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We show that effective coupling strengths between ungapped and gapped quarks in the two-flavor color
superconducting (2SC) phase are renormalized by logarithmic quantum corrections. We obtain a set of
coupled renormalization-group (RG) equations for two distinct effective coupling strengths arising from
gluon exchanges carrying different color charges. The diagram of RG flow suggests that both of the
coupling strengths evolve into a strong-coupling regime as we decrease the energy scale toward the Fermi
surface. This is a characteristic behavior observed in the Kondo effect, which has been known to occur in
the presence of impurity scatterings via non-Abelian interactions. We propose a novel Kondo effect
emerging without doped impurities, but with the gapped quasiexcitations and the residual SU(2) color
subgroup intrinsic in the 2SC phase, which we call the “2SC Kondo effect.”
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I. INTRODUCTION

The Kondo effect gives rise to rich physics from an
emergent strong-coupling regime in the low-energy dynam-
ics. In 1964, Jun Kondo pointed out that a long-standing
problem about an anomalous behavior in the resistivity of
alloy originates from the quantum corrections to the
impurity-scattering amplitudes [1]. Namely, the coupling
strength between conduction electrons and an impurity is
enhanced due to contributions of the next-to-leading order
scattering processes. The modification of the coupling
strength is best captured by the concept of the renorma-
lization group (RG), which inspired subsequent develop-
ments in this important concept [2–4]. The scaling
argument clearly indicates that the existence of a Fermi
surface is crucial for the Kondo effect to occur [5,6] as we
will explain in a brief review part in the next section.
In recent years, the Kondo effect was applied to nuclear

physics [7,8]. Especially, possible realization of the QCD
Kondo effect in dense quark matter was discussed when
heavy-quark impurities are embedded in light-quark matter
[8]. The results of the perturbative RG analyses indicate
that the effective interaction strength between light and

heavy quarks evolves into a Landau pole despite the small
value of the QCD coupling constant at high density.
Subsequent studies investigated further consequences of
the QCD Kondo effect, including interplay/competition
with color superconductivity [9], formation of “Kondo
condensates” and modification of the QCD phase diagram
[10–13], nonperturbative aspects near the IR fixed point
by conformal field theory [14,15], estimates of transport
coefficients [16], and QCD equation of state for an
application to neutron/quark star physics [17]. It is also
remarkable that light quarks have the same scaling dimen-
sions in a dense system and in a strong magnetic field as a
consequence of analogous effective dimensional reductions
[6], and that a strong magnetic field alone induces the QCD
Kondo effect even at zero density [18].
In this paper, we propose a realization of the Kondo

effect without (doped) impurities in QCD. We consider the
RG evolution of effective coupling strengths between
gapped and ungapped quarks appearing in the two-flavor
color superconducting (2SC) phase [19,20]. In the 2SC
phase with three colors, two of three color states of quarks
are involved in the Cooper pairing and acquire a gap above
the Fermi surface (cf. Fig. 3), while the other color state
remains gapless with a finite density of states at the Fermi
surface (see, e.g., Refs. [21,22] for review articles).
Therefore, the gapped quarks may play a role of impurities
in the low-energy dynamics below the gap size, and the
2SC phase intrinsically has the necessary setup of the
Kondo effect.
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The formation of the diquark condensates breaks the
SU(3) color symmetry group down to SU(2). Gluons
belonging to the unbroken SU(2) subgroup are coupled
only to the gapped quarks, so that they are decoupled from
all quarks in the aforementioned low-energy regime, real-
izing a pure gluodynamics [23]. Here, we can focus on the
remaining five gluons which mediate the interactions
between ungapped and gapped quarks. Those gluons have
different properties depending on if they are associated with
the diagonal or off-diagonal Gell-Mann matrices, so that we
introduce two distinct effective coupling strengths.
We will derive coupled RG equations for these two

effective coupling strengths from the next-to-leading order
scattering amplitudes (cf. Fig. 4) and obtain an RG-flow
diagram in Fig. 5. The fate of the RG flow depends on the
initial conditions for the RG equations. We take the tree-
level coupling strengths as initial conditions which depend
on the magnitudes of the Debye and Meissner masses in the
2SC phase [24,25]. Plugging the initial conditions evalu-
ated with those quantities, we find that both of the coupling
strengths evolve into strong-coupling regimes, but have
different signs for attraction and repulsion.
This paper is organized as follows. In the next section,

we provide a brief review of the QCD Kondo effect which
will be useful to identify the basic mechanism of the Kondo
effect. Then, we investigate a novel Kondo effect occurring
in the 2SC phase in Sec. III. We conclude the paper in
Sec. IV with discussions. Some useful properties of the
high-density and heavy-quark effective field theories are
briefly summarized in the Appendix.

II. BRIEF REVIEW OF QCD KONDO EFFECT

We first provide a brief review of the QCD Kondo effect
[8], highlighting the essential points of the discussions given
in a review article [6]. These preliminary discussions will be
useful to identify the necessary ingredients of the Kondo
effect.

A. High-density effective field theory

The Kondo effect is induced by low-energy excitations
near the Fermi surface scattering off dilute impurities.
Therefore, we use the high-density effective field theory
(HD-EFT) to extract such low-energy degrees of freedom
(d.o.f.) from the full theory [26–30].
We decompose the fermion momentum into a sum of the

large Fermi momentum and the small residual momentum
lμ ¼ ðl0; ℓ Þ as

p0 ¼ l0; p ¼ μvF þ ℓ ; ð1Þ
where μ and vF are the chemical potential and the Fermi
velocity, respectively, and l0, jlj ≪ μ. The energy p0 is
measured from the Fermi surface. Then, at the leading order
(LO) of 1=μ expansion, the low-energy d.o.f. are extracted
from the Dirac Lagrangian as (see the Appendix)

L ¼ ψ̄ðxÞði=Dþ μγ0ÞψðxÞ ≃
X
vF

ψ̄þiv
μ
FþDμγ

0ψþ; ð2Þ

where vμF� ≡ ð1;�vFÞ. We introduced the low-energy field
ψþðl; vFÞ≡ Pþψðl; vFÞ for particle and hole excitations
around the Fermi momentum μvF, by the use of projection
operators P� ≡ 1

2
ð1� γ0vF · γÞ.

From this expansion, the dispersion relation of the low-
energy excitations near the Fermi surface is read off as

l0 ¼ vF · ℓ : ð3Þ
We define lk ≡ vF · ℓ for later use. This is a linear
dispersion relation in the (1þ 1)-dimensional phase space
normal to the Fermi surface and does not depend on the
residual two-dimensional momentum tangential to the
Fermi surface (cf. Fig. 1). This means that an effective
dimensional reduction occurs in the low-energy excitation
near the large Fermi sphere, and the phase space is
degenerated in the residual two dimensions.
From Eq. (2), the free propagator is found to be

Sðl; vFÞ ¼
i=vFþ

2vμFþlμ þ il0ε
¼ iPþγ0

vμFþlμ þ il0ε
; ð4Þ

where we have =vF� ¼ 2P�γ0. At the LO, only the temporal
and the parallel components of the gauge field,A0 and vF · A,
are coupled to the low-energy fermion excitations. The
gamma matrix is not involved in these couplings, because
the spin direction is frozen along the Fermi velocity.

B. Scaling dimensions in QCD Kondo effect

One can determine the scaling dimension of the low-
energy excitation field ψþ assuming that the kinetic term
(2) is invariant under the scaling transformation, l0 → sl0

(t → s−1t) with s < 1. According to the (1þ 1)-dimen-
sional dispersion relation, only the lk scales as lk → slk,
and the tangential momentum ℓ⊥ is intact. Therefore, the
ψþ scales with a factor of s−1=2 when the energy scale is
reduced toward the Fermi energy (l0 ¼ 0).1

FIG. 1. Effective dimensional reduction near a large Fermi
surface. Excitations cost energy only in the normal direction, so that
there is a two-dimensional degeneracy in the tangential directions.

