¼ ffiffiffiffiffiffiffiffiffi

c1c3
p

, then the variable q
becomes nondynamical and then solving it gives

L ¼ 1

2
_ϕ2 − _ϕ _λþ c3

2c1m2
_λ2 −

λ2

2c1
; ðC4Þ

which is free from ghost and tachyon when

c3 > 0;
c3
m2

> c1 > 0: ðC5Þ

This is the idea of the degenerate higher order theories [11].
Note that the kinetic matrix of (C3) has at least one negative
eigenvalue for any choice of parameters ci. Nonetheless,
the integrating-out of q changes the kinetic matrix of the
Lagrangian due to the coupling λ _q and then all eigenvalues
of the kinetic matrix of (C4) can be positive.
The degeneracy condition indeed corresponds to the

condition that the mass of ghost becomes infinity. When the
parameter is assumed to be

c2 ¼ ffiffiffiffiffiffiffiffiffi
c1c3

p ð1þ ϵÞ; ðC6Þ

with ϵ ≪ 1, the masses of the normal mode and the ghost
mode are

m2
normal ¼

m2

2ðc3 − c1m2Þ þOðϵ1Þ;

m2
ghost ¼

c3 − c1m2

4c1c3

1

ϵ
þOðϵ0Þ; ðC7Þ

respectively. Therefore, even if the degeneracy condition
holds only approximately but not exactly, one can obtain a
stable theory below a cutoff.
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