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1. Introduction

This paper considers a general market where the traded uncertainty is driven by
a combination of continuous and discrete noise sources. The basic constituents of
the market are a finite number ofprimary security accounts, each of which contains
units of some primary asset, with all dividend income reinvested. We examine this
model within thebenchmark framework, see Platen (2004a, 2004b, 2004c). This
means that we make only the modest assumptions necessary to ensure the existence
of a growth optimal portfolio (GOP) (see Kelly (1956), Long (1990) and Bajeux-
Besnainou & Portait (1997)) made up of primary security accounts.

The expression of primary security accounts and self-financing portfolios in
units of the GOP is referred to asbenchmarking. An important result is that all
non-negative benchmarked primary security accounts and self-financing portfolios
are local martingales under the real-world measure. This leads us to introduce the
concept offair pricing. Here benchmarked contingent claim prices are martingales
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and thus expressed in terms of conditional expectations, computed under the real-
world measure, of their benchmarked payoffs.

We believe that fair pricing within the benchmark framework offers some im-
portant advantages over risk-neutral pricing. If the benchmarked savings account is
a martingale under the real-world measure, then it can be used as a Radon-Nikodym
derivative process to effect a measure transformation from the real-world measure
to an equivalent risk-neutral measure. In this case fair pricing corresponds with
risk-neutral pricing; in fact, for continuous markets, the risk-neutral measure con-
structed in this way is none other than theminimal martingale measure introduced
in Föllmer & Schweizer (1991). However, if the benchmarked savings account is
a strict local martingale under the real-world measure, then such a measure trans-
formation is not possible. Empirical evidence indicates that this might be the case;
and so it appears that an alternative to risk-neutral pricing may be justified.

A distinguishing feature of the benchmark approach is that the objects of funda-
mental interest are the benchmarked primary security accounts. Before modelling
their behaviour in detail, we make the simplifying assumption that the GOP is
continuous. This is realistic if the domestic currency is a major global currency.
Particular models for the benchmarked primary security account dynamics arise by
specifying their SDEs. We examine two such models in detail.

The Merton model (MM) This is very much the standard market model, with all
parameters constant. It is essentially a modification of the jump-diffusion
model introduced in Merton (1976). Each benchmarked primary security
account can be expressed as the product of a driftless geometric Brownian
motion and an independent jump martingale, and is thus itself a martingale.
In particular, the benchmarked savings account is a continuous martingale,
and hence a valid Radon-Nikodym derivative process. Consequently, a mea-
sure transformation to an equivalent risk-neutral measure is feasible, and the
standard risk-neutral pricing theory is applicable.

The minimal market model (MMM) In this case we constrain the parameters
associated with the jump parts of the benchmarked primary security accounts
to be constant. Their continuous parts are modelled as inverted time-
transformed squared Bessel processes of dimension four. Consequently, each
benchmarked primary security account is the product of an inverted time-
transformed squared Bessel process of dimension four and an independent
jump martingale. Since inverted squared Bessel processes of dimension four
are strict local martingales, the benchmarked savings account is not a martin-
gale in the MMM, and hence not a viable Radon-Nikodym derivative process.
Transformation to an equivalent risk-neutral measure is thus not feasible, and
so we advocate fair derivative pricing under the real-world measure.

The difference between the MM and the jump-diffusion model of Merton (1976)
is that we allow primary security accounts to be affected by more than one source
of jump risk, but keep the jump ratios fixed, while Merton (1976) considered only
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one source of jump risk, but allowed for random jump ratios. The familiarity of the
MM makes it a good vehicle for illustrating the benchmark approach and the fair
pricing concept.

The MMM was first introduced in Platen (2001). It is “minimal” in the sense
that a time-transformed squared Bessel process of dimension four appears to pro-
vide the simplest description of the discounted GOP, involving only a small num-
ber of parameters, but which is nevertheless consistent with an optimal market
dynamics and certain “stylized empirical facts” about diversified portfolios. We
believe the MMM resonates well with observed market behaviour; in particular, we
think that the possible non-existence of an equivalent risk-neutral measure should
be taken seriously when modelling real markets.

A large part of the paper is devoted to exhibiting the fair pricing approach for
common contingent claims. We compute fair prices using both the MM and the
MMM. In the MM case, our modest ambition is to demonstrate how fair pricing
retrieves the familiar pricing formulas for these instruments. In the case of the
MMM, we wish to exhibit derivative pricing formulas for what we believe is a
realistic market model. Of course, one could apply standard risk-neutral theory to
obtain pricing formulas in the MM, but this would defeat our purpose of illustrating
the fair pricing approach.