1Since there is a degeneracy in the momentum space, it is
useful to count the scaling dimensions in a mixed representation
ψþðt; ℓ Þ.
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In addition, we introduce a heavy-quark impurity
embedded in the dense light-quark matter. One may use
the heavy-quark effective field theory (HQ-EFT) which is
organized with an expansion with respect to the inverse
heavy-quark mass 1=mH. This expansion is analogous to
that in theHD-EFTaswe summarize in theAppendix. At the
LO, the kinetic term of the particle state Ψþ is given by

SkinH ¼
Z

dt
Z

d3k
ð2πÞ3Ψ

†
þi∂tΨþ þOð1=mHÞ: ð5Þ

We consider a static heavy quark with a vanishing spatial
velocity. In this case, the spatial derivative is not contained in
the kinetic term, and we find that the heavy-quark field Ψþ
and its spatialmomentum k do not scalewhen t → s−1t. This
is reasonable since the static impurity acts as a scattering
center in the same way at any energy scale of light particles.
Now that we have determined the scaling dimensions of

both the light and heavy quark fields, we look into the four-
Fermi operator composed of the light and heavy quarks:

SintHD ¼
Z

dt
X

vð1ÞF ;vð3ÞF

Z d2ℓ ð1Þ
⊥ dlð1Þ

k
ð2πÞ3

d2ℓ ð3Þ
⊥ dlð3Þ

k
ð2πÞ3

×
Z

d3kð2Þ

ð2πÞ3
d3kð4Þ

ð2πÞ3 G½ψ̄þðℓ ð3Þ; vð3ÞF Þtaψþðℓ ð1Þ; vð1ÞF Þ�

× ½Ψ̄þðkð4ÞÞtaΨþðkð2ÞÞ�: ð6Þ

Plugging the scaling dimensions of the fields and of the
momenta discussed above, we find that the light-heavy
four-Fermi operator has a marginal scaling dimension
(½dt� þ 2½dlk� þ 2½ψþ� ¼ −1þ 2 − 1 ¼ 0) [6].
This result suggests that the four-Fermi interaction

acquires logarithmic quantum corrections from the scatter-
ing of the light quark off the heavy-quark impurity with
loop diagrams. We will see how the logarithmic enhance-
ment arises from the second-order heavy-light scattering
amplitude and determine the sign of the logarithmic
correction. The following computation by the HD-EFT
and HQ-EFT confirms the result in Ref. [8].
Note again that the lower scaling dimension of ψþ due to

the effective dimensional reduction is crucial for the Kondo
effect. It is worth mentioning that the BCS instability,
leading to superconductivity, can be understood as a
consequence of the same dimensional reduction (see,
e.g., Refs. [5,26,27]). The RG analyses were performed
for color superconductivity [31–35]. Also, the scaling
argument can be applied to the low-energy dynamics in a
strong magnetic field where an analogous effective dimen-
sional reduction occurs in the lowest Landau level [6].
Consequences of this dimensional reduction are known as
the magnetic catalysis of chiral symmetry breaking [36–38]
and the magnetically induced QCD Kondo effect [18].

C. Effective interaction and the leading-order
scattering amplitude

The gluon propagator at high density is split into two
transverse structures:

DμνðkÞ ¼ iPμν
L

k2 − ΠL
þ iPμν

T

k2 − ΠT
− ξ

kμkν

k4
; ð7Þ

where ξ is a gauge parameter and the diagonal color
structure is suppressed for notational simplicity. The
longitudinal and transverse projections are given by

Pμν
L ¼ −

�
gμν −

kμkν

k2

�
− Pμν

T ; ð8aÞ

Pμν
T ¼ δμiδνj

�
δij −

kikj

jkj2
�
: ð8bÞ

In this section, we consider a normal phase (without
Cooper pairing) and use the gluon self-energy from the
hard dense loop approximation [30,39,40]. In the heavy-
quark limit, we only need the electric component which is
screened by the Debye screening mass ΠL → m2

D ¼
NfðgμÞ2=ð4π2Þ in the static limit.
We consider a light quark scattering off a static heavy

quark and identify the effective coupling G in Eq. (6) with
the S-wave projection of the color electric interaction [6,18]:

−iG≡ ðigÞ2 1
2

Z
1

−1
d cos θD00ðkÞ

≃ −i
g2

2

Z
1

−1

d cos θ
2μ2ð1 − cos θÞ þm2

D

≃ −i
g2

4μ2
log

�
4μ2

m2
D

�
: ð9Þ

We have put the initial and final momenta of the light quark
on the Fermi surface since the Kondo effect occurs in such a
low-energy regime. This leads to a spacelike momentum
transfer k2¼ðpð3Þ−pð1ÞÞ2¼−2μ2ð1− cosθÞ, and we have

integrated out the scattering angle θ≡ arccosðvð1ÞF · vð3ÞF =μ2Þ.
The gauge term proportional to ξ is suppressed in this
kinematics. A similar S-wave projection was performed for
the Cooper pairing [32,33,35].
Using the effective coupling (9), the leading-order

scattering amplitude is given by

iMð1Þ ¼ −iG
XN2
c−1

r¼1

ðtrÞijðtrÞlm; ð10Þ

whereNc is the number of colors. For a notational simplicity,
we have suppressed the spinor structure, ½ūþγ0uþ�½ŪþUþ�
with the projected spinors uþ ¼ Pþu and Uþ ¼ QþU for
the light and heavy quarks, respectively.
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D. Kondo scale emerging from the RG evolution

Since the four-Fermi operator, composed of light and
heavy quarks, has a marginal scaling dimension, we
anticipate emergence of a dynamical infrared scale.
Below, we shall see how the logarithmic correction from
the loop integral drives the RG evolution of the effective
coupling to an infrared Landau pole.
At the one-loop level, there are two relevant diagrams for

the Kondo effect (cf. Fig. 2). In terms of the effective
coupling G, the propagators (4) and (A13), those ampli-
tudes are written down as

iMð2aÞ ¼ ð−1ÞG2T ðaÞX
vF

Z
d4l
ð2πÞ4

× ½ūþγ0SðlÞγ0uþ�½ŪþSHð−lÞUþ�

¼
X
vF

Z
d4l
ð2πÞ4

G2T ðaÞ

ðl0−lk þ il0ϵÞð−l0þ iϵÞ ; ð11aÞ

iMð2bÞ ¼ ð−1ÞG2T ðbÞX
vF

Z
d4l
ð2πÞ4

× ½ūþγ0SðlÞγ0uþ�½ŪþSHðlÞUþ�

¼
X
vF

Z
d4l
ð2πÞ4

G2T ðbÞ

ðl0 − lk þ il0ϵÞðl0 þ iϵÞ ; ð11bÞ

where the overall minus signs come from the fermionic
statistics and SH is the heavy-quark propagator given in
Eq. (A13). Again, we put the initial and final momenta of

the light quark on the Fermi surface, i.e., lðiÞ
μ ¼ lðfÞ

μ ¼ 0,
and suppressed the spinor structures which are found to be
the same as that of the tree-level amplitude (10). We assume
a static heavy quark with a vanishing velocity. As we will
see shortly, it is important to have noncommutative color
matrices

T ðaÞ
ij;lm ¼

X
s;r

X
k;k0

ðtrÞikðtsÞkjðtrÞlk0 ðtsÞk0m; ð12aÞ

T ðbÞ
ij;lm ¼

X
s;r

X
kk0

ðtrÞikðtsÞkjðtsÞlk0 ðtrÞk0m: ð12bÞ

Performing the integrals in Eq. (11), we have

Mð2aÞ ¼ G2T ðaÞρF

Z
dlk
lk

θðlkÞ; ð13aÞ

Mð2bÞ ¼ G2T ðbÞρF

Z
dlk
lk

θð−lkÞ: ð13bÞ

Note that, since the integral regions in Eq. (13) are
restricted to the above and below of the Fermi surface,
diagrams ð2aÞ and ð2bÞ of Fig. 2 provide a particle and hole
contribution, respectively, as specified by the pole positions
in Eq. (11). The density of states on the Fermi surface ρF
has been obtained from its area:

