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1. Introduction

This paper considers a general market where the traded uncertainty is driven by
a combination of continuous and discrete noise sources. The basic constituents of
the market are a finite number afimary security accounts, each of which contains
units of some primary asset, with all dividend income reinvested. We examine this
model within thebenchmark framework, see Platen (2004a, 2004b, 2004c). This
means that we make only the modest assumptions necessary to ensure the existence
of a growth optimal portfolio (GOP) (see Kelly (1956), Long (1990) and Bajeux-
Besnainou & Portait (1997)) made up of primary security accounts.

The expression of primary security accounts and self-financing portfolios in
units of the GOP is referred to &enchmarking. An important result is that all
non-negative benchmarked primary security accounts and self-financing portfolios
are local martingales under the real-world measure. This leads us to introduce the
concept offair pricing. Here benchmarked contingent claim prices are martingales
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and thus expressed in terms of conditional expectations, computed under the real-
world measure, of their benchmarked pfigo

We believe that fair pricing within the benchmark framewoffets some im-
portant advantages over risk-neutral pricing. If the benchmarked savings account is
a martingale under the real-world measure, then it can be used as a Radon-Nikodym
derivative process tofect a measure transformation from the real-world measure
to an equivalent risk-neutral measure. In this case fair pricing corresponds with
risk-neutral pricing; in fact, for continuous markets, the risk-neutral measure con-
structed in this way is none other than thimimal martingale measure introduced
in Follmer & Schweizer (1991). However, if the benchmarked savings account is
a strict local martingale under the real-world measure, then such a measure trans-
formation is not possible. Empirical evidence indicates that this might be the case;
and so it appears that an alternative to risk-neutral pricing may be justified.

A distinguishing feature of the benchmark approach is that the objects of funda-
mental interest are the benchmarked primary security accounts. Before modelling
their behaviour in detail, we make the simplifying assumption that the GOP is
continuous. This is realistic if the domestic currency is a major global currency.
Particular models for the benchmarked primary security account dynamics arise by
specifying their SDEs. We examine two such models in detalil.

TheMerton model (MM) This is very much the standard market model, with all
parameters constant. It is essentially a modification of the jurfipsion
model introduced in Merton (1976). Each benchmarked primary security
account can be expressed as the product of a driftless geometric Brownian
motion and an independent jump martingale, and is thus itself a martingale.
In particular, the benchmarked savings account is a continuous martingale,
and hence a valid Radon-Nikodym derivative process. Consequently, a mea-
sure transformation to an equivalent risk-neutral measure is feasible, and the
standard risk-neutral pricing theory is applicable.

The minimal market model (MMM) In this case we constrain the parameters
associated with the jump parts of the benchmarked primary security accounts
to be constant. Their continuous parts are modelled as inverted time-
transformed squared Bessel processes of dimension four. Consequently, each
benchmarked primary security account is the product of an inverted time-
transformed squared Bessel process of dimension four and an independent
jump martingale. Since inverted squared Bessel processes of dimension four
are strict local martingales, the benchmarked savings account is not a martin-
gale in the MMM, and hence not a viable Radon-Nikodym derivative process.
Transformation to an equivalent risk-neutral measure is thus not feasible, and
so we advocate fair derivative pricing under the real-world measure.

The diference between the MM and the jumgEdsion model of Merton (1976)
is that we allow primary security accounts to lfeeated by more than one source
of jump risk, but keep the jump ratios fixed, while Merton (1976) considered only
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one source of jump risk, but allowed for random jump ratios. The familiarity of the
MM makes it a good vehicle for illustrating the benchmark approach and the fair
pricing concept.

The MMM was first introduced in Platen (2001). It is “minimal” in the sense
that a time-transformed squared Bessel process of dimension four appears to pro-
vide the simplest description of the discounted GOP, involving only a small num-
ber of parameters, but which is nevertheless consistent with an optimal market
dynamics and certain “stylized empirical facts” about diversified portfolios. We
believe the MMM resonates well with observed market behaviour; in particular, we
think that the possible non-existence of an equivalent risk-neutral measure should
be taken seriously when modelling real markets.

A large part of the paper is devoted to exhibiting the fair pricing approach for
common contingent claims. We compute fair prices using both the MM and the
MMM. In the MM case, our modest ambition is to demonstrate how fair pricing
retrieves the familiar pricing formulas for these instruments. In the case of the
MMM, we wish to exhibit derivative pricing formulas for what we believe is a
realistic market model. Of course, one could apply standard risk-neutral theory to
obtain pricing formulas in the MM, but this would defeat our purpose of illustrating
the fair pricing approach.

The structure of the paper is as follows2 introduces the benchmark model
with jumps in general terms before presenting the MM and the MMM as specifi-
cations;§ 3 examines the pricing of a number of common contingent claims in the
MM and the MMM; andg§ 4 concludes. There are also two appendices. Appendix A
derives expressions for computing fair derivative prices in the MM; and Appendix
B does the same for the MMM.

2. Benchmark Models with Jumps

2.1. Modelling Traded Uncertainty

Let (Q, Ar, A, P) be a filtered probability space, whefe e (0, ) is some
fixed finite time horizon. The probability measutés thought of as describing the
probabilities of observable events, and so we call itrést-world measure. We
assume that the filtratiol = {A; |t € [0, T]} satisfies the usual conditions (see
Karatzas & Shreve (1991, p. 10)). Furthermore, we legislatefaas trivial, in
that it contains only the sets of measure zero and their complements. From now on,
whenever we refer to a filtration, whether implicity or explicitly, it is understood to
be A.

We start by imagining a market witth e N sources of traded uncertainty, rep-
resented by = {WK|t € [0, T]}, fork € {1,...,d}. We take the firstn < d
factors to represent continuously evolving noise, while thedasi factors are as-
sumed to exhibit discontinuous event-driven randomness. The typical assumption
is thatW?, ..., W™ are independent standard Brownian motions. This accounts for
the continuous factors. The discontinuous factW®?, ..., WY are modelled as
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independent compensated point processes. In detal¥let {N¥|t e [0, T]}, for

k e {im+1,...,d}, be independent point processes whose respective intensities
A= (A¥|t € [0,T]}, fork € {m+ 1,...d}, are assumed to be independent, strictly
positive, predictable processes satisfying

fOT AKds< o as, (2.1)
foreachk e {m+1,...,d}. Then we have

we=nNe- [ ikas (2.2)
foreachk e {m+1,...,d}and allt € [0, T].

2.2. TheMarket

We consider a marked = {S; = (S?,...,SY)" |t € [0, T]}, whose components
we describe aprimary security accounts. These are best understood as the accu-
mulated values of investmentsdi+ 1 underlying assets, with all accrued income
reinvestedSP is chosen to representacally riskless savings account, whose value

is given by
t
S = exp{f rsds}, (2.3)
0

forallt € [0, T], wherer = {r¢|t € [0, T]} is @ hon-negative adaptéadterest rate
process. The remainingl security accounts are assumed to evolve according to the
system of SDEs

ds) = sg_{ag dt + Zd: b dVVtk}, (2.4)
k=1

for eachj € {1,...,d} and allt € [0, T], with S(J) > 0. We assume that the interest
rate process, the accumulation rate processa = {& = (af,...,a")" |t € [0, T]},
the generalized volatility matrix process b = {by = [b{*]}\_, |t € [0, T]}, as well as
the intensity processe, fork e {m+1, ..., d}, satisfy the necessary requirements
to ensure that the system (2.4) possesses a unique strong solution.

A properly specified market must preclude appropriately defined arbitrage op-
portunities (se€ 2.7 for a detailed discussion). The following assumption is nec-
essary in order to eliminate the obvious arbitrages that arise when some of the
SDEs (2.4) have the same local martingale terms, Itigréint drift rates (see Platen
(2004e, p. 290)).

Assumption 2.1. The generalized volatility matrix by isinvertible for Lebesgue-
almost every t € [0, T].