The structure of the paper is as follows:§ 2 introduces the benchmark model
with jumps in general terms before presenting the MM and the MMM as specifi-
cations;§ 3 examines the pricing of a number of common contingent claims in the
MM and the MMM; and§ 4 concludes. There are also two appendices. Appendix A
derives expressions for computing fair derivative prices in the MM; and Appendix
B does the same for the MMM.

2. Benchmark Models with Jumps

2.1. Modelling Traded Uncertainty

Let (Ω,AT ,A,P) be a filtered probability space, whereT ∈ (0,∞) is some
fixed finite time horizon. The probability measureP is thought of as describing the
probabilities of observable events, and so we call it thereal-world measure. We
assume that the filtrationA = {At | t ∈ [0,T ]} satisfies the usual conditions (see
Karatzas & Shreve (1991, p. 10)). Furthermore, we legislate thatA0 is trivial, in
that it contains only the sets of measure zero and their complements. From now on,
whenever we refer to a filtration, whether implicity or explicitly, it is understood to
beA.

We start by imagining a market withd ∈ N sources of traded uncertainty, rep-
resented byWk = {Wk

t | t ∈ [0,T ]}, for k ∈ {1, . . . , d}. We take the firstm ≤ d
factors to represent continuously evolving noise, while the lastd−m factors are as-
sumed to exhibit discontinuous event-driven randomness. The typical assumption
is thatW1, . . . ,Wm are independent standard Brownian motions. This accounts for
the continuous factors. The discontinuous factorsWm+1, . . . ,Wd are modelled as
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independent compensated point processes. In detail, letNk = {Nk
t | t ∈ [0,T ]}, for

k ∈ {m + 1, . . . , d}, be independent point processes whose respective intensities
λk = {λk

t | t ∈ [0,T ]}, for k ∈ {m + 1, . . . d}, are assumed to be independent, strictly
positive, predictable processes satisfying∫ T

0
λk

s ds < ∞ a.s., (2.1)

for eachk ∈ {m + 1, . . . , d}. Then we have

Wk
t = Nk

t −
∫ t

0
λk

s ds, (2.2)

for eachk ∈ {m + 1, . . . , d} and allt ∈ [0,T ].

2.2. The Market

We consider a marketS = {S t = (S 0
t , . . . , S

d
t )� | t ∈ [0,T ]}, whose components

we describe asprimary security accounts. These are best understood as the accu-
mulated values of investments ind + 1 underlying assets, with all accrued income
reinvested.S 0 is chosen to represent alocally riskless savings account, whose value
is given by

S 0
t = exp

{∫ t

0
rs ds

}
, (2.3)

for all t ∈ [0,T ], wherer = {rt | t ∈ [0,T ]} is a non-negative adaptedinterest rate
process. The remainingd security accounts are assumed to evolve according to the
system of SDEs

dS j
t = S j

t−
{
a j

t dt +
d∑

k=1

b j,k
t dWk

t

}
, (2.4)

for each j ∈ {1, . . . , d} and allt ∈ [0,T ], with S j
0 > 0. We assume that the interest

rate processr, theaccumulation rate process a = {at = (a1
t , . . . , a

d
t )� | t ∈ [0,T ]},

thegeneralized volatility matrix process b =
{
bt =

[
b j,k

t
]d

j,k=1

∣∣∣∣ t ∈ [0,T ]
}
, as well as

the intensity processesλk, for k ∈ {m+1, . . . , d}, satisfy the necessary requirements
to ensure that the system (2.4) possesses a unique strong solution.

A properly specified market must preclude appropriately defined arbitrage op-
portunities (see§ 2.7 for a detailed discussion). The following assumption is nec-
essary in order to eliminate the obvious arbitrages that arise when some of the
SDEs (2.4) have the same local martingale terms, but different drift rates (see Platen
(2004e, p. 290)).

Assumption 2.1. The generalized volatility matrix bt is invertible for Lebesgue-
almost every t ∈ [0,T ].

Based on Assumption 2.1, we are free to introduce themarket price of risk
process θ = {θt = (θ1t , . . . , θ

d
t )� | t ∈ [0,T ]}, by setting

θt := b−1
t (at − rt1), (2.5)
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for all t ∈ [0,T ], where1 := (1, . . . ,1)�. In the light of (2.5), we can reformulate
(2.4) as

dS j
t = S j

t−
{
rt dt +

d∑
k=1

b j,k
t

(
θkt dt + dWk

t
)}
, (2.6)

for eachj ∈ {1, . . . , d} and allt ∈ [0,T ].
Let the sequence of stopping times

(
τk

l

)
l∈N, taking values in [0,T ], denote the

jump times ofNk, for k ∈ {m + 1, . . . , d}. It then follows from (2.6) that

S j
τk

l

= S j
τk

l −
(
1+ b j,k

τkl

)
, (2.7)

for eachj ∈ {1, . . . , d}, eachk ∈ {m + 1, . . . , d} and alll ∈ N. To ensure that the pri-
mary security accounts are non-negative, we introduce the following assumption.