ρF ¼
X
vF

Z
d2l⊥
ð2πÞ3 ¼

μ2

2π2
: ð14Þ

We now examine an increment when the energy scale Λ
is reduced to Λ − dΛ. The sum of the two one-loop
amplitudes, integrated over a thin shell of a thickness
dΛ, is obtained as

Mð2Þ ¼ Mð2aÞ þMð2bÞ

¼ G2ρF log

�
Λ

Λ − dΛ

�
ðT ðaÞ − T ðbÞÞ: ð15Þ

The relative minus sign in the curly brackets originates
from the fact that the particle and hole contributions in
Eq. (13) have opposite signs. The logarithms from the two
distinct diagrams would cancel each other if the interaction
were an Abelian type. Therefore, the non-Abelian nature
of the interaction plays an essential role for the logarithmic
correction to survive in the total amplitude. By the use

of an identify T ðaÞ
ij;lm − T ðbÞ

ij;lm ¼ −Nc=2
P

rðtrÞijðtrÞlm,
we find a logarithmic correction to the total one-loop
amplitude:

Mð2Þ ¼ G2
Nc

2
ρF log

�
Λ

Λ − dΛ

�X
r

ðtrÞijðtrÞlm: ð16Þ

It is this logarithm that renormalizes the effective cou-
pling G.
Now, combining the results in Eqs. (10) and (16), we

obtain the RG equation

Λ
dG
dΛ

¼ −
Nc

2
ρFG2: ð17Þ

The solution to this RG equation is found to be

GðΛÞ ¼ GðΛ0Þ
1þ 2−1NcρFGðΛ0Þ logðΛ=Λ0Þ

: ð18Þ

FIG. 2. One-loop diagrams that give rise to logarithmic
corrections. The single and double lines denote the light and
heavy quarks. Both initial and final light-quark momenta are put
on the Fermi surface, i.e., lμ

ðiÞ ¼ lμ
ðfÞ ¼ 0.

HATTORI, HUANG, and PISARSKI PHYS. REV. D 99, 094044 (2019)

094044-4



Here, Λ0 is the initial energy scale, and the initial condition
of G is given by the tree-level result in Eq. (9). Namely,
GðΛ0Þ ¼ ðg2=4μ2Þ logð4μ2=m2

DÞ. It is clear that the effec-
tive coupling (18) is enhanced according to a negative beta
function, when GðΛ0Þ > 0. We can read off the location of
the Landau pole that is called the Kondo scale [6,8]:

ΛK ¼ μ exp

�
−

2

NcρFGðΛ0Þ
�
; ð19Þ

where we took the initial energy scale at the hard scale
Λ0 ¼ μ. When the temperature is reduced below the Kondo
scale, the system becomes nonperturbative no matter how
small the initial coupling GðΛ0Þ or αs is.
Intuitively speaking, the light particles (or carriers of

transport phenomena) are trapped around the impurity due
to the strong-coupling nature of the low-energy dynamics.
As a consequence, the (electrical) resistance is enhanced
below the Kondo temperature TK of which the scale is
given by TK ∼ ΛK, and there emerges a minima at TK .

III. 2SC KONDO EFFECT

We here highlight four important ingredients for the
Kondo effect discussed in the last section. First of all, the
Kondo effect needs (i) impurities. Next, as implied by
the essential d.o.f. in HD-EFTand the scaling argument, the
(1þ 1)-dimensional dispersion relation plays a crucial role.
Therefore, the Kondo effect needs (ii) the existence of the
Fermi surface so that the effective dimensional reduction
occurs in the low-energy dynamics. For this low dimen-
sionality, the four-Fermi operator, composed of the heavy
and light particles, acquires a marginal scaling dimension.
Consequently, the effective coupling strength is renormal-
ized due to (iii) the logarithmic quantum correction from
the loop integrals. Finally, the logarithms from the two
distinct one-loop diagrams do not cancel out (iv) only when
the interaction is a non-Abelian type.
Once these ingredients are identified, one may consider

extensions of the Kondo effect. As already discussed, the
QCD Kondo effect in dense quark matter is a straightfor-
ward extension since the fourth ingredient (iv) is provided
by the color exchange interaction [8]. One may also replace
the second ingredient (ii), the Fermi surface, by a strong
external magnetic field which also causes an effective
dimensional reduction in the low-lying state, i.e., the lowest
Landau level [18].
In this section, we propose a Kondo effect which occurs

without impurities. Namely, we do not introduce the most
essential ingredient (i) externally, but investigate a situation
in which the gapped excitations (i.e., the “impurities”)
emerge dynamically through a spontaneous symmetry
breaking. The physical system we will consider is the
2SC phase of dense quark matter. The gapped quarks
and the broken generators of the color symmetry will play a
role of a heavy impurity and a non-Abelian interaction,

respectively. We anticipate that a novel Kondo effect
emerges with all the necessary ingredients inherent in
the 2SC phase.

A. Gapped quarks

We have examined the quark propagator in the normal
phase in the previous section. Here, we prepare a quark
propagator for a gapped quark. Without losing generality,
we hereafter choose blue quarks (i ¼ 3) to be ungapped
ones, so that red and green quarks are gapped above the
Fermi surface (cf. Fig. 3). Then, the color structure of the
quark propagator reads

Sijfg ¼ δfgfðδij − δi3δj3ÞSΔ þ δi3δj3Sg; ð20Þ

where S and SΔ are the quark propagators with and without
an energy gap, respectively. There would be off-diagonal
components in the flavor space (f, g) if one considers
interactions between the quasiexcitations and the hudi
condensate in the 2SC phase. However, they are suppressed
with a small value of the condensate. As shown in
Refs. [24,41], the propagator of the gapped quasiexcitations
is given by

SΔðpÞ¼ i
p0− ðμ− jpjÞ
ðp0Þ2−ϵ2pþ iϵ

Pþγ0þ i
p0− ðμþjpjÞ
ðp0Þ2− ϵ̄2pþ iϵ

P−γ
0:

ð21Þ

The dispersion relations read

ϵp¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpj−μÞ2þΔ2

q
; ϵ̄p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjpjþμÞ2þ Δ̄2

q
; ð22Þ

where the energy gaps Δ and Δ̄ are generated as a
consequence of the diquark and diantiquark condensate
formation, respectively. As in Eq. (1) for the HD-EFT, we
decompose the momentum into a large Fermi momentum
and a small fluctuation near the Fermi surface. Then, we
have jpj2 ∼ μ2 þ 2μlk. Therefore, we find jpj ∼ μþ lk and

ϵp ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
k þ Δ2

q
≕ ϵl. At the leading order in the 1=μ

expansion, the propagator reads

SΔðpÞ ≃
iðl0 þ lkÞ
l2
0 − ϵ2l þ iε

Pþγ0: ð23Þ

The imaginary displacements are explicitly shown for the
quasiparticle and quasihole excitations. This propagator has
the same projection operator Pþ as that of the ungapped
quark (4), meaning that the highly suppressed antiparticle
excitations are neglected and that the coupling to a gluon
field is again simplified as in the leading-order Lagrangian
of the HD-EFT (2). Namely, the gamma matrix is replaced
by the Fermi velocity vμF.
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B. Two effective coupling strengths from
screened gluon exchanges

The diquark condensation modifies not only the quark
dispersion relation but also properties of the gluons. In the
2SC phase, the SUð3Þ color symmetry is broken down to
the SUð2Þ subgroup, and the three gluons remain massless
and do not interact with the ungapped blue quarks. They are
also decoupled from the other two gapped quarks in the
low-energy region below the size of the gap (cf. the yellow
band in Fig. 3). Therefore, a pure gluodynamics of SUð2Þ
theory was investigated in such a low-energy region [23].
Here, we consider the other five gluons which are screened
by the Meissner mass ½ΠTð0Þ ¼ m2

