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Abstract. We investigate a population-genetic model with a temporally-fluctuating

sawtooth fitness landscape. We numerically show that a counter-intuitive behavior

occurs where the rate of evolution of the system decreases as selection pressure increases

from zero. This phenomenon is understood by analogy with absolute negative mobility

in particle flow. A phenomenological explanation about the direction of evolution is

also provided.
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1. Introduction

Evolution of biological systems generally occurs in unsteady environments [1]. For

example, climate change leads to selection of different genotypes [2]. Accordingly,

population genetic theories in unsteady environments recently attract much attention

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. Especially, in Refs. [3, 9, 16],

adaptation of population to fluctuating environments is studied in the context of

information sensing. In Refs. [6, 8, 15], concepts of non-equilibrium statistical

mechanics are applied to population genetics. It has been known that population genetic

theory of infinite-size non-interacting populations in fluctuating environments is formally

equivalent to equilibrium statistical mechanics of directed polymers [19], where the time

evolution equation of population size of each genotype is mathematically equivalent

to transfer matrix equation of directed polymers, and effective fitness of population

corresponds to free energy of polymers. In Refs. [7, 11, 14, 17, 18], transition between

various types of response to environments have been reported. In addition, there are also

many studies on population genetic theory of finite-size population in specific fluctuating

environments [5, 20, 10, 12, 13]. In particular, it was found that temporally varying

environments can speed up evolution [4]. Finiteness of population size causes genetic

drift [21, 22], and various behaviors can be observed.

One of the purpose of population genetic theory is clarifying the relation between

the speed of evolution v and the strength of selection pressure s [23], where v is defined as

the rate of increase in populaton-averaged logarithmic fitness divided by s. In evolution

in a static environment, it is naively expected that stronger selection leads to faster

evolution, that is,

dv

ds
> 0 (∀s). (1)

In fact, this is true for evolution driven by mutation in a smooth static fitness landscape

[24]. However, a previous study revealed that this is not always the case, and stronger

selection pressure can slow down evolution driven by recombination and migration even

if a fitness landscape is static and smooth [25], that is,

dv

ds
< 0 (∃s). (2)

Such behavior can also be observed for evolution driven by mutation in a rugged static

fitness landscape. It should be noted that this phenomenon can be understood by

analogy with negative differential mobility in non-equilibrium particle flow, when we

regard the speed of evolution and the strength of selection pressure as particle current

and driving force, respectively. In studies of particle flow, there is more dramatic

phenomenon, called absolute negative mobility (ANM) [26, 27, 28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38], which attracts much interest in the context of Brownian ratchet

[39]. In ANM, direction of particle current becomes opposite to the direction of driving

force even when driving force is infinitely small. ANM has been observed in coupled

stochastic equations [26, 27, 28, 29, 30], non-Markovian random walk [31], a single
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Brownian particle [32, 33, 34, 35], an underdamped Brownian particle [36], and a

Brownian elliptic disk [37]. ANM occurs even around equilibrium states [38]. A natural

question is whether there is a population genetic phenomenon corresponding to ANM,

that is,

dv

ds

∣∣∣∣
s=+0

< 0. (3)

In this study, we propose a population genetic model which exhibits a phenomenon

similar to ANM. In this model, we consider an oscillating environment where favorable

genotype periodically changes, as seasonal variations in climate. We numerically show

that the rate of evolution of the system decreases as selection pressure increases from

zero.