Assumption 2.2. The generalized volatility matrix process satisfies the condi-
tion

b j,k
t ≥ −1, (2.8)

for all j ∈ {1, . . . , d}, k ∈ {m + 1, . . . , d} and t ∈ [0,T ].

Note that, for j ∈ {1, . . . , d}, k ∈ {m + 1, . . . , d} and l ∈ N, if bj,k
τkl
= −1, then

the jth primary security account will jump to zero at timeτkl and remain there

indefinitely; while if bj,k
τkl
= 0, it will not jump at all. Also, negative values ofbj,k

τkl
correspond with downward jumps, while positive values correspond with upward
jumps.

2.3. Trading Strategies and Wealth Processes

We call a predictable processδ = {δt = (δ0t , . . . , δ
d
t )� | t ∈ [0,T ]} a trading

strategy if it is S -integrable (see Protter (2004, p. 163)). Given a trading strategy
δ, we interpretδ j

t as the number of units of thejth primary security account held at
time t ∈ [0,T ], for j ∈ {0, . . . , d}. A negative value indicates a short position.

Associated with any trading strategyδ is awealth process S δ = {S δt | t ∈ [0,T ]},
determined by

S δt =
d∑

j=0

δ
j
t S

j
t , (2.9)

for all t ∈ [0,T ]. A strategyδ is calledself-financing if its wealth process satisfies
the SDE

dS δt =
d∑

j=0

δ
j
t dS j

t , (2.10)

for all t ∈ [0,T ]. Intuitively, (2.10) specifies that all changes in wealth are at-
tributable to changes in the primary security account values, and are not due to any
external flows of capital. As is customary, we restrict our attention to self-financing
strategies, and hence omit the phrase “self-financing” altogether.
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Let δ be a trading strategy whose corresponding wealth process is almost surely
strictly positive. Then the following fractions are well-defined:

π
δ, j
t := δ j

t

S j
t−

S δt−
, (2.11)

for each j ∈ {0, . . . , d} and all t ∈ [0,T ]. Equation (2.11) expresses the fractions
of the total wealth invested in each of the primary security accounts as predictable
stochastic processesπδ, j = {πδ, jt | t ∈ [0,T ]}, for each j ∈ {0, . . . , d}. By (2.9) it is
clear that

d∑
j=0

π
δ, j
t = 1, (2.12)

for all t ∈ [0,T ]. When representing the trading strategy in terms of these fractions,
condition (2.12) indicates that one of them is redundant. By nominating the savings
account for omission, the processπδ =

{
πδt = (πδ,1t , . . . , π

δ,d
t )�

∣∣∣ t ∈ [0,T ]
}

provides
an alternative description of the trading strategy. By (2.12) the fraction of wealth
invested in the savings account at any timet ∈ [0,T ] can be retrieved from the
above process asπδ,0t = 1−∑d

j=1 π
δ, j
t . A simple argument using (2.10), (2.3), (2.6),

(2.11) and (2.9) now yields the following SDE for the wealth process:

dS δt = S δt−
{
rt dt +

d∑
j=1

d∑
k=1

π
δ, j
t b j,k

t
(
θkt dt + dWk

t
)}
, (2.13)

for all t ∈ [0,T ], with S δ0 =
∑d

j=0 δ
j
0S j

0.

2.4. The Growth Optimal Portfolio

The growth optimal portfolio (GOP) enjoys a distinguished history, starting
with Kelly (1956). Among a number of equivalent characterizations, it may be
described either as the trading strategy which maximizes the expected logarithm of
its associated terminal wealth, for any given time horizon; or as the trading strategy
which maximizes the expected growth rate of its wealth process at all times (see
Bajeux-Besnainou & Portait (1997, Proposition 1, p. 294)). Much attention has
been devoted to establishing the existence of the GOP for various market models
(see Becherer (2001), Korn & Schäl (1999), Platen (2002), Goll & Kallsen (2003)
and Korn, Oertel & Scḧal (2003)).