Based on Assumption 2.1, we are free to introducentiaeket price of risk
process 6 = {6, = (6},...,69)" |t € [0, T]}, by setting

6 = b (e - 1), (2.5)
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forallt € [0, T], wherel := (1,...,1)". In the light of (2.5), we can reformulate
(2.4) as

d
ds! = sg_{rt dt + Z b (6K dt + dV\/tk)}, (2.6)
k=1

foreachj e {1,...,d} and allt € [0, T].
Let the sequence of stopping t|m@a$)|€N, taking values in [0T], denote the
jump times ofNK, fork € {m+1,...,d}. It then follows from (2.6) that
sl =Sl (1+DbY), 2.7)
T - T

foreachj e {1,...,d}, eachke {m+1,...,d} and alll € N. To ensure that the pri-
mary security accounts are non-negative, we introduce the following assumption.

Assumption 2.2. The generalized volatility matrix process satisfies the condi-
tion _
b > -1, (2.8)

foral je{l,...,d,,ke{m+1,...,d}andt e [0, T].

Note that, forj € {1,...,d}, k € {m+1,...,d} andl € N, if ijk = -1, then

the jth primary secunty account will jump to zero at tlme and remain there
indefinitely; while if bJ = 0, it will not jump at all. Also, negative values bf

correspond with downward jumps, while positive values correspond with upward
jumps.

2.3. Trading Strategies and Wealth Processes

We call a predictable procegs= {5 = (69,...,6%)7|t € [0,T]} atrading
strategy if it is S-integrable (see Protter (2004, p. 163)). Given a trading strategy
§, we interprets; as the number of units of thigh primary security account held at
timet € [0, T], for j € {O,...,d}. A negative value indicates a short position.

Associated with any trading strategys awealth process S° = {S{ |t € [0, T]},
determined by

d
SEIEE (2.9)
=0
forallt € [0, T]. A strategys is calledself-financing if its wealth process satisfies
the SDE .
dsy = >’ slds], (2.10)
j=0
for all t € [0, T]. Intuitively, (2.10) specifies that all changes in wealth are at-
tributable to changes in the primary security account values, and are not due to any

external flows of capital. As is customary, we restrict our attention to self-financing
strategies, and hence omit the phrase “self-financing” altogether.
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Let s be a trading strategy whose corresponding wealth process is almost surely
strictly positive. Then the following fractions are well-defined:

. gl
=gl 2 (2.11)

for eachj € {0,...,d} and allt € [0, T]. Equation (2.11) expresses the fractions

of the total wealth invested in each of the primary security accounts as predictable
stochastic processe$! = (x|t € [0, T]}, for eachj € {0,...,d}. By (2.9) itis

clear that

d
Mt =1, (2.12)
=0

forallt € [0, T]. When representing the trading strategy in terms of these fractions,
condition (2.12) indicates that one of them is redundant. By nominating the savings
account for omission, the process= {r{ = (xJ*,...,z}%)" |t € [0, T]} provides

an alternative description of the trading strategy. By (2.12) the fraction of wealth
invested in the savings account at any titne [0, T] can be retrieved from the
above process ag° = 1- ¥%, x"). A simple argument using (2.10), (2.3), (2.6),
(2.11) and (2.9) now yields the following SDE for the wealth process:

d
dst = SEfrodt+ )] > mIbf ekt + dwky), (2.13)

d

j=1 k=1
for all t € [0, T], with S§ = 2%, 6)S).
2.4. The Growth Optimal Portfolio

The growth optimal portfolio (GOP) enjoys a distinguished history, starting
with Kelly (1956). Among a number of equivalent characterizations, it may be
described either as the trading strategy which maximizes the expected logarithm of
its associated terminal wealth, for any given time horizon; or as the trading strategy
which maximizes the expected growth rate of its wealth process at all times (see
Bajeux-Besnainou & Portait (1997, Proposition 1, p. 294)). Much attention has
been devoted to establishing the existence of the GOP for various market models
(see Becherer (2001), Korn & S&h(1999), Platen (2002), Goll & Kallsen (2003)
and Korn, Oertel & Schl (2003)).

Assumption 2.1 would be flicient to avoid arbitrage (seg2.7) in a contin-
uous market. However, in the current setting which incorporates jumps, arbitrage
opportunities may also arise from “exploding” portfolios. The following assump-
tion is necessary to eliminate them (see Platen (2004e, p. 291)).

Assumption 2.3. The market prices of event risks satisfy
A > o, (2.14)
foreachke {m+1,...,d}andall t € [0, T].
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Subject to Assumption 2.3, Platen (2004c, Proposition 2.1, p. 24) established
the existence of a trading stratefjywhose wealth proces¥ is the GOP. Further-
more, this strategy is unique, modulo its initial wealth. 5@7: 1, 6. is specified
through its fractions of wealth by

m i d 9k K
=D e+ ) o l by, (2.15)
k=1 k=m+1 't

for eachj € {1,...,d} and allt € [0, T]. A straightforward substitution of the
expressions from (2.15) into (2.13) yields the following SDE for the GOP:

m d
ds = s;%{rt dt + ; dierdt e dwd + Y e (9t dt + dvvk)} (2.16)

k=m+1

forallt € [0, T], with S} = 1.
2.5. Benchmarking

Let § be an arbitrary trading strategy. An important consequence of Assump-
tion 2.3 is thatSf* > 0 as., for allt € [0,T] (see Platen (2004c, p. 23)). This
permits us to make sense of the process- {S{ |t € [0, T]}, defined by

~ S9
0 ._ t
& = s (2.17)

forallt € [0, T]. We call &9 a benchmarked wealth process. In the case where

6 is determined byrt = 1, for somej € {0,...,d} and allt € [0,T], with all
other fractions identically zero, we employ the notatf®in= {étJ |t € [0,T]} and
speak of ebenchmarked primary security account process. An application of I1&'s
formula to (2.13) and (2.16) yields the following SDE for the benchmarked wealth
process:

Ma

d
(Z 716’J blj’k - 9{() dV\/tk

1 j=1

< 23 a{a- )~ owt)

k=m+1

80 = {

=~
I

(2.18)

for all t € [0, T], with ég = S. For the case of a benchmarked primary security

account process, Wheﬁéj = 1, for somej € {0,...,d} and allt € [0, T], with all
other fractions identically zero, (2.18) specializes to

k
a8l = 81 {Z(b'k—etk)dwh Z [b“‘( %)_
t

k=m+1

H—tk] dV\/tk}, (2.19)
ax
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for all t € [0, T], with S} = S},

Notice that (2.18) and (2.19) exhibit no drift. Sinvé™?,..., W9 contain
jumps, this implies that benchmarked wealth processes and benchmarked primary
security account processes are sigma-martingales (see Protter (2004, Theorem 89,
p. 234)). However, by restricting our attention to non-negative wealth processes
and primary security account processes, as we will from now on, it follows that
benchmarking yields local martingales (see Protter (2004, Exercise 41, p. 241)).
By virtue of Rogers & Williams (2000, Lemma 14.3, p. 22) this means that all
non-negative wealth processes and primary security account processes become
supermartingales under benchmarking.

2.6. Fair Pricing

The current orthodoxy for contingent claim pricing relies on the interplay
betweenequivalent local martingale measures (ELMMs) andnuméraires, and can
be traced back to Harrison & Kreps (1979), and Harrison & Pliska (1981). Given a
nunéraire (see Geman, El Karoui & Rochet (1995)), the idea is that, under agree-
able circumstances, one can identifyprcing measure P, equivalent toP, such
that the nuréraire-denominated wealth processes ofdifhissible trading strate-
gies (see Delbaen & Schachermayer (1994, p. 467)) are local martingalesiunder
The existence of such a pricing measure depends on the absence of certain kinds of
arbitrage. If the market is complete, then it will be unique as well.

Typically, the nuréraire is taken to be the savings account; in which case an
ELMM is called arisk-neutral measure; that is, an equivalent measure under which
all discounted admissible wealth processes are local martingales. Another example
is when a zero-coupon bond is used as araire. In this case a corresponding
ELMM is called aforward-adjusted measure.