We remark that the phenomenon reported in this paper is different from other

biological ratchets. In population genetics, process called Muller’s ratchet is known

[40, 41, 42, 43, 44, 45, 46]. In Muller’s ratchet, deleterious mutations are accumulated

in asexual populations via genetic drift, and this mechanism is considered to be related

to one of the origins of sexual reproduction. However, in Muller’s ratchet, evolution in

a static environment is considered, and, in particular, although the speed of evolution v

is negative, Eq. (1) still holds (that is, stronger selection prevents deleterious mutations

from fixing). Therefore, Muller’s ratchet is completely different from ANM-like behavior

in this paper. Another well-known ratchet in evolutionary biology is neutral evolutionary

ratchet [47], which is one of the scenarios about why cells obtained complexity. In this

context, the word “ratchet” simply means unidirectional behavior, and it is not directly

related to Brownian ratchet. Furthermore, another ratchet-like behavior was recently

reported [48], where evolutionary behavior of population with a rugged fitness landscape

in a fluctuating environment is investigated. Although this situation is similar to that of

our study, the result is opposite: In the setup of Ref. [48], fluctuation of environments

enhances the probability that population reaches the fittest genotypes, whereas in our

setup, fitness decreases in ANM-like region. Furthermore, the main focus of our paper

is s dependence of v. Therefore, to the best of our knowledge, the result similar to that

of our paper has not been reported yet in the context of population genetics.

The paper is organized as follows. In section 2, we introduce a population genetic

model which describes evolution in an oscillating environment. In section 3, we provide

numerical results when an environment is static. In section 4, we provide numerical

results for an oscillating environment, which is similar to ANM. An intuitive explanation

is also provided in the section. In section 5, we provide a phenomenological explanation

why evolution to the direction decreasing fitness occurs in this model. In section 6, we

investigate whether ANM-like behavior also occurs when the rate of evolution is defined

by fitness flux [6]. The effect of double mutation is also studied in the section. Section

7 is devoted to concluding remarks.
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2. Model

We consider a population-genetic model with N asexual individuals. Genotype of

individual j ∈ {1, · · · , N} is described as gj. We consider the situation that genotype

space is discrete and one-dimensional, that is, gj ∈ Z. The time evolution of this system

consists of two steps, that is, selection and mutation. We first define a function ϕ as

ϕ(g) ≡

{
ϕ1

g
2
+ ϕ2

2
(g = 2m)

ϕ1
g−1
2

− ϕ2

2
(g = 2m+ 1),

(4)

where m ∈ Z and ϕ1 and ϕ2 are some constants with ϕ1 > 0 and ϕ2 > 0. We assume

that an environment is fluctuating and the fitness of genotype g at generation t ∈ Z is

described as

Wt(g) =

{
es0ϕ(g) × esϕ(g) ((t mod τ) < τ

2
)

e−s0ϕ(g) × esϕ(g) ((t mod τ) ≥ τ
2
),

(5)

where s0 > 0 and τ is some positive even number describing a period of environmental

oscillation. The parameter s corresponds to effective selection pressure because

geometric mean of fitness over one period of environmental oscillation is esϕ(g). We

also call esϕ(g) effective fitness. In selection step, N individuals in the next generation

are independently sampled according to the probability distribution

P (j) =
Wt(gj)∑N
k=1Wt(gk)

. (6)

In mutation step, genotype of each individual changes with transition probability

T (g|g′) = (1− 2µ) δg,g′ + µδg,g′+1 + µδg,g′−1. (7)

When s > 0, effective fitness esϕ(g) is greater for larger g, and it is simply expected that

the system evolves toward larger g on average.

We set parameters as µ = 10−2, ϕ1 = 0.1, ϕ2 = 0.02 and τ = 8, and investigate

behavior for various s0 and N . We display examples of fitness landscape Wt(g) in Fig.

1. A fitness landscape is rugged for both halves of one period τ . We can see that

when s < s0, evolution toward smaller g is possible in the second half of a period τ . In

contrast, when s > s0, fitness is always greater for larger g. Because the latter case leads

to trivial behavior, we mainly focus on the former case s < s0. Below ⟨· · · ⟩ describes

both population average and ensemble average. Ensemble average is calculated by using

10000 realizations. The initial condition is gj = 0 for all j.