Assumption 2.1 would be sufficient to avoid arbitrage (see§ 2.7) in a contin-
uous market. However, in the current setting which incorporates jumps, arbitrage
opportunities may also arise from “exploding” portfolios. The following assump-
tion is necessary to eliminate them (see Platen (2004e, p. 291)).

Assumption 2.3. The market prices of event risks satisfy

λk
t > θ

k
t , (2.14)

for each k ∈ {m + 1, . . . , d} and all t ∈ [0,T ].



Benchmarking and Fair Pricing Applied to Two Market Models 91

Subject to Assumption 2.3, Platen (2004c, Proposition 2.1, p. 24) established
the existence of a trading strategyδ∗ whose wealth processS δ∗ is the GOP. Further-
more, this strategy is unique, modulo its initial wealth. ForS δ∗0 = 1, δ∗ is specified
through its fractions of wealth by

π
δ∗, j
t :=

m∑
k=1

θkt
(
b−1

t
)k, j
+

d∑
k=m+1

θkt

λk
t − θkt

(
b−1

t
)k, j
, (2.15)

for each j ∈ {1, . . . , d} and all t ∈ [0,T ]. A straightforward substitution of the
expressions from (2.15) into (2.13) yields the following SDE for the GOP:

dS δ∗t = S δ∗t−
{
rt dt +

m∑
k=1

θkt
(
θkt dt + dWk

t
)
+

d∑
k=m+1

θkt

λk
t − θkt

(
θkt dt + dWk

t
)}
, (2.16)

for all t ∈ [0,T ], with S δ∗0 = 1.

2.5. Benchmarking

Let δ be an arbitrary trading strategy. An important consequence of Assump-
tion 2.3 is thatS δ∗t > 0 a.s., for allt ∈ [0,T ] (see Platen (2004c, p. 23)). This
permits us to make sense of the processŜ δ = {Ŝ δt | t ∈ [0,T ]}, defined by

Ŝ δt :=
S δt
S δ∗t
, (2.17)

for all t ∈ [0,T ]. We call Ŝ δ a benchmarked wealth process. In the case where
δ is determined byπδ, jt = 1, for some j ∈ {0, . . . , d} and all t ∈ [0,T ], with all
other fractions identically zero, we employ the notationŜ j = {Ŝ j

t | t ∈ [0,T ]} and
speak of abenchmarked primary security account process. An application of It̂o’s
formula to (2.13) and (2.16) yields the following SDE for the benchmarked wealth
process:

dŜ δt = Ŝ δt−
{ m∑

k=1

( d∑
j=1

π
δ, j
t b j,k

t − θkt
)

dWk
t

+

d∑
k=m+1

[ d∑
j=1

π
δ, j
t b j,k

t

(
1− θ

k
t

λk
t

)
− θ

k
t

λk
t

]
dWk

t

}
,

(2.18)

for all t ∈ [0,T ], with Ŝ δ0 = S δ0. For the case of a benchmarked primary security

account process, whereπδ, jt = 1, for somej ∈ {0, . . . , d} and allt ∈ [0,T ], with all
other fractions identically zero, (2.18) specializes to

dŜ j
t = Ŝ j

t−
{ m∑

k=1

(b j,k
t − θkt ) dWk

t +

d∑
k=m+1

[
b j,k

t

(
1− θ

k
t

λk
t

)
− θ

k
t

λk
t

]
dWk

t

}
, (2.19)
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for all t ∈ [0,T ], with Ŝ j
0 = S j

0.
Notice that (2.18) and (2.19) exhibit no drift. SinceWm+1, . . . ,Wd contain

jumps, this implies that benchmarked wealth processes and benchmarked primary
security account processes are sigma-martingales (see Protter (2004, Theorem 89,
p. 234)). However, by restricting our attention to non-negative wealth processes
and primary security account processes, as we will from now on, it follows that
benchmarking yields local martingales (see Protter (2004, Exercise 41, p. 241)).
By virtue of Rogers & Williams (2000, Lemma 14.3, p. 22) this means that all
non-negative wealth processes and primary security account processes become
supermartingales under benchmarking.

2.6. Fair Pricing

The current orthodoxy for contingent claim pricing relies on the interplay
betweenequivalent local martingale measures (ELMMs) andnuméraires, and can
be traced back to Harrison & Kreps (1979), and Harrison & Pliska (1981). Given a
numéraire (see Geman, El Karoui & Rochet (1995)), the idea is that, under agree-
able circumstances, one can identify apricing measure P̃, equivalent toP, such
that the nuḿeraire-denominated wealth processes of alladmissible trading strate-
gies (see Delbaen & Schachermayer (1994, p. 467)) are local martingales underP̃.
The existence of such a pricing measure depends on the absence of certain kinds of
arbitrage. If the market is complete, then it will be unique as well.