In most applications the nuemaire is identified first. Then the measure-theoretic
machinery based on Girsanov’s theorem is used to infer the existence of a corre-
sponding ELMM. An obvious reason for this is that while renaires are easily
recognized, it is not clear how to obtain a probability measure equivaléhtlito
rectly. This makes going in the opposite direction, by first choosing an equivalent
pricing measure and then finding the correspondingaraire, very dficult, in
general. One obvious exception is when we pick the real-world me&sitself
as the pricing measure. Then we are left with having to find aémaire so that
all numéraire-denominated wealth processes are real-world local martingales. As
(2.18) attests, the desired naraire is in fact the GOP (see Long (1990) for the
prototype of this result in a discrete-time setting).

In the light of the above, let us now examine risk-neutral pricing. This depends
upon the existence of a Radon-Nikodym derivative process for transforming the
real-world measure into an equivalent risk-neutral measure. According to Geman,
El Karoui & Rochet (1995, Theorem 1, p. 448) or Musiela & Rutkowski (2005,
Proposition 8.1.6, p. 293), the natural candidate is the benchmarked savings account
S0, However, forS° to be a Radon-Nikodym derivative process one must assume
that it is a martingale undér, and not merely a local martingale, as indicated by
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(2.19). We can identify two arguments that call this assumption into question.

Empirical evidence The hypothesis tha° is a martingale under the real-world
measure? can be examined empirically, since Platen (2004d, Theorem 2.1,
p. 517) demonstrates that, subject to reasonable assumptions, any diversified
global index approximates the GOP. Alternatively, by Platen (2004a, Theo-
rem 3.8, p. 13), it follows that the global market portfolio is a proxy for the
GORP if all investors prefer more for less. Consequently, the historical long-
term record of the values of a savings account divided by the correspond-
ing values of a diversified world index, with both sets of data normalized to
have initial value one, provides an approximate realized sample paf{ for
Plotting such a sample path (see Platen (2004d, Figure 8, p. 527) and also
Dimson, Marsh & Staunton (2002, Chapter 34)) suggests quite strongly that
§9is not a martingale, but rather a strict supermartingale.

M odelling flexibility It is well known that arbitrarily specified markets do not, in
general, admit ELMMs (see Karatzas & Shreve (1998, p. 11 and the discus-
sion on p. 33)). So the requirement that the benchmarked savings account
should be a martingale under the real-world measure is a constraint on mod-
elling freedom. Recent research on parsimonious market models highlights
the importance of this freedom. According to Platen (2004d) it appears that
the natural dynamics of the discounted GOP are those of a time-transformed
squared Bessel process of dimension four. Benchmarking the savings ac-
count with such a GOP does not produce a martingale.

Of course, even if we agree that the benchmarked savings account is not a
martingale under the real-world measure, this may, in general, bigient for us
to infer that no equivalent risk-neutral probability measures exist; but it is certainly
enough for us to consider the possibility seriously. We will revisit this question in
Remark 3.1. At the very least, we may conclude that there dfeisat grounds
to be skeptical of pricing approaches based on ELMM transformations if one is
concerned with modelling real markets.

If the arguments above seem plausible, then a pricing theory based upon the
existence of ELMMs might not be tenable. This statement applies to risk-neutral
pricing, in particular. The need for an alternative approach leads to the introduction
of the concept ofair pricing.

Definition 2.4. Let r € [0,T] be a stopping time, and suppose tlthts an
A.-measurable random variable satisfying

[H

o[

for all t € [0,7]. Then thefair price process V" = {V{|t € [0, 7]} of a contingent

claim payingH at its maturityr is defined by
H

S

ﬂt] <co as, (2.20)

VH = Sf*E[

ﬂt], (2.21)
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forallt € [0, 7].

Thus fair pricing simply involves the computation of real-world expectations of
numéraire-denominated paffs, with the GOP as nuenaire. What distinguishes
it from the standard nuéraire approach is the absence of the assumption that
nunméraire-denominated wealth processes must be martingales under the pricing
measure, which in this case is the real-world meaBure

As demonstrated in Platen (2004c3.1-2), for example, fair pricing general-
izes both risk-neutral and actuarial pricing. Furthermore, the fair pricing formula
(2.21) depends only on the existence of a GOP, which is a less restrictive require-
ment than the existence of a risk-neutral measure. This will become important in
§ 2.9.2, where we describe a market model which admits a GOP but no equiva-
lent risk-neutral measures. Furthermore, it has been pointed out in Heath & Platen
(2002) that the fair price corresponds to the minimal replicating portfolio in a com-
plete market. Under such circumstances (2.21) appears to be the most natural way
to price derivatives.

Of course, the GOP is not always the most convenientanaire for obtaining
simple pricing formulas. However, fair pricing doefey other advantages. The
fact that it involves no measure changes means that the time horizon can be ex-
tended toT = co with impunity (see Platen (20048,3) for a discussion of this).
Thus the pricing of perpetual securities, for example, introduces no extra compli-
cations. By contrast, the application of Girsanov’s theorem to transfoimo an
equivalent measute, whenT = o, is technically involved (see Karatzas & Shreve
(1991, p. 193) and Bichteler (2002, Example 3.9.14, p. 164 and Warning 3.9.20,
p. 167)). Furthermore, when expressed in units of the GOP, fair derivative prices
are simply martingales.

2.7. Arbitrage

The following notion of arbitrage was used in Platen (2002). It can be justified
by appealing to the fundamental and legally enforced principleafed liability,
which holds that a market participant whose total wealth becomes negative may no
longer transact. Thus, we argue that the only arbitrage opportunities germane to
real financial markets occur when an investor can generate positive terminal wealth
from zero initial wealth, without falling foul of the limited liability constraint en-
forced by market regulators.

Definition 2.5. An arbitrage is a wealth procesS° that is a.s. non-negative,
with S§ = 0 a.s., and which satisfies

P[S? > 0] > 0, (2.22)
for some stopping time taking values in [0T].

As already noted, non-negative benchmarked wealth processes are supermartin-
gales. A standard argument then shows that the value of a non-negative wealth pro-
cess must remain zero indefinitely, if its initial value is zero. Thus, arbitrage, in the
sense of Definition 2.5, is excluded in the benchmark framework.
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Historically, substantial féort has been devoted to teasing out the precise rela-
tionship between the non-existence of arbitrage opportunities and the existence of
equivalent risk-neutral measures. This enterprise was initiated in Harrison & Kreps
(1979), and Harrison & Pliska (1981), and culminated in the definitive formulation
of the fundamental theorem of asset pricing, established in Delbaen & Schacher-
mayer (1994) for locally bounded semimartingale markets; and extended to the
case of general semimartingale markets in Delbaen & Schachermayer (1998). This
result states an equivalence between a particular no-arbitrage principle, mamely
free lunches with vanishing risk (NFLVR), and the existence of equivalent prob-
ability measures under which discounted wealth processes are local martingales,
in the locally bounded semimartingale case; or sigma-martingales, in the general
semimartingale case.

Note that a no-arbitrage criterion based on Definition 2.5 is weaker than the
NFLVR condition. This means that market models, which exclude arbitrage op-
portunities in the former sense, may in fact not admit any equivalent risk-neutral
measures. This is not as serious as it sounds. As argued in Loewenstein & Willard
(2000), the real economic content of a no-arbitrage condition lies in the existence
of a competitive equilibrium, in the sense that an investor who prefers more to less
should have an optimal trading strategy. In the case of a market driven by a stan-
dard multivariate Brownian motion, these authors demonstrate (see Loewenstein &
Willard (2000, Theorem 1, p. 142)) that an agent who prefers more to less and takes
prices as given will have an optimal strategy if and only if arbitrages very similar
to Definition 2.5 (see Loewenstein & Willard (2000, Definition 1, p. 141)) are pro-
hibited. We may summarize our view by saying that the existence of an equivalent
risk-neutral measure is a convenience, but not a necessity; what is important in a
market model is that under limited liability investors cannot generate strictly posi-
tive wealth from zero initial capital. A no-arbitrage principle weaker than NFLVR
may ensure the latter without guaranteeing the former.