M� as well as the Debye
mass ½ΠLð0Þ ¼ m2

D� [24,25].2 Those gluons mediate the
interactions between the gapped and ungapped quarks.
As we have seen in the last section, the energy gap of an

impurity should be a dominant scale so that an impurity
field is invariant under the scaling and plays the role of a
heavy scattering center. In the current case, the gap size Δ
should be the dominant scale for a gapped-quark field to be
invariant under the scaling of an ungapped-quark field. This
is realized in a scattering between a pair of gapped and
ungapped quarks moving in almost the same direction
within a relative angle Δ=μ, where the momentum scale of
the ungapped quark is smaller than Δ in the comoving
frame of the gapped quark. Therefore, we focus on those
pairs whose incoming momenta are labeled by the same
Fermi velocity vF. Then, dynamics is dominated by small
fluctuations near the Fermi surface.
Since the gamma matrix on the interaction vertex is

replaced by the four Fermi velocity vμF, we identify the
effective coupling strength from the S-wave scattering
[cf. Eq. (9)]:

G ¼ iðigÞ2 1
2

Z
1

−1
d cos θ vð1ÞμF vð2ÞνF DμνðkÞ

≃
g2

2

Z
1

−1
dz

�
1

2μ2ð1 − zÞ þm2
D
−

ð2 − zÞz
2μ2ð1 − zÞ þm2

M

�

≃
g2

2μ2

�
1þ log

mM

mD

�
: ð24Þ

As in the previous section, we have put the initial and final
momenta of the ungapped quark on the Fermi surface, and
integrated out the scattering angle θ.
The magnitudes of mD and mM depend on the color

index of gluons. Since the red and green quarks play the
same role, we consider the scattering between the red (1) and
blue (3) quarks. Then, there are only three relevant gluons
A4;5;8 which mediate the interactions between the red and
blue quarks.3 Quoting the results in Table I of Ref. [24], we
have mM=mD ¼ 1=

ffiffiffi
3

p
for A4;5 and mM=mD ¼ 1=3 for A8

in the 2SC phase at T ¼ 0. Therefore, we define two
effective coupling strengths:

G2SC ¼ g2

2μ2

�
1 −

1

2
log 3

�
> 0; ð25aÞ

Ḡ2SC ¼ g2

2μ2
ð1 − log 3Þ < 0: ð25bÞ

It is useful to compare the setup in the 2SC phase to the
anisotropic Kondo effect discussed in Refs. [2,3]. Our
coupling strengths G2SC and Ḡ2SC play similar roles of J�
and Jz there. A negative Jz corresponds to the ferromag-
netic Kondo problem of which the fate at low energy
depends on the relative strength between J� and jJzj. In
order to determine the low-energy physics, we will inves-
tigate how those effective couplings G2SC and Ḡ2SC are
renormalized with the next-to-leading order scattering
processes between gapped and ungapped excitations.

C. Color flows in the next-to-leading
order scattering diagrams

Wewrite the scattering diagrams in terms of the effective
coupling constants defined above. At the leading order, we
simply have

iMð1Þ
2SC ¼ −iG2SC

X
a¼4;5

½ū3þγ0ðtaÞ31u1þ�½ū1þγ0ðtaÞ13u3þ�

− iḠ2SC½ū1þγ0ðt8Þ11u1þ�½ū3þγ0ðt8Þ33u3þ�

¼ −i
�
G2SC

2
U31U13 −

Ḡ2SC

6
U11U33

�
; ð26Þ

FIG. 3. Dispersion relations of the gapped quarks (red and
green curves) and ungapped quark (blue curve) near the Fermi
surface. The ungapped quark has a finite density of states in the
gapped region of the other quarks (filled yellow band).

2The gluon self-energy acquires off-diagonal elements.
One can, however, diagonalize the self-energy by a unitary
matrix, so that we assume that the color indices have been
diagonalized [24].

3We employ the convention of the Gell-Mann matrices given
in Sec. 15 of Ref. [42]. Note also that the A4;5;8 do not cause
mixing between the gapped quarks. Thus, the green quarks do not
appear in the intermediate states of the one-loop scattering
diagrams for the red and blue quarks, when interactions with
the condensate can be neglected in Eq. (20).
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where we defined a shorthand spinor notation
Uab ≡ ūaþγ0ubþ.
Next, we shall identify next-to-leading order diagrams

which renormalize the effective coupling strengths. In Fig. 4,
we show flows of color charges where the color matrices t4;5

mix the red and blue quarks, while the diagonal color matrix
t8 does not. Similar to the diagrams in Fig. 2, we should
consider a pair of diagrams ð2aÞ and ð2bÞ of Fig. 4.
However, we do not need to consider the diagrams with
the diagonal matrix t8 on all the vertices, since possible
logarithmic corrections will cancel out. On the other hand,
we should include diagrams ð20Þ and ð200Þ of Fig. 4 which
have each of t4;5 and t8. Neither of these two diagrams has a
relevant cross channel, since its cross channel is a discon-
nected diagram, indicating an annihilation between an
ungapped particle and gapped hole or an ungapped hole
and gapped particle.Diagrams ð20Þ and ð200Þ of Fig. 4 contain
a factor of G2SCḠ2SC, and give rise to a mixing between the
two coupling strengths.
Similar to the previous section, the scattering amplitudes

of diagrams ð2aÞ and ð2bÞ of Fig. 4 are written down as

iM2a
2SC ¼ −ðG2SCÞ2ðT ðaÞ

2SCÞ33;11
X
vF

Z
d4l
ð2πÞ4

× ½ū3þγ0SΔðlÞγ0u3þ�½ū1þγ0Sðlð2Þ − lÞγ0u1þ�
¼ −ðG2SCÞ2ðT ðaÞ

2SCÞ33;11U33U11ρFIþ; ð27aÞ

iMð2bÞ
2SC ¼ −ðG2SCÞ2ðT ðbÞ

2SCÞ33;11
X
vF

Z
d4l
ð2πÞ4

× ½ū3þγ0SΔðlÞγ0u3þ�½ū1þγ0Sðlð2Þ þ lÞγ0u1þ�
¼ −ðG2SCÞ2ðT ðbÞ

2SCÞ33;11U33U11ρFI−: ð27bÞ

On the external lines, we put all the spatial momenta and
energies of ungapped quarks on the Fermi surface. Only

one finite component of the external momentum is the
energy of a gapped quark, i.e., lð2Þ

μ¼0 ¼ lð4Þ
μ¼0 ¼ Δ. The

density of states at the Fermi surface ρF is obtained as in
the previous section. The longitudinal components of the
integrals are given by

I� ¼
Z

d2lk
2π

iðl0þlkÞ
l2
0− ϵ2lþ iε

·
i

ðΔ∓l0Þ�lk þ iðΔ∓l0Þε :

ð28Þ
Here, we clearly see that Iþ ¼ −I−≕ Ik. The structures of
the color matrices read

ðT ðaÞ
2SCÞij;mn ¼ ðt5t4Þijðt5t4Þmn þ ðt4t5Þijðt4t5Þmn; ð29aÞ

ðT ðbÞ
2SCÞij;mn ¼ðt5t4Þijðt4t5Þmn þ ðt4t5Þijðt5t4Þmn: ð29bÞ

We find that ðT ðaÞ
2SCÞ33;11¼−ðT ðbÞ

2SCÞ33;11¼1=8. Summariz-
ing those observations, one can write the sum of the two
amplitudes as

iMa
2SC ≡ iM2a

2SC þ iM2a
2SC

¼ −
1

4
ðG2SCÞ2ρFIkU33U11: ð30Þ

Performing the contour integral with respect to l0 and
keeping only the singular terms when lk → 0,4 we have

Ik ≃ −
i
2

Z
dlk

θðlkÞ
lk þ

l2k
2Δ

: ð31Þ

Integrating over a shin shell Λ − dΛ ≤ lk ≤ Λ, we find a
logarithmic contribution

FIG. 4. Next-to-leading order scattering diagrams which renormalize the effective coupling constants. Single and double lines show
ungapped and gapped quarks, respectively.