Typically, the nuḿeraire is taken to be the savings account; in which case an
ELMM is called arisk-neutral measure; that is, an equivalent measure under which
all discounted admissible wealth processes are local martingales. Another example
is when a zero-coupon bond is used as numéraire. In this case a corresponding
ELMM is called aforward-adjusted measure.

In most applications the nuḿeraire is identified first. Then the measure-theoretic
machinery based on Girsanov’s theorem is used to infer the existence of a corre-
sponding ELMM. An obvious reason for this is that while numéraires are easily
recognized, it is not clear how to obtain a probability measure equivalent toP di-
rectly. This makes going in the opposite direction, by first choosing an equivalent
pricing measure and then finding the corresponding numéraire, very difficult, in
general. One obvious exception is when we pick the real-world measureP itself
as the pricing measure. Then we are left with having to find a numéraire so that
all numéraire-denominated wealth processes are real-world local martingales. As
(2.18) attests, the desired numéraire is in fact the GOP (see Long (1990) for the
prototype of this result in a discrete-time setting).

In the light of the above, let us now examine risk-neutral pricing. This depends
upon the existence of a Radon-Nikodym derivative process for transforming the
real-world measure into an equivalent risk-neutral measure. According to Geman,
El Karoui & Rochet (1995, Theorem 1, p. 448) or Musiela & Rutkowski (2005,
Proposition 8.1.6, p. 293), the natural candidate is the benchmarked savings account
Ŝ 0. However, forŜ 0 to be a Radon-Nikodym derivative process one must assume
that it is a martingale underP, and not merely a local martingale, as indicated by
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(2.19). We can identify two arguments that call this assumption into question.

Empirical evidence The hypothesis that̂S 0 is a martingale under the real-world
measureP can be examined empirically, since Platen (2004d, Theorem 2.1,
p. 517) demonstrates that, subject to reasonable assumptions, any diversified
global index approximates the GOP. Alternatively, by Platen (2004a, Theo-
rem 3.8, p. 13), it follows that the global market portfolio is a proxy for the
GOP if all investors prefer more for less. Consequently, the historical long-
term record of the values of a savings account divided by the correspond-
ing values of a diversified world index, with both sets of data normalized to
have initial value one, provides an approximate realized sample path forŜ 0.
Plotting such a sample path (see Platen (2004d, Figure 8, p. 527) and also
Dimson, Marsh & Staunton (2002, Chapter 34)) suggests quite strongly that
Ŝ 0 is not a martingale, but rather a strict supermartingale.

Modelling flexibility It is well known that arbitrarily specified markets do not, in
general, admit ELMMs (see Karatzas & Shreve (1998, p. 11 and the discus-
sion on p. 33)). So the requirement that the benchmarked savings account
should be a martingale under the real-world measure is a constraint on mod-
elling freedom. Recent research on parsimonious market models highlights
the importance of this freedom. According to Platen (2004d) it appears that
the natural dynamics of the discounted GOP are those of a time-transformed
squared Bessel process of dimension four. Benchmarking the savings ac-
count with such a GOP does not produce a martingale.

Of course, even if we agree that the benchmarked savings account is not a
martingale under the real-world measure, this may, in general, be insufficient for us
to infer that no equivalent risk-neutral probability measures exist; but it is certainly
enough for us to consider the possibility seriously. We will revisit this question in
Remark 3.1. At the very least, we may conclude that there are sufficient grounds
to be skeptical of pricing approaches based on ELMM transformations if one is
concerned with modelling real markets.

If the arguments above seem plausible, then a pricing theory based upon the
existence of ELMMs might not be tenable. This statement applies to risk-neutral
pricing, in particular. The need for an alternative approach leads to the introduction
of the concept offair pricing.

Definition 2.4. Let τ ∈ [0,T ] be a stopping time, and suppose thatH is an
Aτ-measurable random variable satisfying

E

[ |H|
S δ∗τ

∣∣∣∣∣At

]
< ∞ a.s., (2.20)

for all t ∈ [0, τ]. Then thefair price process VH =
{
VH

t

∣∣∣ t ∈ [0, τ]
}

of a contingent
claim payingH at its maturityτ is defined by

VH
t = S δ∗t E

[ H

S δ∗τ

∣∣∣∣∣At

]
, (2.21)
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for all t ∈ [0, τ].