3. Preliminaries

Because effective fitness esϕ(g) is greater for larger g when we ignore bumps, the quantity

v =
d ⟨g⟩
dt

. (8)

can be regarded as the speed of evolution, instead of d ⟨ϕ(g)⟩ /dt.
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Figure 1. Logarithm of fitness landscape, logWt(g), for (s, s0) = (0.5, 1.0) (left)

and (s, s0) = (2.0, 1.0) (right). Arithmetic mean of the two graphs in each figure is

logarithm of the effective fitness, that is, sϕ(g).
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Figure 2. (Left) The time evolution of ⟨g⟩ for (N, s0) = (10, 0). (Right) s dependence

of v for (N, s0) = (10, 0).

Before studying the above model, we first investigate the case s0 = 0, that is, an

environment is static. In the left side of Fig. 2, we have displayed the time evolution

of ⟨g⟩ at (N, s0) = (10, 0). We can see that ⟨g⟩ linearly increases with t for s > 0. We

also plot the slope of ⟨g⟩, which is calculated by fitting a linear equation vt + b to the

graph by the least squares method, in the right side of Fig. 2. We can see that v is

not monotonic function of s. This behavior is similar to negative differential mobility

as Eq. (2). The mechanism of such behavior is as follows. When s is small, selection is

moderate and individuals with larger g are selected. However, when s is large enough,

all individuals are trapped to a local maximum, and the escape probability from the

local maximum decreases with s. Therefore, behavior like negative differential mobility

is observed even in static landscape case.
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Figure 3. (Left) The time evolution of ⟨g⟩ for (N, s0) = (100, 1.0). (Right) s

dependence of v for (N, s0) = (100, 1.0).

4. Numerical results

We investigate s dependence of v for various (N, s0). It should be noted that v = 0 for

s = 0 because two directions are symmetric. We also remark that v → 0 for s → ∞,

since all individuals are trapped to g = 0 (in the first half of a period) or g = −1 (in the

second half of a period) in the limit s → ∞. Therefore, negative differential mobility-

like behavior is always expected to occur for large s region because of the ruggedness

of a fitness landscape, as in the case s0 = 0 (section 3). In this paper, we focus on the

behavior of v near s = 0. Naively one may expect that v is an increasing function of s

near s = 0 because evolution effectively selects individuals with larger fitness, that is,

larger g. However, we see that this is not necessarily the case.

In the left side of Fig. 3, we have displayed the time evolution of ⟨g⟩ for

(N, s0) = (100, 1.0). We can see that ⟨g⟩ linearly increases with t for s > 0. We

also plot the slope of ⟨g⟩, which is calculated by fitting a linear equation vt + b to the

graph by the least squares method, in the right side of Fig. 3. We can see that v

is increasing function of s near s = 0. In contrast, in the left side of Fig. 4, we have

displayed the time evolution of ⟨g⟩ for (N, s0) = (10, 100.0). We can see that ⟨g⟩ linearly
decreases with t for s > 0. We also plot the slope of ⟨g⟩ in the right side of Fig. 4. We

can see that v is negative for small s, which is ANM-like behavior.

We provide the N -s0 phase diagram in Fig. 5. In this figure, “normal phase”

describes the parameter region where no ANM-like behavior is observed (as in the right

side of Fig. 3). In contrast, “ANM phase” describes the parameter region where ANM-

like behavior is observed (as in the right side of Fig. 4). We find that large enough

s0 is necessary for ANM-like behavior. In addition, population size N should be small

enough for ANM-like behavior to occur.

An intuitive picture of this phenomenon is as follows. As we can see in the left

side of Fig. 1, the absolute value of average slope of a fitness landscape for the first

half of a period is greater than that for the second half of a period. However, the
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Figure 4. (Left) The time evolution of ⟨g⟩ for (N, s0) = (10, 100.0). (Right) s

dependence of v for (N, s0) = (10, 100.0). The straight line is the theoretical prediction

(12) for small s.
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Figure 5. The N -s0 phase diagram. The purple symbol + represents normal phase

and the green symbol × represents ANM phase.

ruggedness of the former is also greater than that of the latter. When selection pressure

is large enough, trapping in local maxima occurs. Individuals can escape trapping by

genetic drift, which occurs for small population size, and this effect is stronger for lower

ruggedness case, that is, the second half of a period. Therefore, evolution to smaller g

occurs for small N and large s0. It should be noted that this mechanism is similar to

ANM in particle flow in an oscillating external field [32].