4One can enclose the contour either in the upper or lower half
planes. The results are the same in both cases.
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Ik ¼ −
i
2
ln

Λ
Λ − dΛ

þOðΛÞ: ð32Þ

The subsequent terms are a polynomial ofΛwhich provides
only irrelevant corrections. Plugging this result into M2

2SC,
we obtain

M2
2SC ¼ 1

8
ðG2SCÞ2ρF ln

Λ
Λ − dΛ

U33U11: ð33Þ

The remaining two diagrams can be computed in the same
manner. Actually, those diagrams have the same kinematics
as diagram ð2aÞ of Fig. 4, so that we only need to take care of
the color structures. Writing down those two contributions,
we have

iMð20Þ
2SC ¼ −G2SCḠ2SCðT ðcÞ

2SCÞ13;31
X
vF

Z
d4l
ð2πÞ4

× ½ū3þγ0SΔðlÞγ0u1þ�½ū1þγ0Sðlð2Þ − lÞγ0u3þ�
¼ −G2SCḠ2SCðT ðcÞ

2SCÞ31;13U31U13ρFIk; ð34aÞ

iMð2″Þ
2SC ¼ −G2SCḠ2SCðT ðdÞ

2SCÞ13;31
X
vF

Z
d4l
ð2πÞ4

× ½ū1þγ0SΔðlÞγ0u3þ�½ū3þγ0Sðlð2Þ − lÞγ0u1þ�
¼ −G2SCḠ2SCðT ðdÞ

2SCÞ13;31U13U31ρFIk; ð34bÞ
where the products of the color matrices read

ðT ðcÞ
2SCÞij;mn ¼ ðt4t8Þijðt4t8Þmn þ ðt5t8Þijðt5t8Þmn; ð35aÞ

ðT ðdÞ
2SCÞij;mn ¼ðt8t4Þijðt8t4Þmn þ ðt8t5Þijðt8t5Þmn: ð35bÞ

We find that ðT ðcÞ
2SCÞ31;13 ¼ ðT ðdÞ

2SCÞ13;31 ¼ −1=12.
Therefore, diagrams ð20Þ and ð200Þ of Fig. 4 provide the
same contributions:

Mð20Þ
2SC ¼ Mð2″Þ

2SC ¼ −
1

24
G2SCḠ2SCρF ln

Λ
Λ − dΛ

U13U31:

ð36Þ

D. Coupled RG equations and RG-flow diagram

We are now in position to derive RG equations for G2SC

and Ḡ2SC. Plugging the leading-order amplitude (26) and
the next-to-leading order amplitudes (33) and (36), we
immediately obtain the coupled RG equations

Λ
dG2SC

dΛ
¼ −

1

6
ρFG2SCḠ2SC; ð37aÞ

Λ
dḠ2SC

dΛ
¼ −

3

4
ρFG2

2SC: ð37bÞ
Correspondingly, the right-hand sides of the RG equa-

tions provide two distinct beta functions. In Fig. 5, we draw
the RG flow driven by the “velocity field” identified with
those beta functions.

To understand the RG-flow profile, we write the RG
equations (37) as

dG2SC

dḠ2SC
¼ 2

9
·
Ḡ2SC

G2SC
: ð38Þ

This means that the RG flow evolves along parabolic curves

ð3G2SCÞ2 − 2ðḠ2SCÞ2 ¼ C; ð39Þ

where the constant C is determined by the initial conditions
at Λ ¼ Λ0. We take the tree-level coupling strengths
(25) as the initial conditions and have a positive constant
C > 0. In Fig. 5, we start out at a point G2SCðΛ0Þ > 0 and
Ḡ2SCðΛ0Þ < 0, and we find that the RG flow goes into the
lower right corner. This means that the G2SCðΛÞ and
Ḡ2SCðΛÞ evolve toward positive and negative infinity,
respectively, away from the weak-coupling regime near
the origin. Thus, the RG evolution driven by the interaction
between the gapped and ungapped quarks gives rise to a
strongly coupled system in the low-energy regime. This is a
characteristic behavior of the Kondo effect.
From the RG equations (37), we get

Λ
dḠ2SC

dΛ
¼ −

1

12
ρFð2Ḡ2

2SC þ CÞ ð40Þ

and its solution

Ḡ2SCðΛÞ¼c tan

�
c
6
ρF log

Λ0

Λ
þarctan

�
Ḡ2SCðΛ0Þ

c

��
; ð41Þ

FIG. 5. RG flow in the direction of arrows along the parabolic
curves. The color scales from green to blue as the norm of the
arrow increases.
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where c ¼ ffiffiffiffiffiffiffiffiffi
C=2

p
. This solution hits a Landau pole when

the argument of the tangent approaches π=2, giving rise to
an emergent scale (see Ref. [38] for the same form of
solution). According to the relation (39), the other coupling
strength G2SCðΛÞ also hits the Landau pole at the same
energy scale (cf. Fig. 5).
Noting that cρF ∼Oðg2Þ and Ḡ2SCðΛ0Þ=c ∼Oð1Þ in

Eq. (41), the parametric dependence of the Kondo temper-
ature is found to be

T2SC
K ¼ Λ0 exp

�
−
c1
g2

�
: ð42Þ

The explicit form of the order-one constant c1 can be
obtained easily, but is suppressed for a simple parametric
estimate. It is natural to take the initial scale at the gap size,
Λ0 ∼ Δ ∼ μ expð−c2=gÞ, where c2 ∼Oð1Þ. Importantly, the
gap size has a weaker exponential suppression because of
the enhancement arising from the unscreened color-mag-
netic interaction [33,35,43,44]. However, the gluons
involved in the 2SC Kondo effect are screened by both
the Debye and Meissner masses. Therefore, in the weak-
coupling limit g ≪ 1, we get a parametric estimate

T2SC
K ∼ μ exp

�
−
c1
g2

�
≪ Δ ≪ μ: ð43Þ

This hierarchy confirms our basic picture of the 2SC Kondo
effect (cf. Fig. 3). Note that the two dynamical scales T2SC

K
and Δ emerge in the different color sectors.
The emergence of the strong-coupling regime implies

formation of a bound state or condensation between the
gapped and ungapped quarks. In condensed matter sys-
tems, such a bound state between the conduction electron
and impurity has been known as the Kondo singlet [45–47].
While the impurity magnetic moment is localized in such
systems, the gapped quarks are thermally excited in the
bulk. Therefore, in the present system, we may think of it as
a condensate rather than a localized bound state. Then, the
formation of condensation breaks the residual SU(2) color
symmetry, and the associated gluons become massive via
the Higgs mechanism.5 Nevertheless, whether such a
“Higgs phase” emerges depends on the gapped-quark
distribution which reduces as we decrease temperature.