Thus fair pricing simply involves the computation of real-world expectations of
numéraire-denominated payoffs, with the GOP as nuḿeraire. What distinguishes
it from the standard nuḿeraire approach is the absence of the assumption that
numéraire-denominated wealth processes must be martingales under the pricing
measure, which in this case is the real-world measureP.

As demonstrated in Platen (2004c,§ 3.1–2), for example, fair pricing general-
izes both risk-neutral and actuarial pricing. Furthermore, the fair pricing formula
(2.21) depends only on the existence of a GOP, which is a less restrictive require-
ment than the existence of a risk-neutral measure. This will become important in
§ 2.9.2, where we describe a market model which admits a GOP but no equiva-
lent risk-neutral measures. Furthermore, it has been pointed out in Heath & Platen
(2002) that the fair price corresponds to the minimal replicating portfolio in a com-
plete market. Under such circumstances (2.21) appears to be the most natural way
to price derivatives.

Of course, the GOP is not always the most convenient numéraire for obtaining
simple pricing formulas. However, fair pricing does offer other advantages. The
fact that it involves no measure changes means that the time horizon can be ex-
tended toT = ∞ with impunity (see Platen (2004b,§ 3) for a discussion of this).
Thus the pricing of perpetual securities, for example, introduces no extra compli-
cations. By contrast, the application of Girsanov’s theorem to transformP into an
equivalent measurẽP, whenT = ∞, is technically involved (see Karatzas & Shreve
(1991, p. 193) and Bichteler (2002, Example 3.9.14, p. 164 and Warning 3.9.20,
p. 167)). Furthermore, when expressed in units of the GOP, fair derivative prices
are simply martingales.

2.7. Arbitrage

The following notion of arbitrage was used in Platen (2002). It can be justified
by appealing to the fundamental and legally enforced principle oflimited liability,
which holds that a market participant whose total wealth becomes negative may no
longer transact. Thus, we argue that the only arbitrage opportunities germane to
real financial markets occur when an investor can generate positive terminal wealth
from zero initial wealth, without falling foul of the limited liability constraint en-
forced by market regulators.

Definition 2.5. An arbitrage is a wealth processS δ that is a.s. non-negative,
with S δ0 = 0 a.s., and which satisfies

P
[
S δτ > 0

]
> 0, (2.22)

for some stopping timeτ taking values in [0,T ].

As already noted, non-negative benchmarked wealth processes are supermartin-
gales. A standard argument then shows that the value of a non-negative wealth pro-
cess must remain zero indefinitely, if its initial value is zero. Thus, arbitrage, in the
sense of Definition 2.5, is excluded in the benchmark framework.
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Historically, substantial effort has been devoted to teasing out the precise rela-
tionship between the non-existence of arbitrage opportunities and the existence of
equivalent risk-neutral measures. This enterprise was initiated in Harrison & Kreps
(1979), and Harrison & Pliska (1981), and culminated in the definitive formulation
of the fundamental theorem of asset pricing, established in Delbaen & Schacher-
mayer (1994) for locally bounded semimartingale markets; and extended to the
case of general semimartingale markets in Delbaen & Schachermayer (1998). This
result states an equivalence between a particular no-arbitrage principle, namelyno
free lunches with vanishing risk (NFLVR), and the existence of equivalent prob-
ability measures under which discounted wealth processes are local martingales,
in the locally bounded semimartingale case; or sigma-martingales, in the general
semimartingale case.

Note that a no-arbitrage criterion based on Definition 2.5 is weaker than the
NFLVR condition. This means that market models, which exclude arbitrage op-
portunities in the former sense, may in fact not admit any equivalent risk-neutral
measures. This is not as serious as it sounds. As argued in Loewenstein & Willard
(2000), the real economic content of a no-arbitrage condition lies in the existence
of a competitive equilibrium, in the sense that an investor who prefers more to less
should have an optimal trading strategy. In the case of a market driven by a stan-
dard multivariate Brownian motion, these authors demonstrate (see Loewenstein &
Willard (2000, Theorem 1, p. 142)) that an agent who prefers more to less and takes
prices as given will have an optimal strategy if and only if arbitrages very similar
to Definition 2.5 (see Loewenstein & Willard (2000, Definition 1, p. 141)) are pro-
hibited. We may summarize our view by saying that the existence of an equivalent
risk-neutral measure is a convenience, but not a necessity; what is important in a
market model is that under limited liability investors cannot generate strictly posi-
tive wealth from zero initial capital. A no-arbitrage principle weaker than NFLVR
may ensure the latter without guaranteeing the former.