Finally, we may point out that the NFLVR condition is not completely robust
with respect to changes of n@naire (see Delbaen & Schachermayer (1995)). In
fact, even the basic concept of portfolio admissibility, which forms part of the defi-
nition of NFLVR, is nunéraire dependent. Clearly, the notion of arbitrage encapsu-
lated in Definition 2.5 introduces no n@maire dependencies; if a given portfolio is
an arbitrage with respect to one néeraire, the same will be true for all n@maires.

2.8. Specifying a Continuous GOP

If we regard the GOP as representing a very large diversified global portfolio
expressed in units of a leading currency, then aggregating all the jumps in the un-
derlying primary security accounts should produce noise which is approximately
continuous. In other words, we would expect the jumps to be invisible to an ob-
server of the GOP. This is consistent with empirical data, when a global market
index denominated in units of, say, US dollars is used as a proxy for the GOP. Ac-
cording to (2.16), the only way to eliminate jumps from the GOP is by setting the
market prices of jump risks equal to zero. Henceforth, the following refinement of
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Assumption 2.3 will be in force.

Assumption 2.6. The market prices of event risks satisfy
6k =0, (2.23)
foreachke {m+1,...,d}andall t € [0, T].

For notational convenience we introduce the predictable matrix-valued process

o = o1 = [01%y,, |t € [0.T]}, defined by

i 6K if j=0;
RS SN (2.24)
o —b" if jefl,....d},

for eachj € {0,...,d}, eachk € {1,...,d} and allt € [0, T]. Substitution of (2.24)
into (2.6) yields

d
as] = SL{rdt+ ) (@ - o)t + ), (2.25)

k=1

for eachj € {0,...,d} and allt € [0, T], with Sé > 0. By an application of
Itd’s formula for jump dffusions (see Runggaldier (20332.4)) we can verify the
following solution to (2.25):

. . t m _
S! =S$ exp{fo <r5+ % ;[(O_g,k)z _ (0_]S,k 2])ds

m t )
+>) fo (0% - ot awg} (2.26)
k=1

N

d d
conf [ 3 cisas) [T [~
0 et !

k=m+1 =1

foreachj € {0,...,d} and allt € [0, T]. Here(rr)IEN denotes the sequence of jump
times ofNK, for eachk € {m+ 1, ...,d}, as before.

Next, substitution of (2.24) into (2.16) produces the following SDE for the
GOP:

m
dsi = Sf*{rt dt + Z oK (o dt + dV\/tk)}, (2.27)
p=c}

forallt € [0, T], with Sg* = 1. The solution to (2.27) is given by

t m m t
S = exp{f (rs + %Z(Ug’k)z)dS‘F Zf ook dWE}’ (2.28)
0 k=1 k=10
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for all t € [0, T]. Finally, the SDEs for the benchmarked primary security accounts
are derived by substituting (2.24) into (2.19), yielding

d
dSf = -8L > ol aw, (2.29)
k=1

forall j € {0,...,d} andt € [0, T], with 8} = S). To solve (2.29), we simply divide
(2.26) by (2.28), to get

S exp{——fZ(o )2ds Zf kolwk
k=1
xexp{fo 3 ¥k ds) ]_[ 1_[1 o),

k=m+1 k=m+1 1=1

(2.30)

for eachj € {0,...,d} and allt € [0, T]. By comparing (2.30) with (2.26) we see

that benchmarking onlyfBects the continuous first factor of (2.26), while leaving
the discontinuous second factor unchanged. This is a consequence of specifying
a continuous GOP. Thus, if we wri®/® for the continuous first factor in (2.26)
andS! for the discontinuous second factor, foe {0, .. .. d}, thenS! = §}°s},
according to (2.30},€ [0, T].

2.9. Two Modelsfor the Benchmarked Primary Security Accounts

A fundamental insight of the benchmark approach is that the benchmarked pri-
mary security accounts are the pivotal objects of study. This is because the savings
account and the benchmarked primary security accounts together specify the en-

tire investment universe. For exampEf,* = s°’ for allt € [0, T], expresses the
GOP in terms of the savings account and the benchmarked savings account. Also,

sl = §lsk = é{glz for eachj € (1,...,d} and allt € [0, T], expresses each pri-
mary security account in terms of the corresponding benchmarked primary security
account, the savings account and the benchmarked savings account. In this section
we will present two models for the benchmarked primary security accounts. But
first we introduce some simplifying notation.

Define the processés!| = {|o{||t € [0, T]}, for j € {0, ..., d}, by setting

m

o] = | D (ot (2.31)

k=1

for eachj € {0,...,d} and allt € [0,T]. We will also require thenormalized
aggregate continuous noise processes W/ = {W/ |t € [0,T]}, for j € {O,...,d},
defined by

. j-K
W= D0 [T dw, (2.32)
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for eachj € {0,...,d} and allt € [0, T]. By Lévy's characterization of Brownian
motion (see Karatzas & Shreve (1991, Theorem 3.16, p. 157)), it follow¥\thist

a Brownian motion, for eache {0,...,d}. Also note Protter (2004, Theorem 17,

p. 164 and Theorem 21, p. 165), which allow sums of integrals with respect to
W2, ...,W™ to be expressed as integrals with respect to the aggregate Brownian
motions (2.32).

In both models presented in this section we will assume, for simplicity, that the
parameters governing jump behaviour are constant. Thus the point prob&sses
fork e {m+1,...,d}, are in fact homogenous Poisson processes with constant
intensities, so that

A= >0, (2.33)

for eachk e {m+1,...,d} and allt € [0, T]. Also, the jump ratios are constant, so
that _

otk = ok <1, (2.34)
for eachj € {0,...,d}, eachk e {m+1,...,d} and allt € [0, T]. Notice that As-
sumption 2.6 ensures that (2.33) does not violate Assumption 2.3. Also, Assump-
tion 2.6 and (2.24) ensure that (2.34) satisfies Assumption 2.2. Using (2.31)—(2.34),
we can rewrite (2.30) as

Sl =8}l (2.35)
where
. ) 1t o t
81°:= shexp{ -3 f o ds - f ol @} (2.36)
0 0
and
) d ) d . .
Sit = exp{ D O'J’k/lkt} [Ta@-o, (2.37)
k=m+1 k=m+1

for eachj € {0,...,d} and allt € [0, T]. The two concrete models for the bench-
marked primary security accounts which we now presefliedin terms of how

the continuous processes (2.36) are modelled. The jump processes (2.37) are, for
simplicity, the same in both cases.

2.9.1. The Merton Model (MM)

A particular model arises if one assumes that all parameter processes are con-
stant; so that, in addition to (2.33) and (2.34),= r ando* = o, for each
j€{0,...,d},eachk e {1,...,m}and allt € [0, T]. Then (2.36) can be written as

§ic=s) exp{-§|aJ|2t ~ o] IVV#} (2.38)

for eachj € {0,...,d} and allt € [0, T]. Hence, in this special case, the bench-
marked primary security accounts are the products of driftless geometric Brownian
motions and compensated Poisson processes. We are thus in a modelling paradigm
similar to that first introduced by Samuelson (1965) and extended by Merton (1976)
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to include jumps. Consequently, we refer to the model, where the benchmarked
primary security accounts are described by (2.38) and (2.37) dddtien model
(MM), which is also known as the Merton jumpfidision model.

2.9.2. The Minimal Market Model (MMM)

Without imposing significant constraints on the parameter processes, and work-
ing within the full generality o 2.8, it has been demonstrated in Platen (2004d,
§ 3) that the discounted GOP followdiane-transformed squared Bessel process of

dimension four. Since the discounted GOP is given %}/ = é forallt € [0, T],
it follows that the benchmarked savings account is an inverted time-transformed
squared Bessel process of dimension four. This observation can be extended to
all benchmarked primary security accounts, modulo jumps, of course.nilihe
imal market model (MMM) for the benchmarked primary security accounts, first
introduced in Platen (2001), is obtained by modelling these time transformations
as diterentiable and deterministic functions. We provide here an outline of this
model. Unfortunately, its detailed justification is beyond the scope of this paper
and the reader is referred to Platen (200148).