We can also interpret this phenomenon in the context of the results for static

landscape case in section 3. When τ is large enough, the speed of evolution v is roughly

estimated as

v ≃ 1

2
[vstatic (s0 + s)− vstatic (s0 − s)] , (9)

where vstatic (s) is the speed of evolution in a static environment when selection pressure

is s. As we saw in section 3, vstatic (s) exhibits negative differential mobility-like behavior.

Therefore, for large enough s0 and small s, vstatic (s0 − s) > vstatic (s0 + s) holds, and v
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becomes negative.

5. Analysis

We consider weak-mutation strong-selection region, where s0ϕ1 ≫ 1, s0ϕ2 ≫ 1 and

µN ≪ 1. In this region, population is localized to one local maximum in each generation,

and the probability that evolution occurs to each direction is dominated by the tunneling

probability through a local minimum by mutation. Because we are interested in the

behavior of v around s ≃ 0, we assume that s ≪ s0.

Since a rough approximation for v is obtained by Eq. (9), we first estimate

vstatic(s0). In Ref. [49], the rate of evolution in a static rugged fitness landscape with

one valley genotype and one escape genotype in weak-mutation strong-selection region

was estimated. For our case, the result is

vstatic(s0) ≃ µ
Nµ

1− e−s0ϕ2

1− e−2 1
2
s0ϕ1

1− e−2N 1
2
s0ϕ1

, (10)

where we have used the fact that our model is haploid. The second factor comes from

mutation-selection balance between an original genotype and a valley genotype [50], and

the third factor is the fixation probability of an escape genotype [51]. This expression

means that, because of mutation-selection balance, Nµ/(1 − e−s0ϕ2) individuals are in

a valley on average, and when mutation occurs to these individuals, escape from the

valley occurs. Since we consider the situation ϕ2 < ϕ1 < Nϕ1, Eq. (10) is approximated

as

vstatic(s0) ≃ Nµ2(1 + e−s0ϕ2). (11)

Therefore, from Eq. (9) we finally obtain for small s

v ≃ −Nµ2e−s0ϕ2sϕ2, (12)

which is negative.

In the right side of Fig. 4, we display the theoretical prediction (12). We find that

Eq. (12) does not quantitatively estimate our numerical results. One possible cause of

this discrepancy is that the period of oscillation τ is small in our numerical simulation

and the oscillation increases the escape probability. In order to check this possibility,

we numerically calculate the right-hand side of (9) directly, which corresponds to the

case τ = 10000 and the phase of an environment is given at random. We display the

numerical results in Fig. 6. We can find that |v| is smaller compared with that in Fig.

4 and the numerical results are more consistent with the theoretical prediction (12).

We emphasize that ANM-like behavior still occurs for this case. Therefore, we conclude

that the smallness of τ enhances escape from local maxima.

Although we here consider only weak-mutation strong-selection region, our

numerical results (Fig. 5) suggest that ANM-like behavior is observed in broader

parameter region.
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Figure 6. The right-hand side of (9) for (N, s0) = (10, 100.0). The straight line is the

theoretical prediction (12) for small s.

6. Discussion

6.1. Fitness flux

In Ref. [6], it was pointed out that, in fluctuating environments, the rate of evolution is

not simply the increase of fitness, but fitness flux has to be considered, which satisfies

integral fluctuation theorem [52]. In our discrete-time setup, the fitness flux is defined

as

Φ(t) ≡
t∑

t′=0

∑
g

∆xt′(g) logWt′(g), (13)

where xt(g) is the frequency of genotype g at generation t, and ∆xt(g) ≡ xt+1(g)−xt(g).

We would like to investigate whether the rate of increase of the fitness flux

V ≡ d ⟨Φ⟩
dt

(14)

is an increasing function of the selection pressure s or not.