Finally, we may point out that the NFLVR condition is not completely robust
with respect to changes of numéraire (see Delbaen & Schachermayer (1995)). In
fact, even the basic concept of portfolio admissibility, which forms part of the defi-
nition of NFLVR, is nuḿeraire dependent. Clearly, the notion of arbitrage encapsu-
lated in Definition 2.5 introduces no numéraire dependencies; if a given portfolio is
an arbitrage with respect to one numéraire, the same will be true for all numéraires.

2.8. Specifying a Continuous GOP

If we regard the GOP as representing a very large diversified global portfolio
expressed in units of a leading currency, then aggregating all the jumps in the un-
derlying primary security accounts should produce noise which is approximately
continuous. In other words, we would expect the jumps to be invisible to an ob-
server of the GOP. This is consistent with empirical data, when a global market
index denominated in units of, say, US dollars is used as a proxy for the GOP. Ac-
cording to (2.16), the only way to eliminate jumps from the GOP is by setting the
market prices of jump risks equal to zero. Henceforth, the following refinement of
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Assumption 2.3 will be in force.

Assumption 2.6. The market prices of event risks satisfy

θkt = 0, (2.23)

for each k ∈ {m + 1, . . . , d} and all t ∈ [0,T ].

For notational convenience we introduce the predictable matrix-valued process
σ =

{
σt = [σ j,k

t ]d
j=0,k=1

∣∣∣ t ∈ [0,T ]
}
, defined by

σ
j,k
t :=

θ
k
t if j = 0;

θkt − b j,k
t if j ∈ {1, . . . , d}, (2.24)

for eachj ∈ {0, . . . , d}, eachk ∈ {1, . . . , d} and allt ∈ [0,T ]. Substitution of (2.24)
into (2.6) yields

dS j
t = S j

t−
{
rt dt +

d∑
k=1

(
σ0,k

t − σ j,k
t

)(
σ0,k

t dt + dWk
t
)}
, (2.25)

for each j ∈ {0, . . . , d} and all t ∈ [0,T ], with S j
0 > 0. By an application of

Itô’s formula for jump diffusions (see Runggaldier (2003,§ 2.4)) we can verify the
following solution to (2.25):

S j
t =S j

0 exp
{∫ t

0

(
rs +

1
2

m∑
k=1

[(
σ0,k

s
)2 − (

σ
j,k
s

)2
])

ds

+

m∑
k=1

∫ t

0

(
σ0,k

s − σ j,k
s

)
dWk

s

}

× exp
{∫ t

0

d∑
k=m+1

σ
j,k
s λ

k
s ds

} d∏
k=m+1

Nk
t∏

l=1

(
1− σ j,k

τkl

)
,

(2.26)

for eachj ∈ {0, . . . , d} and allt ∈ [0,T ]. Here
(
τk

l

)
l∈N denotes the sequence of jump

times ofNk, for eachk ∈ {m + 1, . . . , d}, as before.
Next, substitution of (2.24) into (2.16) produces the following SDE for the

GOP:

dS δ∗t = S δ∗t

{
rt dt +

m∑
k=1

σ0,k
t

(
σ0,k

t dt + dWk
t
)}
, (2.27)

for all t ∈ [0,T ], with S δ∗0 = 1. The solution to (2.27) is given by

S δ∗t = exp
{∫ t

0

(
rs +

1
2

m∑
k=1

(
σ0,k

s
)2

)
ds +

m∑
k=1

∫ t

0
σ0,k

s dWk
s

}
, (2.28)
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for all t ∈ [0,T ]. Finally, the SDEs for the benchmarked primary security accounts
are derived by substituting (2.24) into (2.19), yielding

dŜ j
t = −Ŝ j

t−
d∑

k=1

σ
j,k
t dWk

t , (2.29)

for all j ∈ {0, . . . , d} andt ∈ [0,T ], with Ŝ j
0 = S j

0. To solve (2.29), we simply divide
(2.26) by (2.28), to get

Ŝ j
t = S j

0 exp
{
−1

2

∫ t

0

m∑
k=1

(
σ

j,k
s

)2 ds −
m∑

k=1

∫ t

0
σ

j,k
s dWk

s

}

× exp
{∫ t

0

d∑
k=m+1

σ
j,k
s λ

k
s ds

} d∏
k=m+1

Nk
t∏

l=1

(
1− σ j,k

τkl

)
,

(2.30)

for each j ∈ {0, . . . , d} and allt ∈ [0,T ]. By comparing (2.30) with (2.26) we see
that benchmarking only affects the continuous first factor of (2.26), while leaving
the discontinuous second factor unchanged. This is a consequence of specifying
a continuous GOP. Thus, if we writeS j,c

t for the continuous first factor in (2.26)
andS j,d

t for the discontinuous second factor, forj ∈ {0, . . . , d}, thenŜ j
t = Ŝ j,c

t S j,d
t ,

according to (2.30),t ∈ [0,T ].