At this moment, we conclude that the residual color
symmetry is broken as long as the 2SC Kondo phase
manifests itself in the QCD phase diagram. More generally,
one may ask how a possible phase structure depends on the
impurity distribution as an axis of an extended phase
diagram (see Refs. [10,13] for the chiral symmetry break-
ing in the presence of a homogeneous distribution of the
heavy-quark impurities in quark matter). We leave those
issues to future works.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we investigated the RG evolutions of the
coupling strengths between gapped and ungapped quarks in
the two-flavor superconducting phase. The next-to-leading
order diagrams generate logarithmic quantum corrections
and have the effective coupling strengths renormalized. We
obtained coupled RG equations for the two coupling
strengths associated with distinct color channels. The
RG-flow diagram indicates that both of the coupling
strengths evolve into a strong-coupling regime as the
energy scale is reduced toward the Fermi energy. This is
a characteristic behavior of the Kondo effect, so that we call
it the “2SC Kondo effect.”
Once the system approaches the strong-coupling regime,

the fate of the RG evolution needs to be investigated with
nonperturbative methods. For example, a mapping from the
Kondo problem in the vicinity of an infrared fixed point to
conformal field theory has been known as a useful method
(see recent works [14,15] and references therein). In the
present system, one could ask if there is an infrared fixed
point and what the ground state of the system is.
The magnitudes of the Kondo effect on bulk quantities,

such as transport coefficients, depend on the concentration
of impurities, i.e., the Fermi-Dirac distribution of the
gapped quarks in the present case. At strict zero temper-
ature, there are no gapped quark excitations. Therefore,
effects of the 2SC Kondo effect will be most prominent in
between the transition temperature of the 2SC phase and
zero temperature. This contrasts with the conventional
Kondo effect which remains important at zero temperature.
If the 2SC phase exists in the neutron-star cores (see

Ref. [22]), we expect that the occurrence of the 2SC Kondo
effect may have implications for the neutron-star physics.
In particular, the transport properties of the neutron-star
matter could be altered in a way similar to how the
conventional Kondo effect affects the low-temperature
resistivity of magnetic alloys. One typical example is the
neutrino emissivity which is important as a cooling
mechanism of neutron stars. It is conventionally known
that, in the 2SC phase, the existence of ungapped quarks
opens a large phase space for neutrino emission, leading to
a too-fast cooling as compared to the astrophysical data
[49]. The 2SC Kondo effect may serve as a mechanism to
suppress the emissivity and give a cooling rate closer to the

5The formation of a bound state/condensate may give rise to a
pole in the Bethe-Salpeter amplitude (cf. an analogous structure
in the Cooper pairing [48]), suggesting that the scattering
ungapped quarks have off-shell momenta on the external lines.
The natural scales of the off-shellness and binding energy are
given by the Kondo scale (cf. Ref. [47]) which is the emergent
and smallest scale in our analysis as shown in Eq. (43). The off-
shellness or deviation from the Fermi surface below the emergent
scale do not change the form of the logarithm that drives the
renormalization flow from the ultraviolet to the Landau pole. This
observation, a posteriori, justifies our setup of the kinematics
with the ungapped-quark momenta on the Fermi surface.
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data. This calls for a more detailed investigation in the
future.
Besides, we would like to mention a new possibility that

ultracold atoms could serve as a designed platform for
studying quantum many-body physics. Realization of
“color superconductivity” has been discussed with fer-
mionic atoms carrying colorlike internal d.o.f. [50–53].
Those models, however, do not have “gluons.” Although
the 2SC Kondo effect does not necessarily need dynamical
gluon exchanges, which can be substituted by contact
interactions, a non-Abelian matrix on each interaction
vertex is an indispensable ingredient. While Cooper pairing
with a “color-flipping” effect was recently discussed
[54], a noncommutative property is yet more demanding.
Nevertheless, the direction for ultracold atoms deserves
further study. It may also be worth mentioning that
realization of the Kondo effect [55–58] and Shiba state
[59–61], a mixture of impurity and superconducting states,
was discussed in terms of ultracold atoms.

ACKNOWLEDGMENTS

The authors thank Sho Ozaki and Dirk Rischke for
useful discussions. This work is partly supported by the
China Postdoctoral Science Foundation under Grants
No. 2016M590312 and No. 2017T100266 (K. H.), the
Young 1000 Talents Program of China, and the NSFC
under Grants No. 11535012 and No. 11675041 (X. G. H.).
R. D. P. is funded by the U.S. Department of Energy for
support under Contract No. DE-SC0012704.

APPENDIX A: EFFECTIVE FIELD THEORIES

In this appendix, we briefly summarize the basic proper-
ties of the high-density and heavy-quark EFTs at the
leading order of the expansions with respect to a large
chemical potential 1=μ and a heavy-quark mass 1=mH,
respectively.

1. High-density EFT

For a given Fermi velocity, the corresponding plane wave
is factorized as

ψðxÞ ¼
X
vF

eiμvF ·x
Z
l≪μ

d4l
ð2πÞ4 e

−ilμxμψ vFðlÞ; ðA1Þ

where ψ vFðlÞ is the field for low-energy excitations (in the
momentum space). Plugging the above decomposition into
the Lagrangian, one gets

L ¼ ψ̄ðxÞði=Dþ μγ0ÞψðxÞ
¼

X
vF

ψ̄ vFðxÞði=Dþ μ=vFþÞψ vFðxÞ; ðA2Þ

where vμF� ≡ ð1;�vFÞ. The kinetic term in Eq. (A2) yields
not only the one in Eq. (2) but also the other three terms

ψ̄−ði=Dþ =vμFþÞψ− ¼ ψ̄−ðivμF−Dμ þ 2μÞγ0ψ−; ðA3aÞ

ψ̄�ði=Dþ =vμFþÞψ∓ ¼ ψ̄�ðiγμ⊥DμÞψ∓; ðA3bÞ

where ψ�ðx; vFÞ≡ P�ψðx; vFÞ, γμk ≡ ðγ0; ðvF · γÞvFÞ, and
γμ⊥ ≡ γμ − γμk. From Eq. (A3a), the antiparticle states are

gapped by 2μ, so that those excitations are highly suppressed
in the dense system. When l⊥ is smaller than the gap 2μ in
Eq. (A3b), the mixing between the particle and antiparticle
states is also suppressed.
Here are some basic properties of the projection

operators:

P�P� ¼P�; P�P∓¼ 0; P†
� ¼P�;

=vF� ¼ 2γ0P∓; P�γ
μ
k ¼ vμF∓γ0P∓; P�γ

μ
⊥¼ γμ⊥P�;

γ⊥μv
μ
F� ¼ ðγ− γkÞμvμF� ¼∓ðγ · vFÞð1− v2FÞ¼ 0: ðA4Þ

By using the identities, we find

P�γμP∓ ¼ vμF∓P�γ0P∓; ðA5aÞ

P�γμP� ¼ P�γ
μ
⊥P�: ðA5bÞ

2. Heavy-quark EFT

We also briefly summarize the heavy-quark effective
field theory at the leading order [62]. We shall decompose
the heavy-quark momentum as

pμ ¼ mHv
μ
H þ kμ; ðA6Þ

where the velocity is normalized as v2H ¼ 1. Since excita-
tions of the antiparticle states are highly suppressed by
1=mH, it is natural to introduce operators

Q� ¼ ð1� =vHÞ=2; ðA7Þ

which, in the rest frame (vH ¼ 0), project out the particle
and antiparticle states. Here are some basic properties of the
projection operators

Q�Q� ¼Q�; Q�Q∓ ¼ 0;

Q�γμQ� ¼�vμQQ�; Q�γμQ∓¼ðγμ�vμQÞQ∓: ðA8Þ

To get these identities, we used

=vH=vH ¼ 1; =vHγμ=vH ¼ 2vμH=vH − γμ: ðA9Þ

Assuming that the on-shell momentum mHv
μ
H does not

change in the low-energy dynamics, we factorize the
corresponding plane wave as

Ψ�ðxÞ≡ eimHv
μ
HxμQ�ΨðxÞ: ðA10Þ
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Then, we have

Ψ ¼ e−imHv
μ
HxμðΨþ þ Ψ−Þ: ðA11Þ

Therefore, by using the identities (A8), the kinetic term of
the heavy quark is decomposed as

L ¼ Ψ̄ði=D −mHÞΨ ≃ Ψ̄þðivμHDμÞΨþ: ðA12Þ

At the leading order, the interaction vertex does not
contain the gamma matrix, because the magnetic moment
is suppressed by 1=mH. The free HQ propagator is read
off as

SHðk; vHÞ ¼
i

vμHkμ þ iε
Qþ: ðA13Þ

[1] J. Kondo, Resistance minimum in dilute magnetic alloys,
Prog. Theor. Phys. 32, 37 (1964).