For eachj € {0,...,d}, letp) € R and define the function’: R, — R, by
setting ' _ '

al(t) := o expin’'t), (2.39)

for all t € [0, T], with a(j) > 0. We refer top! as thenet growth rate of the jth
primary security account, fore {0, ..., d}. Next, define thequare root processes
Yl ={Y/ |t € [0,T]}, for j € {O,...,d}, through the system of SDEs
dy] = (1-nlY})dt + \/\73 dW, (2.40)

for eachj € {0,...,d} and allt € [0, T], with Y(j) = aj—ls, The continuous parts of
the benchmarked primary security accounts (2.3%)Oare modelled in terms of these
square root processes by setting

A 1

SJ’C = e (241)

al(t)y,

foreachj € {0,...,d} and allt € [0, T].

As already mentioned, between jumps the benchmarked primary security ac-
counts are inverted time-transformed squared Bessel processes of dimension four.
The time transformations are deterministic in the case of the MMM. In detail, de-
fine the continuous strictly increasing functiops R, — R,, for j € {0,...,d},
by setting

) t
o) = ¢g+% fo al(9)ds, (2.42)

foreachj € {0,...,d}andallt € [0, T], with tp(j) € R,. Continuity and monotonicity
imply thaty! possesses an inversg'Y™*: [}, o) — R,, for eachj € {0,...,d}.
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Now define the processed = {X} | ¢ € [¢}(0),¢!(T)]}, for eachj € {0, ..., d}, by
setting
X‘:,j(t) =Y, = %a (2.43)
t

for eachj € {0,...,d} and allt € [0, T]. It then follows (see Platen (2004§,3))
that X! is a squared Bessel process of dimension four, for gaeHO, . . .,d}; so
that ﬁ is a time-transformed squared Bessel process under the transformation
(@)™

Under the MMM benchmarked primary security accounts are strict local mar-
tingales, and hence strict supermartingales. This observation holds, in particular,
for the benchmarked savings acco8fit Since this is the putative Radon-Nikodym
derivative process employed by Girsanov's theorem to transform from the real-
world measure to an equivalent risk-neutral measure, the fact that it is not a martin-
gale rules out this measure transformation. In fact, one can make an even stronger
statement: as will be demonstrated in Remark 3.1, the MMM does not admit any
equivalent risk-neutral measures. Consequently, risk-neutral derivative pricing is
impossible within the MMM, and we will resort to the more general fair pricing
approach. Despite this deviation from the standard risk neutral setting, the MMM
is attractive for a number of reasons.

1. In the light of accepted “stylized empirical facts”, it appears to agree well
with the real market. For example, it captures the observed negative corre-
lation between stock value and volatility, known as tagrage effect (see
Black (1976)).

2. If we accept that// is of finite variation, forj € {0,...,d}, then squared
Bessel processes suggest themselves quite naturally and the derivation of
(2.39) from (2.35) follows, as demonstrated in Platen (2094),

3. Finally, the MMM represents a parsimonious model resulting from optimal
market dynamics. The only free parameters are the interest rate process
and the net growth rateg, for j € {0,...,d}, together with certain initial
values. These are all readily determined from market data (see Platen (2004d,
p. 523-524)).

In summary, we think that the MMM manages to capture endogenously many
of the features of observed markets. Furthermore, the modest number of parameters
make it easy to calibrate and practical to implement.

3. Fair Derivative Pricing Examples

3.1. Zero-Coupon Bonds

We consider first a standard default-free zero-coupon bond paying one unit of
the domestic currency at its maturify. We could allow for any maturity date
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T € [0, T], but this added generality has no impact on the calculations that follow.
According to the fair pricing formula (2.21), the value of the bond at tinsegiven
P(tT) = Sf*E[T

by
.
1 ﬂt]z %E[exp{—f rsds}§$
ST h t

forallt € [0, T]. While (3.1) is completely general and independent of any assump-
tions, it is also too generic to be directly useful. We will now examine it under the
two market models outlined i§2.9.

ﬂt], (3.1)

3.1.1. The MM Case
SinceSP is a martingale in this case, we get

P(t, T) = expi—r (T - t)}éE[é? | 7| = expt—r(T - 1), (3.2)
t

forallt € [0, T]. In other words, we obtain the usual bond pricing formula deter-
mined by discounting at the short rate.

3.1.2. The MMM Case

In Miller & Platen (2004, Assumption 2.1, p. 4) it is argued, with some em-
pirical support (see Miller & Platen (2004, Figure 2, p. 5), for example), that the
interest rate process and the discounted GOP are independent. If we accept this,
and apply it to (3.1), while remembering tHft = $°¢, we get

Pt,T) = E[exp{— ftT rsds} ﬂt]éi?Eﬁ? |ﬂt]
= E[exp{— ftT rsds} ﬂt}(l - exp{—%/\?}),

for all t € [0, T], from (B.5), with A as in (B.3) in Appendix B

(3.3)

Remark 3.1. The bond pricing formula (3.3) poses an obvious arbitrage riddle,
which we now address. As demonstrated in Heath & Platen (29@), there
exists a trading strategy, whose value is given by (3.3), which hedges the zero-
coupon bond under consideration. Imagine now a trading strategysisting of
the aforementioned hedge, funded by borrowi{@, T) from the savings account
at initiation. Assuming, for the sake of argument, a zero short rate, the wealth
process associated wighs given by

S! = P(t, T) - P(O,T) = exp{—%Ag} - exp{—%A?}, (3.4)

forallt € [0, T], according to (3.3). The following observations are immediate:

o Sg:O!
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e S2=1-P(0,T)>0as.;and
e SV >-P(0,T)as.,

forall t € [0, T]. Thusé is an admissible strategy, in the sense that its wealth pro-
cess is uniformly bounded below (see Delbaen & Schachermayer (1994, p. 467)).
However, it fails the NFLVR condition. By the fundamental theorem of asset pric-
ing (see Delbaen & Schachermayer (1994, 1998)), we may thus conclude that the
MMM admits no equivalent risk-neutral probability measures.

Now fix t € [0, T]. The monotonicity of° and the relatiorX® = = 1, which

¥°(0)
follows from (2.3) and (2.43), together imply that
0 0
5 0 e(T)=¢°(t) Lo 0
P[S} < 0] = P| X%y wa(m > P[X%q > 1] >0, (3.5)

remembering thax® is a squared Bessel process of dimension fouSSe not an
arbitrage in the sense of Definition 2.5; in particular, its associated wealth process
can become negative at any time with strictly positive probability. It is an example
of what Loewenstein & Willard (2000) call &xee snack. While the presence of

free snacks rules out the existence of equivalent risk-neutral probability measures,
Loewenstein & Willard (2000) argue that this alone does not constitufecismt
grounds for dismissing a given market model.

3.2. Forward Contracts

In this section we fixj € {0,...,d} and consider a forward contract with
delivery dateT on the jth primary security account. According to the fair pric-
ing formula (2.21) the forward pricEi(t, T) at timet € [0, T] for this contract is
implicitly determined by

Fit,T)-S!
Sf*E[#

ﬂt] _o. (3.6)
;

Solving this equation yields the following expression for the forward price:

FILT) = SfE[é]T ﬂt] P(t‘jT)SllE S' 'ﬂt if Sl > 0; 37)
' SfE[s% ﬂt] 0 ifS! =0, '

forallt € [0, T], by (3.1).

3.2.1. The MM Case

With reference to (2.38), the same argument which established that the bench-
marked savings account is a continuous martingale also applies to the driftless geo-
metric Brownian motiors; while the compensated Poisson procgksis a jump
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martingale. Consequentl§! is the product of independent martingales, and hence
itself a martingale. Together with (3.2), this fact enables us to write (3.7) as

Fi(t, T) = S! expir(T - t)}, (3.8)

forallt € [0,T]. Thus, in the MM we recover the standard expression for the
forward price.