In the left side of Fig. 7, we display the time evolution of ⟨Φ⟩ at (N, s0) = (10, 100.0)

for various s. We can find that ⟨Φ⟩ is an increasing function of t, and in particular, linear

in t. It should be noted that ⟨Φ⟩ has positive slope even when s = 0; this is because

adaptation to an environment occurs for each half of a period. In the right side of Fig.

7, we display s dependence of V , which is calculated by fitting a linear equation V t+ b

to the graph of ⟨Φ⟩ by the least squares method. We observe that V is a monotonically

decreasing function of s. Therefore, we conclude that absolute negative mobility occurs

even in the rate of increase of fitness flux V .

6.2. Effect of double mutation

The ANM-like behavior reported in this paper results from trapping in local maxima. A

natural question is whether this behavior is destroyed by small probability of a double
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Figure 8. s dependence of v for (N, s0) = (10, 100.0) and µ2 = 10−3.

mutation, which enables individuals to escape directly from local maxima. In order to

investigate this effect, we study the same model with transition probability

T (g|g′) = (1− 2µ− 2µ2) δg,g′ + µ (δg,g′+1 + δg,g′−1) + µ2 (δg,g′+2 + δg,g′−2) (15)

instead of Eq. (7). We set double-mutation probability µ2 as µ2 = 10−3. In Fig. 8,

we display s dependence of the speed of evolution v for (N, s0) = (10, 100.0). We can

see that ANM-like behavior is still observed as in Fig. 4 even if double mutation occurs

with small probability. We remark that, as µ2 further increases, ANM-like behavior

will be destroyed because individuals can easily escape from local maxima. Theoretical

estimation of the effect of µ2 on v is a future problem.

7. Concluding remarks

In this paper, we proposed a population-genetic model where the speed of evolution

can decrease as selection pressure increases from zero, which has never been reported

elsewhere. This model describes evolution in a temporally-oscillating sawtooth fitness
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landscape. We numerically showed that this behavior occurs when selection is strong

enough and population size is small enough. The mechanism of this phenomenon is

similar to ANM in particle flow. Although complete theoretical analysis has not been

provided yet, we provide intuitive and phenomenological explanation about the direction

of evolution in weak-mutation strong-selection region. We also numerically showed that

ANM-like behavior is observed even when the rate of evolution is defined through the

fitness flux.

Although we considered a specific oscillating landscape where the direction of

evolution in the first half of a period and that in the second half are opposite to each

other, the biological meaning of this model is not clear. Seasonal variations in climate

may be similar to the situation considered in this paper, because favorable genotypes

in two seasons are opposite to each other. In such situation, sϕ(g) can be interpreted

to come from some traits which do not depend on the seasons. Specifying a realistic

situation described by this model is an important future problem.

Another future problem is whether there is a useful definition of efficiency of

evolution. Recently, in non-equilibrium statistical mechanics, a useful definition of

transport efficiency was proposed [53], where entropy production plays a significant

role. Whether similar concept of efficiency can be defined in the speed of evolution

should be studied in future.
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[12] Cvijović I, Good B H, Jerison E R and Desai M M. Fate of a mutation in a fluctuating environment

2015 Proceedings of the National Academy of Sciences 112 E5021–E5028

[13] Hufton P G, Lin Y T, Galla T and McKane A J. Intrinsic noise in systems with switching

environments 2016 Physical Review E 93 052119

[14] Skanata A and Kussell E. Evolutionary phase transitions in random environments 2016 Physical

review letters 117 038104

[15] Sughiyama Y and Kobayashi T J. Steady-state thermodynamics for population growth in

fluctuating environments 2017 Physical Review E 95 012131

[16] Kobayashi T J and Sughiyama Y. Stochastic and information-thermodynamic structures of

population dynamics in a fluctuating environment 2017 Physical Review E 96 012402