[2] P. W. Anderson, A poor man’s derivation of scaling laws for
the Kondo problem, J. Phys. C 3, 2436 (1970).

[3] P. W. Anderson, G. Yuval, and D. R. Hamann, Exact results
in the Kondo problem. II. Scaling theory, qualitatively
correct solution, and some new results on one-dimensional
classical statistical models, Phys. Rev. B 1, 4464 (1970).

[4] K. G. Wilson, The renormalization group: Critical phenom-
ena and theKondo problem, Rev.Mod. Phys. 47, 773 (1975).

[5] J. Polchinski, Effective field theory and the Fermi surface, in
Theoretical Advanced Study Institute (TASI 92): From
Black Holes and Strings to Particles Boulder, Colorado,
1992 (World Scientific, Singapore, 1992), pp. 0235–0276;
J. Polchinski, Effective field theory and the fermi surface,
arXiv:hep-th/9210046.

[6] K. Hattori, K. Itakura, and S. Ozaki, Strong-field physics in
QED and QCD: From fundamentals to applications (to be
published).

[7] S. Yasui and K. Sudoh, Heavy-quark dynamics for charm
and bottom flavor on the Fermi surface at zero temperature,
Phys. Rev. C 88, 015201 (2013).

[8] K. Hattori, K. Itakura, S. Ozaki, and S. Yasui, QCD Kondo
effect: Quark matter with heavy-flavor impurities, Phys.
Rev. D 92, 065003 (2015).

[9] T. Kanazawa and S. Uchino, Overscreened Kondo effect,
(color) superconductivity and Shiba states in Dirac metals
and quark matter, Phys. Rev. D 94, 114005 (2016).

[10] S. Yasui, K. Suzuki, and K. Itakura, Kondo phase diagram
of quark matter, Nucl. Phys. A983, 90 (2019).

[11] S. Yasui, Kondo cloud of single heavy quark in cold and
dense matter, Phys. Lett. B 773, 428 (2017).

[12] K. Suzuki, S. Yasui, and K. Itakura, Interplay between chiral
symmetry breaking and the QCD Kondo effect, Phys. Rev.
D 96, 114007 (2017).

[13] S. Yasui, K. Suzuki, and K. Itakura, Topology and stability
of the Kondo phase in quark matter, Phys. Rev. D 96,
014016 (2017).

[14] T. Kimura and S. Ozaki, Fermi/non-Fermi mixing in SUðNÞ
Kondo effect, J. Phys. Soc. Jpn. 86, 084703 (2017).

[15] T. Kimura and S. Ozaki, Conformal field theory analysis
of the QCD Kondo effect, Phys. Rev. D 99, 014040
(2019).

[16] S. Yasui and S. Ozaki, Transport coefficients from the QCD
Kondo effect, Phys. Rev. D 96, 114027 (2017).

[17] J. C. Macias and F. S. Navarra, Kondo QCD effect in stellar
matter, arXiv:1901.01623.

[18] S. Ozaki, K. Itakura, and Y. Kuramoto, Magnetically
induced QCD Kondo effect, Phys. Rev. D 94, 074013
(2016).

[19] R. Rapp, T. Schaefer, E. V. Shuryak, and M. Velkovsky,
Diquark Bose Condensates in High Density Matter and
Instantons, Phys. Rev. Lett. 81, 53 (1998).

[20] M. G. Alford, K. Rajagopal, and F. Wilczek, QCD at finite
baryon density: Nucleon droplets and color superconduc-
tivity, Phys. Lett. B 422, 247 (1998).

[21] I. A. Shovkovy, Two lectures on color superconductivity,
Found. Phys. 35, 1309 (2005).

[22] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schafer,
Color superconductivity in dense quark matter, Rev. Mod.
Phys. 80, 1455 (2008).

[23] D. H. Rischke, D. T. Son, and M. A. Stephanov, Asymptotic
Deconfinement in High Density QCD, Phys. Rev. Lett. 87,
062001 (2001).

[24] D. H. Rischke, Debye screening and Meissner effect in a
two flavor color superconductor, Phys. Rev. D 62, 034007
(2000).

[25] R. Casalbuoni, R. Gatto, M. Mannarelli, and G. Nardulli,
Effective gluon interactions in the color superconductive
phase of two flavor QCD, Phys. Lett. B 524, 144
(2002).

[26] D. K. Hong, An effective field theory of QCD at high
density, Phys. Lett. B 473, 118 (2000).

[27] D. K. Hong, Aspects of high density effective theory in
QCD, Nucl. Phys. B582, 451 (2000).

[28] R. Casalbuoni, R. Gatto, and G. Nardulli, Dispersion laws
for in-medium fermions and gluons in the CFL phase of
QCD, Phys. Lett. B 498, 179 (2001); Erratum 517, 483(E)
(2001).

[29] S. R. Beane, P. F. Bedaque, and M. J. Savage, Meson masses
in high density QCD, Phys. Lett. B 483, 131 (2000).

[30] T. Schafer, Hard loops, soft loops, and high density effective
field theory, Nucl. Phys. A728, 251 (2003).

[31] N. J. Evans, S. D. H. Hsu, and M. Schwetz, Nonperturbative
couplings and color superconductivity, Phys. Lett. B 449,
281 (1999).

EMERGENT QCD KONDO EFFECT IN TWO-FLAVOR COLOR … PHYS. REV. D 99, 094044 (2019)

094044-11

https://doi.org/10.1143/PTP.32.37
https://doi.org/10.1088/0022-3719/3/12/008
https://doi.org/10.1103/PhysRevB.1.4464
https://doi.org/10.1103/RevModPhys.47.773
http://arXiv.org/abs/hep-th/9210046
https://doi.org/10.1103/PhysRevC.88.015201
https://doi.org/10.1103/PhysRevD.92.065003
https://doi.org/10.1103/PhysRevD.92.065003
https://doi.org/10.1103/PhysRevD.94.114005
https://doi.org/10.1016/j.nuclphysa.2018.12.025
https://doi.org/10.1016/j.physletb.2017.08.066
https://doi.org/10.1103/PhysRevD.96.114007
https://doi.org/10.1103/PhysRevD.96.114007
https://doi.org/10.1103/PhysRevD.96.014016
https://doi.org/10.1103/PhysRevD.96.014016
https://doi.org/10.7566/JPSJ.86.084703
https://doi.org/10.1103/PhysRevD.99.014040
https://doi.org/10.1103/PhysRevD.99.014040
https://doi.org/10.1103/PhysRevD.96.114027
http://arXiv.org/abs/1901.01623
https://doi.org/10.1103/PhysRevD.94.074013
https://doi.org/10.1103/PhysRevD.94.074013
https://doi.org/10.1103/PhysRevLett.81.53
https://doi.org/10.1016/S0370-2693(98)00051-3
https://doi.org/10.1007/s10701-005-6440-x
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/RevModPhys.80.1455
https://doi.org/10.1103/PhysRevLett.87.062001
https://doi.org/10.1103/PhysRevLett.87.062001
https://doi.org/10.1103/PhysRevD.62.034007
https://doi.org/10.1103/PhysRevD.62.034007
https://doi.org/10.1016/S0370-2693(01)01370-3
https://doi.org/10.1016/S0370-2693(01)01370-3
https://doi.org/10.1016/S0370-2693(99)01472-0
https://doi.org/10.1016/S0550-3213(00)00330-8
https://doi.org/10.1016/S0370-2693(00)01390-3
https://doi.org/10.1016/S0370-2693(01)01003-6
https://doi.org/10.1016/S0370-2693(01)01003-6
https://doi.org/10.1016/S0370-2693(00)00606-7
https://doi.org/10.1016/j.nuclphysa.2003.08.028
https://doi.org/10.1016/S0370-2693(99)00093-3
https://doi.org/10.1016/S0370-2693(99)00093-3


[32] N. J. Evans, S. D. H. Hsu, and M. Schwetz, An effective
field theory approach to color superconductivity at high
quark density, Nucl. Phys. B551, 275 (1999).