3.2.2. The MMM Case

In this case,S¥€ is an inverted time-transformed squared Bessel process of
dimension four, according to (2.43), whig¢ is an independent jump martingale,
as before. Thus,

B[S A = gE[sr
t

Alglsk|Al=1-onf 3] @9

forallt € [0, T], by (B.5). Putting (3.7) together with (3.3) and (3.9) gives the
following expression for the forward price:

_ _ 1A
FJ(t T) = sJ - p{ A [exp{f rsds}
ex

forallt [0, T].

ﬂt], (3.10)

3.3. Asset-or-Nothing Binaries

Binary options may be regarded as basic building blocks for complex deriva-
tives. This has been exploited in a recent approach to the valuation of exotic op-
tions, where a complex paffds decomposed into series of binaries (see Ingersoll
(2000) and Buchen (2004)).

In this section we fixj € {0,...,d} again and consider aasset-or-nothing
binary, with maturity T and strikeK € R,, on the jth primary security account.

We also fixk € {m+ 1,...,d} and assume that’* # 0 ando™ = 0, for each

Il € {m+1,...,d}with| # k. In other words, we assume that tfik primary security
account responds only to th&h jump process. This does ndtect the generality

of our calculations below, but it does result in more manageable expressions. In
addition, we will assume a constant interest rate throughout, sa;tkat, for all

t € [0, T]. Although this is already in force in the case of the MM, we require it to
obtain a convenient pricing formula under the MMM.

At its maturity the instrument under consideration pays its holder one unit of
the jth primary security account if this is greater than the strike améyrand
nothing otherwise. According to the fair pricing formula (2.21), its value is given
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by
- ; !
A(t, T, K) = st*E[ﬂ{S,TZK}E ﬂt]
T
S o]
- §E[I{S’>K<S$)*1é$}ST ﬂ‘]
t
s!
= @E Ttgies oqne &)
t (3.11)
X eXp{o-j’k/lk(T -l - O'j’k)NITK_N‘ké#C | ﬂt}
00 /lk .
= > expg{-AN(T - }M explo AT = )L - oK)
= n!
s' N
J,C
E H{é’Tcza(n)é?}ST ﬂt:|,
forallt € [0, T], where
a(n) = —— exp(—(r + AN (T - (1 - )™, (3.12)

jd
tSt

forallneZ,.

3.3.1. The MM Case R R
Combining (3.11) and (3.12) with (A.18), and remembering Bt = S°,
yields
[T -9
n! (3.13)
x explo AT = }(1 - o )"SI N (dy ().,

A, T, K) = i exp—A(T - t)}
n=0

forallt € [0, T], where
In St +(r + ok g phded | 1(500) )(T - 1)

di(n) := ,
ok FOINT —t

(3.14)

for eachne Z,..

3.3.2. The MMM Case

As we have just seen, calculating the fair price of a contingent claim written on
a primary security account requires the evaluation of a double integral involving the
transition density of a two-dimensional process. This is a consequence of choosing
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the GOP as nusraire. Closed-form fair derivative prices can be obtained for the
MM, but in the case of the MMM things are morefttult, because the transition
densities of two-dimensional squared Bessel processes are apparently not known.
The natural response to this is to solve the partial integfferdintial equation asso-
ciated with the derivative price numerically. However, to give the reader a feeling
for the types of formulas that emerge from applying fair pricing in the MMM, we
will now assume thé&? and Si< are independent. Combining (3.11) and (3.12)
with (B.15), and remembering th&f = §°¢, then results in the following:

AK(t, T, K)
[T - 1)]"

- nz;) exp~A(T — )} == explo AT ~ ))(1 - )" (3.15)

X S}

GE4((6°(T) - $°()ar); AL AD) - exp{—%AE}],

for all t € [0, T]. The paragraph preceding (B.15) in Appendix B explains the
notation in (3.15).

3.4. Bond-or-Nothing Binaries

In this section we price Bond-or-nothing binary, with maturity T and strike
K € R,, on thejth primary security account, wheiee {0,...,d} is fixed. As
before, let us assume that this primary security account only responds kththe
jump process, wherk € {(m+ 1,...,d} is fixed. We will also require a constant
interest rate for the MMM as well as the MM.

At its maturity the instrument under consideration pays its holder the strike
amountK if the value of thejth primary security account is in excess of this, and
nothing otherwise. According to the fair pricing formula (2.21), its value is given
by

Bt T,K) = Sf*]E[H{SPK}—&* ﬂt}
St
6 1
= KP(t,T) - KSt*]E I[{Sj <K}_6* A
T ST
8

=KP(t, T KS?E]I
- (7 )_ é_? {

. il — | A
805K-15081} S0

(3.16)
S

1
= KP(t,T) -K exp{—r(T - t)}é_?E[H{§$>a(N1‘f—Ntk)1§1jic}

y

[T -1)]"

= KP(t, T) - K exp(—r(T —t)} i expl—AX(T - 1)} -
n=0 '

1 &0
X g_gE[ﬂ{é%a(m-léf}ST ﬂ‘]’
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forall't € [0, T], wherea(n) is given by (3.12), for each € Z,.

3.4.1. The MM Case A A
Applying (A.18) to (3.16), (3.12) and (3.2), and remembering Bfat S?’C,
gives

B, T, K) = K exp(—r(T —t)}

X(l-Zexp{—ﬂk(T o) O V) .

[/lk(ni)] Kexp{—r(T - t)}N(d2(n)),

= > exg{-A(T - t)
n=0
forallt € [0, T], where

SJ
In 3t

S+ (r + ok 4 n—'n(l{_”;j'k) - %(&O’j)z)(T —1)

da(n) :=
= dh(n) - F% VT —1t,

for eachn € Z,. To obtain the second equality in (3.17), we have used the re-
lation N (—(d2(n)) = 1 — N((d»(n)), for eachn € Z,, together with the fact that

T o exp—AK(T - t)}M =1, asitis the total probability of a Poisson random
variable with parametet“(T — ).

3.4.2. The MMM Case . N
Subiject to the assumption thaf andS}“ are independent, as before, we can
combine (B.15) with (3.16), (3.12) and (3.3), to get

BM(t. T.K) = Kexpl~r(T ~ t)}(l - eXp{‘%A? })

- i exp|—AX(T - t)}[/lk(n—)]K exp(—r(T —t)}
n=0

§ [634(¢j(Tc)y(;)¢j(t) R R | e

i /1k(T [/lk(T - t)]n

n!

x K expi—r (T — )[1 034(—(T) (n)“’ ®. At,AJ)]

forall t € [0, T]. For the second equality in (3.19), we have once again used the

fact thaty> , exp{—A4(T - t)}[) o is the total probability of a Poisson random
variable with parametet(T — t)
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3.5. European Options

In this section we fixj € {0, ...,d} again and consider a European call option
with maturity T and strikeK € R, on thejth primary security account. As before,
we make the simplifying assumption that tfte primary security account is only
sensitive to thekth jump process, for some fixdde {m+ 1,...,d}. We also
continue to require a constant interest rate for both market models. According to
the fair pricing formula (2. 21) the option premium is given by

sl-k
( T ) t] — Sf*E[H{SJN(}T—& ’ﬂt:|
sy =K s (3.20)
= AK(t, T, K) — BH¥(t, T, K),
forallt € [0, T].

CtT,K) = S{'E [

3.5.1. The MM Case
Combining (3.13) and (3.17) gives
CH(t, T,K) = i exp{—A4(T - t)}“k(T—)][exp{ HQK(T - 1))
n-0 nt (3.21)

x (L= o H)"SIN(ca(n) ~ K expl=r (T — )N (de(n))]

forall t € [0, T], whered;(n) andd,(n) are given by (3.14) and (3.18), respectively,
foreachne Z,.