[17] Mayer A, Mora T, Rivoire O and Walczak A M. Transitions in optimal adaptive strategies for

populations in fluctuating environments 2017 Physical Review E 96 032412

[18] Wang S and Dai L. Evolving generalists in switching rugged landscapes 2019 PLoS computational

biology 15 e1007320

[19] Kussell E, Leibler S and Grosberg A. Polymer-population mapping and localization in the space

of phenotypes 2006 Physical review letters 97 068101

[20] Otwinowski J, Tanase-Nicola S and Nemenman I. Speeding up evolutionary search by small fitness

fluctuations 2011 Journal of statistical physics 144 367

[21] Hartl D L and Clark A G 1997 Principles of population genetics vol 116 (Sinauer associates

Sunderland, MA)

[22] Sella G and Hirsh A E. The application of statistical physics to evolutionary biology 2005

Proceedings of the National Academy of Sciences 102 9541–9546

[23] Park S C, Simon D and Krug J. The speed of evolution in large asexual populations 2010 Journal

of Statistical Physics 138 381–410

[24] Gillespie J H 2004 Population genetics: a concise guide (JHU Press)

[25] Ueda M, Takeuchi N and Kaneko K. Stronger selection can slow down evolution driven by

recombination on a smooth fitness landscape 2017 PloS one 12 e0183120

[26] Reimann P, Kawai R, Van den Broeck C and Hänggi P. Coupled brownian motors: Anomalous

hysteresis and zero-bias negative conductance 1999 EPL (Europhysics Letters) 45 545

[27] Reimann P, Van den Broeck C and Kawai R. Nonequilibrium noise in coupled phase oscillators

1999 Physical Review E 60 6402

[28] Buceta J, Parrondo J, Van den Broeck C and de La Rubia F. Negative resistance and anomalous

hysteresis in a collective molecular motor 2000 Physical Review E 61 6287

[29] Mangioni S, Deza R and Wio H. Transition from anomalous to normal hysteresis in a system of

coupled brownian motors: A mean-field approach 2001 Physical Review E 63 041115

[30] Cleuren B and Van den Broeck C. Ising model for a brownian donkey 2001 EPL (Europhysics

Letters) 54 1

[31] Cleuren B and Van den Broeck C. Random walks with absolute negative mobility 2002 Physical

Review E 65 030101

[32] Eichhorn R, Reimann P and Hänggi P. Brownian motion exhibiting absolute negative mobility

2002 Physical review letters 88 190601

[33] Eichhorn R, Reimann P and Hänggi P. Paradoxical motion of a single brownian particle: Absolute

negative mobility 2002 Physical Review E 66 066132

[34] Cleuren B and Van den Broeck C. Brownian motion with absolute negative mobility 2003 Physical

Review E 67 055101

[35] Haljas A, Mankin R, Sauga A and Reiter E. Anomalous mobility of brownian particles in a tilted

symmetric sawtooth potential 2004 Physical Review E 70 041107



Absolute negative mobility in evolution 13

[36] Machura L, Kostur M, Talkner P,  Luczka J and Hänggi P. Absolute negative mobility induced by

thermal equilibrium fluctuations 2007 Physical review letters 98 040601

[37] Hänggi P, Marchesoni F, Savel’ev S and Schmid G. Asymmetry in shape causing absolute negative

mobility 2010 Physical Review E 82 041121

[38] Cividini J, Mukamel D and Posch H. Driven tracer with absolute negative mobility 2018 Journal

of Physics A: Mathematical and Theoretical 51 085001

[39] Reimann P. Brownian motors: noisy transport far from equilibrium 2002 Physics reports 361

57–265

[40] Muller H J. The relation of recombination to mutational advance 1964 Mutation

Research/Fundamental and Molecular Mechanisms of Mutagenesis 1 2–9

[41] Haigh J. The accumulation of deleterious genes in a population―muller’s ratchet 1978 Theoretical

population biology 14 251–267

[42] Rouzine I M, Wakeley J and Coffin J M. The solitary wave of asexual evolution 2003 Proceedings

of the National Academy of Sciences 100 587–592
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