[33] D. T. Son, Superconductivity by long range color magnetic
interaction in high density quark matter, Phys. Rev. D 59,
094019 (1999).

[34] T. Schafer and F. Wilczek, High density quark matter and
the renormalization group in QCD with two and three
flavors, Phys. Lett. B 450, 325 (1999).

[35] S. D. H. Hsu and M. Schwetz, Magnetic interactions, the
renormalization group and color superconductivity in high
density QCD, Nucl. Phys. B572, 211 (2000).

[36] V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Dimen-
sional reduction and dynamical chiral symmetry breaking
by a magnetic field in (3þ 1)-dimensions, Phys. Lett. B
349, 477 (1995).

[37] K. Fukushima and J. M. Pawlowski, Magnetic catalysis in
hot and dense quark matter and quantum fluctuations, Phys.
Rev. D 86, 076013 (2012).

[38] K. Hattori, K. Itakura, and S. Ozaki, Anatomy of the
magnetic catalysis by renormalization-group method, Phys.
Lett. B 775, 283 (2017).

[39] J.-P. Blaizot and J.-Y. Ollitrault, Collective fermionic ex-
citations in systems with a large chemical potential, Phys.
Rev. D 48, 1390 (1993).

[40] C. Manuel, Hard dense loops in a cold non-Abelian plasma,
Phys. Rev. D 53, 5866 (1996).

[41] R. D. Pisarski and D. H. Rischke, Superfluidity in a model
of massless fermions coupled to scalar bosons, Phys. Rev. D
60, 094013 (1999).

[42] M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory (CRC Press, London, 1995).

[43] R. D. Pisarski and D. H. Rischke, Gaps and critical temper-
ature for color superconductivity, Phys. Rev. D 61, 051501
(2000).

[44] R. D. Pisarski and D. H. Rischke, Color supercondu-
ctivity in weak coupling, Phys. Rev. D 61, 074017
(2000).

[45] Y. Nagaoka, Self-consistent treatment of Kondo’s effect in
dilute alloys, Phys. Rev. 138, A1112 (1965).

[46] K. Yosida, Bound state due to the s − d exchange inter-
action, Phys. Rev. 147, 223 (1966).

[47] K. Yamada, Electron Correlation in Metals (Cambridge
University Press, Cambridge, England, 2010).

[48] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics
(Dover Publication, New York, 2012).

[49] P. Jaikumar, C. D. Roberts, and A. Sedrakian, Direct Urca
neutrino rate in colour superconducting quark matter, Phys.
Rev. C 73, 042801 (2006).

[50] Á. Rapp, G. Zaránd, C. Honerkamp, and W. Hofstetter,
Color Superfluidity and “Baryon” Formation in Ultracold
Fermions, Phys. Rev. Lett. 98, 160405 (2007).

[51] R. W. Cherng, G. Refael, and E. Demler, Superfluidity and
Magnetism in Multicomponent Ultracold Fermions, Phys.
Rev. Lett. 99, 130406 (2007).

[52] K. Maeda, G. Baym, and T. Hatsuda, Simulating Dense
QCD Matter with Ultracold Atomic Boson-Fermion
Mixtures, Phys. Rev. Lett. 103, 085301 (2009).

[53] T. Ozawa and G. Baym, Population imbalance and pairing
in the BCS-BEC crossover of three-component ultracold
fermions, Phys. Rev. A 82, 063615 (2010).

[54] D. M. Kurkcuoglu and C. A. R. Sá de Melo, Color super-
fluidity of neutral ultracold fermions in the presence of color-
flip and color-orbit fields, Phys. Rev. A 97, 023632 (2018).

[55] J. Bauer, C. Salomon, and E. Demler, Realizing a
Kondo-Correlated State with Ultracold Atoms, Phys. Rev.
Lett. 111, 215304 (2013).

[56] Y. Nishida, Su(3) Orbital Kondo Effect with Ultracold
Atoms, Phys. Rev. Lett. 111, 135301 (2013).

[57] Y. Nishida, Transport measurement of the orbital Kondo
effect with ultracold atoms, Phys. Rev. A 93, 011606 (2016).

[58] M. Nakagawa, N. Kawakami, and M. Ueda, Non-Hermitian
Kondo Effect in Ultracold Alkaline-Earth Atoms, Phys. Rev.
Lett. 121, 203001 (2018).

[59] E. Vernier, D. Pekker, M.W. Zwierlein, and E. Demler,
Bound states of a localized magnetic impurity in a super-
fluid of paired ultracold fermions, Phys. Rev. A 83, 033619
(2011).

[60] L. Jiang, L. O. Baksmaty, H. Hu, Y. Chen, and H. Pu, Single
impurity in ultracold Fermi superfluids, Phys. Rev. A 83,
061604 (2011).

[61] Y. Ohashi, Formation of magnetic impurities and pair-
breaking effect in a superfluid fermi gas, Phys. Rev. A
83, 063611 (2011).

[62] A. V. Manohar and M. B. Wise, Heavy quark physics,
Cambridge Monogr. Part. Phys., Nucl. Phys., Cosmol. 10,
1 (2000).

HATTORI, HUANG, and PISARSKI PHYS. REV. D 99, 094044 (2019)

094044-12

https://doi.org/10.1016/S0550-3213(99)00175-3
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1103/PhysRevD.59.094019
https://doi.org/10.1016/S0370-2693(99)00162-8
https://doi.org/10.1016/S0550-3213(99)00655-0
https://doi.org/10.1016/0370-2693(95)00232-A
https://doi.org/10.1016/0370-2693(95)00232-A
https://doi.org/10.1103/PhysRevD.86.076013
https://doi.org/10.1103/PhysRevD.86.076013
https://doi.org/10.1016/j.physletb.2017.11.004
https://doi.org/10.1016/j.physletb.2017.11.004
https://doi.org/10.1103/PhysRevD.48.1390
https://doi.org/10.1103/PhysRevD.48.1390
https://doi.org/10.1103/PhysRevD.53.5866
https://doi.org/10.1103/PhysRevD.60.094013
https://doi.org/10.1103/PhysRevD.60.094013
https://doi.org/10.1103/PhysRevD.61.051501
https://doi.org/10.1103/PhysRevD.61.051501
https://doi.org/10.1103/PhysRevD.61.074017
https://doi.org/10.1103/PhysRevD.61.074017
https://doi.org/10.1103/PhysRev.138.A1112
https://doi.org/10.1103/PhysRev.147.223
https://doi.org/10.1103/PhysRevC.73.042801
https://doi.org/10.1103/PhysRevC.73.042801
https://doi.org/10.1103/PhysRevLett.98.160405
https://doi.org/10.1103/PhysRevLett.99.130406
https://doi.org/10.1103/PhysRevLett.99.130406
https://doi.org/10.1103/PhysRevLett.103.085301
https://doi.org/10.1103/PhysRevA.82.063615
https://doi.org/10.1103/PhysRevA.97.023632
https://doi.org/10.1103/PhysRevLett.111.215304
https://doi.org/10.1103/PhysRevLett.111.215304
https://doi.org/10.1103/PhysRevLett.111.135301
https://doi.org/10.1103/PhysRevA.93.011606
https://doi.org/10.1103/PhysRevLett.121.203001
https://doi.org/10.1103/PhysRevLett.121.203001
https://doi.org/10.1103/PhysRevA.83.033619
https://doi.org/10.1103/PhysRevA.83.033619
https://doi.org/10.1103/PhysRevA.83.061604
https://doi.org/10.1103/PhysRevA.83.061604
https://doi.org/10.1103/PhysRevA.83.063611
https://doi.org/10.1103/PhysRevA.83.063611
https://doi.org/10.1017/CBO9780511529351
https://doi.org/10.1017/CBO9780511529351