It is easily seen that (3.21) corresponds with the original pricing formula for
a call on a stock whose price follows a jumg¥dsion, given by Merton (1976,
(19), p. 135). The only dierence is that there the jump ratios were taken to be
log-normally distributed, while in our case they are constant. Furthermore, since
we can have, j # 0 in (A.18), this formula can be used to price an option to ex-
change thgth primary security account for thth primary security account. In that
case, the option pricing formula we obtain in place of (3.21) is essentially that of
Margrabe (1978, (7), p. 179), modified for the presence of jumps. Note, in par-
ticular, the correspondence between (A.12) and the expressiof ioMargrabe
(1978, p. 179).

3.5.2. The MMM Case
For the sake of completeness, we present the call option pricing formula under
the MMM, obtained by subtracting (3.19) from (3.15), according to (3.20):

[A4(T - t)]”[
n!

CH(@t,T,K) = i exp{—A4(T - 1)} explo AT - 1))
n=0

x (1 - o Hys] (654((¢°(T) — PO)n); AL, A?) - exp{-%/\g'}) (3.22)

— K expi—r(T - t)}(l - G@(W; A, AE))],
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forall't € [0, T], wherea(n) is given by (3.12), for each € Z,.
3.6. Defaultable Zero-Coupon Bonds

Since we have incorporated event risks in our modelling, we have a framework
which is appropriate for pricing credit-risky instruments. Here we consider the
canonical example of such a contract, namely a defaultable zero-coupon bond with
maturity T. To keep the analysis simple, we fixe {m+ 1,...,d} and assume
that the bond under consideration defaults at the first jump timépprovided
that this time is not greater than In other words, default occurs if and only if
Tl;_ < T, inwhich case'i is the default time. As a further simplification, we assume
zero recovery upon default. According to the fair pricing formula (2.21), the price
PK(t, T) at timet of this instrument is given by

11l'r‘{>T}

1
<o.

Pt T) = Sf*E[ ﬂt] = S{S*E[S

ﬂt:|E|:]I{TII>T} | ﬂt]

J (3.23)

= P(t, T)P[N¥ = 0| A,

T

for all t € [0, T]. Note that the second equality above follows from the indepen-
dence of the GOP and the underlying point processes, as is clear from (2.27), for
example.

Equation (3.23) is naturally interpreted as expressing the price of the defaultable
bond as the product of the price of the corresponding default-free bond and the
conditional probability of survival. The latter may be further evaluated as follows:

P[NK = 0| A = ]E[]I{N{K:O}JI{

NE-Nk=0} ﬂt]

T

forallt € [0, T].

One can, of course, combine (3.23) and (3.24) with (3.2) to obtain an explicit
pricing formula for the defaultable bond under consideration in the MM. Similarly,
one can combine (3.23) and (3.24) with (3.3) to obtain the pricing formula for this
instrument in the MMM.

(3.24)

ﬂt],

Remark 3.2. Note that the expression obtained by combining (3.23) and (3.24)
is similar to the familiar formula for the price of a defaultable zero-coupon bond
in a simple reduced-form model for credit risk (see @dbucher (2003, (5.10),

p. 118), for example). The filerence is that in the standard formula all expectations
are computed with respect to an equivalent risk-neutral measure; in particular, the
survival probability is a risk-neutral probability. In (3.23) and (3.24), however,
only the real-world measure is in evidence. The crucial advantage of this is that
we avoid the undesirable dichotomy between real-world default probabilities, as
determined by historical data and credit rating agencies, and risk-neutral default
probabilities, as determined by observed credit spreads. Substdftiahas been
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expended on the problem of reconciling real-world and risk-neutral probabilities
of default (see Albanese & Chen (2005), for a recent example). This unresolved
problem is, fortunately, avoided altogether with fair pricing under the benchmark
approach, since the real-world measure is the pricing measure. In future work we
intend to exploit this, to produce credit risk models which can be calibrated both to
real-world probabilities of default, derived from historical data and credit ratings
information, as well as to traded credit spreads.

Of course, Assumption 2.6 is probably not ideal for a realistic model of credit
risk. Nevertheless, formulas analogous to (2.22) and (3.24) would emerge for
defaultable bond prices, even if market prices of jump risks were not taken to be
identically zero; and the comments above would still apply.

4. Conclusion

In this paper we have set out to achieve two objectives: to introduce bench-
marking and the associated concept of fair derivative pricing; and to illustrate fair
pricing by valuing some common contingent claims in twiietent market mod-
els. With respect to the first objective, we have demonstrated that the applicability
of benchmarking and fair pricing depend only on the modest assumptions neces-
sary to ensure the existence afrawth optimal portfolio (GOP). Furthermore, we
hope to have convinced the reader that a case can be made for also considering
market models that do not admit equivalent risk-neutral measures. In such models
it appears that fair pricing is a natural generalization of risk-neutral pricing, with
no need for measure changes.

Contrary to what one might expect, models for which equivalent risk-neutral
measures do not exist do not necessarily admit arbitrages; provided that one adopts
an appropriate notion of arbitrage. The definition of arbitrage we advocate, namely
that no market participant can make something from nothing without the possibility
of becoming insolvent in the interim, has a clear economic meaning.

The benchmarking approach is concerned with modelling benchmarked wealth
processes. In the two market models we consider, these are jdfapialis, based,
respectively, on geometric Brownian motions and on squared Bessel processes of
dimension four. In the former case, we obtain what we calMiegon model (MM);
this is very much the standard market model, for which risk-neutral pricing would
be appropriate. The model obtained in the latter case is calleditiimal market
model (MMM); it does not admit equivalent risk-neutral measures, though it does
exhibit a number of features which recommend it as a potentially realistic descrip-
tion of observed markets. For the MM we demonstrate that the familiar derivative
pricing formulas, usually obtained through risk-neutral pricing, are retrieved by the
fair pricing methodology. Fair pricing in the MMM, however, produées snacks,
as well as yielding option pricing formulas where the non-central chi-square distri-
bution plays an important role.
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A. Appendix: Merton Model Calculations

This appendix provides some useful expressions for computing fair prices in
the MM. For this section fix, j € {0, ..., d} such thai # j. Then the function

1
2nyyjloillori|(t - 9) V1= ()2
In % + 3ot - 9)\2
X exp{_ 2(1- (01)2) TR )
. (In % + :—2L|0'i|2(t - S))(|n 2’(—‘] + :—2L|O'j|2(t _ S))

o llorli(t - 9)

Yi o 11012
+(Inx—‘j + 5lo] (t—S))2
o] VE=s ’

for all x;, X, ¥i, yj € (0, %), wheres, t € [0, T] such thats < t, is the joint transition
density ofS'¢ andSi¢ over the time intervalg t]. The parametep'’ in (A.1) is
determined by

pgt(m Xj:¥i,Yj) =

(A.1)

oKk

o= . (A.2)
4 |o!lo]

It follows from (2.32) thap"! is the correlation between the Brownian motidhis
andw!.
A.1l. An Expression for Computing Fair Binary Prices

Fix t € [0, T] and leta; be a non-negative;-measurable random variable. We
will now evaluate the following expression:

ﬂt ILXSJC

After the change of variables

SJc

(5.8 xy)dydx.  (A3)

SJC {SJC>(1[SIC

In g + o AT -t

X = A4
| VT =t (A4)

~ o n SV,C + 3loIA(T - 1)

y = (A.5)

Il VT -t
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(A.3) becomes
o L (R VT
—_— expl——————|(-X+ p"|o!| VT -t
27 +/1 = (pM)2 J- Ja® 2(1—(10"')2)< )
= 20M(=X+ PNl NT =t )(-y + VT =) (AB)
+(-y+ |o-j|\/T—t)2]}d)7d>T,

where .
o In %S — (3177 =~ o TR)(T -1) e an
lori| VT -t o]
for all x € R. Another transformation of variables,
%= —x+ p o] VT -t (A.8)
§i=—y+ o) VT -, (A.9)

allows us to express (A.6) as

205y + 92]} dyd%, (A.10)

c (%)

where o
In S+ 3EAT 1)
d()N() _ ®S; 2 + |O——|)"( =:a+ bX (A 11)
' o VT =t Ei ’ '
for all X € R, with
= o = 201 o] + o2 (A12)
After the transformation of variables
§:=§ - b% (A.13)

for all X € R andy e (~o0, d(X)), (A.10) becomes

zn\/%(pi,iy [ otz

X [ = 201%(9 + b%) + (§ + b)”()z]} dxdy.

(A.14)

Now, performing the change of variables

o.  [1-2bpl+b2/( b-p
=N Iy %+ 1= 2bpi + ) (A.15)
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for all X € R, transforms (A.14) into

= 1 1§ A
VI-2bpH + B2 @L, ex‘*zm}dy (A.16)
Finally, we set
Z.= +’ (A]_?)
- 2007 + B2
for all § € (~co, a), S0 that (A.16) becomes
— fm eXp{—}zz} dz= N(#)
Ver J-e 2 m
S'C 2('\I l) (T t) (A18)

=N s
GHiNT —t

whereN is the standard cumulative normal distribution function.

B. Appendix: MMM Calculations

In this appendix we perform some calculations that are useful for deriving ex-
pressions for fair prices in the MMM. The derivations are based upon similar work
done in Platen (2003, Appendix) and Miller & Platen (2005). SiXéedefined by
(2.43), is a squared Bessel processes of dimension fouy, €of0, ... ,d}, itis a
time-homogenous ffusion with transition density

YrialY) = 2(902—901) \/7 HI 2(‘PX2+‘)‘/Pl)}

\/X—y 2n+1
% ; nir(n+ 2)(2(902 - ¢1)) ’

for all g1, 0> € [¢!(0), ¢!(T)] with @1 < ¢, and allx,y € (0, o) (see Revuz & Yor
(1999, Corollary 1.4, p. 441)). In (B.I) denotes thgamma function (see Davis
(1970)). We recall the important identity

(B.1)

T(n+1)=nl, (B.2)

for eachne Z,. _ .
For eachj € {0,...,d}, define the process’ = (A} |t € [0,T)} by setting

i

LT eI(M) - el(t)’
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forallt € [0,T). We will typically be interested in the process (axéAJ}, for
j €10,...,d}. Itis easily extended to [0'], by setting

exp{——AJ} = expl- 2A' l=0as, (B.4)

for eachj € {0,...,d}.

B.1. An Expression for Computing Fair Bond Prices

Let j € {0,...,d} andt € [0, T). We now use the Markov property o to
compute the following:

A—JCE[Q#C

1
A = X, (t)E[X
¢i(T)

0 xj.()
- PO i
_L y q¢’(1),w'(T)(x¢j(t)’y) dy

y

1 1< 1
T 2M-e0) p{ A]}Z nir(n+2)
< " n+l
X[Z(wJ(T)w sol(t))]2”+1f p{ 2(i(T) - ¢1(t))}yndy (B.5)

(XJ )n+1
2 2 niT(n+ 2) [2()(T) = @i(t))]2™2
X [2)(T) - ¢ ()]'T(n+ 1)
e iyt (1 j)”*l
- eXp{ 2At}n; n+ 1)!(2‘\t
1 1 1
= exp{—zAt‘}(exp{zA{} - 1) =1- exp{—EAt’}.
In the derivation above, the fourth equality follows from the definition of the gamma
function; the fifth equality is an application of (B.2); and the sixth equality is an ap-

plication of the MacLaurin series expansion of the exponential function. According
to (B.4) we can extend (B.5) to include the caseT.

B.2. An Expression for Fair Binary Prices

Leti,j € {0,...,d} such that # j. Also fixt € [0,T) and lete; be a non-
negativeA-measurable random variable. If we make the assumptiorstfiand
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Si< are independent processes, then it follows that

1

X E T ﬂt}
] w0 [{ P> ‘X'(T’}Xivi(ﬂ

IXX

f f" —qso(t)w(T)< i (1) )qgal(t)tpl(T)( W,(t),y)dydx
le 1

f fu exsf-3 (T) P exp{-5Al)

I+
Z|lr(|+2)2'+1( )1( oI(T) - <pl(t))

1 aic
?E[ﬂ{é&méﬂ%

1+1

<l | .

00

) [Z e 2)2q+2( )q(so' M-90 )

<ol )| ¥
o GADT S GaY

1
= eXp{_E(At] * A‘)} ; IT( + 2)2+1 ; qT(q+ 2)22
X fo ) fo mxexp{—%(f+ w}y'i(q*l dydx

Here we have made the substitutions

X .
T AM -t B.7)
_ y
P -t (B.8)

|

<|

The constant in the upper limit of the inner integral in the last line of (B.6) is thus
given by

= (@(T) = ¢'()ar. (B.9)
With the aid of another change of variables, namely

(B.10)

<
1l
X|I<|
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(B.6) now becomes
1 e GAM & @Ay
expl—=(A! + Al 2 2
p{ 2( t t)}IZ(;|!r(|+2)2'+1qz;q!r(q+2)2q+2

e 1 _
X expl —=X(1 + §) / x¢*1*+2 dx dy
fo fo p{ X y)}f y

= 1A jyl+1 ) 140\
= exp{—%(Atj + A‘t)} (3A) Z (3A)

S IIT(1 +2)2+1 &4 gl T(q + 2)29+2
+1+3 yl
xT(q+1+3)2 f g dy

AAH™ & (4 IADT(@+m+2)
—exp{——(At +At)}z:l ng qZ;) q!t r(mr(qg+2)

(l’_t ym—l B
xj(; Wdy (B.11)

1 s GAD™ & GAY r(g+m+2)
=exp{—§(Ag+At)}; 2m! qz_(:) 2q! r(mr(q+ 2)

X %zFl(m,q+m+ 2:m+ 1;—dy)

i expl-3AlAAD™ i exp-2AN(AADY g+ m+2) o
~ ml ] ol I'(m+ 1)I'(q+ 2)

XoFi(m g+ m+2;m+1;-ay), (B.12)
where,F; is Gauss' hypergeometric function (see Oberhettinger (1970)). The sec-

ond and fourth equalities above were obtained using Mathematica’s symbolic inte-
gration facility, while the last equality is an application of (B.2). Note that

exp—3ANGAD" S exd-3ALGADT g+ 0+2) o
0] qZ;) q! ro+1r(q+ 2)

X 2F1(0,g+0+2;0+ 1;—a) (B.13)
- el 3, PO ol

The first equality follows from (B.2) and the properties of the hypergeometric
~4al}(3a)

function; for the second equality, note thaf’, eXp{+ is the total prob-
ability of a Poisson random variable with parameat. Thus, putting (B.12) and
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(B.13) together, and then rewinding from (B.12) to (B.11), we see that (B.6) can be
written as

expl-1A!l) ( IAN™ & exp—2AGEADY T(q+ m+2) &
[Z qZ:l) ql '(m+ 1)I(g+ 2)

_ 1
X oF1(m g+ m+2;m+ 1;—at)] - exp{——At‘}

c 2 (B.14)
[ exp—3AUGA)" & expl-3AYGAD (g + m+ 2)
- [;0 m! ; q r(mI(g+2)

Xfom (1+y;;11+w2 37] p{_%’\g}'

Finally, we are able to conclude with the remarkable observation that it
X'5(A)) andZy ~ y'3(A)), wherey’?(2) denotes theon-central chi-square distri-
bution with dimensionv and non-centrality parametgy then the expression in the
square brackets in (B. 14)]P$§1 < &y], according to Johnson, Kotz & Balakrishnan

(1995, (30.49), p. 499). Itis not clear whether the dlstr|but|0|§olhas an estab-
lished name; however, from its relationship tdaubly non- ~central F-distribution

(see Johnson, Kotz & Balakrishnan (1995, p. 499)), it seems appropriate to call
it an unscaled doubly non-central F-distribution. In keeping with the notation of
Johnson, Kotz & Balakrishnan (1995, p. 499), we will wi@g,(-; A{, Ay) for its
cumulative distribution function, so that

GL((#(T) - ¢ 0o AL AY) - exp{ Al (8.15)
provides an interesting expression for (B.14).
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