2.9. Two Models for the Benchmarked Primary Security Accounts

A fundamental insight of the benchmark approach is that the benchmarked pri-
mary security accounts are the pivotal objects of study. This is because the savings
account and the benchmarked primary security accounts together specify the en-

tire investment universe. For example,S δ∗t =
S 0

t

Ŝ 0
t
, for all t ∈ [0,T ], expresses the

GOP in terms of the savings account and the benchmarked savings account. Also,

S j
t = Ŝ j

t S
δ∗
t = Ŝ j

t
S 0

t

Ŝ 0
t
, for each j ∈ {1, . . . , d} and allt ∈ [0,T ], expresses each pri-

mary security account in terms of the corresponding benchmarked primary security
account, the savings account and the benchmarked savings account. In this section
we will present two models for the benchmarked primary security accounts. But
first we introduce some simplifying notation.

Define the processes|σ j| = {∣∣∣σ j
t

∣∣∣ ∣∣∣ t ∈ [0,T ]
}
, for j ∈ {0, . . . , d}, by setting

∣∣∣σ j
t

∣∣∣ :=

√√
m∑

k=1

(
σ

j,k
t

)2
, (2.31)

for each j ∈ {0, . . . , d} and all t ∈ [0,T ]. We will also require thenormalized
aggregate continuous noise processes Ŵ j =

{
Ŵ j

t

∣∣∣ t ∈ [0,T ]
}
, for j ∈ {0, . . . , d},

defined by

Ŵ j
t :=

m∑
k=1

∫ t

0

σ
j,k
s∣∣∣σ j
s

∣∣∣ dWk
s , (2.32)
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for each j ∈ {0, . . . , d} and allt ∈ [0,T ]. By Lévy’s characterization of Brownian
motion (see Karatzas & Shreve (1991, Theorem 3.16, p. 157)), it follows thatŴ j is
a Brownian motion, for eachj ∈ {0, . . . , d}. Also note Protter (2004, Theorem 17,
p. 164 and Theorem 21, p. 165), which allow sums of integrals with respect to
W1, . . . ,Wm to be expressed as integrals with respect to the aggregate Brownian
motions (2.32).

In both models presented in this section we will assume, for simplicity, that the
parameters governing jump behaviour are constant. Thus the point processesNk,
for k ∈ {m + 1, . . . , d}, are in fact homogenous Poisson processes with constant
intensities, so that

λk
t = λ

k > 0, (2.33)

for eachk ∈ {m + 1, . . . , d} and allt ∈ [0,T ]. Also, the jump ratios are constant, so
that

σ
j,k
t = σ

j,k ≤ 1, (2.34)

for each j ∈ {0, . . . , d}, eachk ∈ {m + 1, . . . , d} and allt ∈ [0,T ]. Notice that As-
sumption 2.6 ensures that (2.33) does not violate Assumption 2.3. Also, Assump-
tion 2.6 and (2.24) ensure that (2.34) satisfies Assumption 2.2. Using (2.31)–(2.34),
we can rewrite (2.30) as

Ŝ j
t = Ŝ j,c

t S j,d
t , (2.35)

where

Ŝ j,c
t := S j

0 exp
{
−1

2

∫ t

0

∣∣∣σ j
s

∣∣∣2 ds −
∫ t

0

∣∣∣σ j
s

∣∣∣ dŴ j
s

}
(2.36)

and

S j,d
t := exp

{ d∑
k=m+1

σ j,kλkt
} d∏

k=m+1

(
1− σ j,k)Nk

t , (2.37)

for each j ∈ {0, . . . , d} and allt ∈ [0,T ]. The two concrete models for the bench-
marked primary security accounts which we now present differ in terms of how
the continuous processes (2.36) are modelled. The jump processes (2.37) are, for
simplicity, the same in both cases.

2.9.1. The Merton Model (MM)
A particular model arises if one assumes that all parameter processes are con-

stant; so that, in addition to (2.33) and (2.34),rt = r andσ j,k
t = σ j,k, for each

j ∈ {0, . . . , d}, eachk ∈ {1, . . . ,m} and allt ∈ [0,T ]. Then (2.36) can be written as

Ŝ j,c
t = S j

0 exp
{
−1

2
|σ j|2t − |σ j|Ŵ j

t

}
(2.38)

for each j ∈ {0, . . . , d} and all t ∈ [0,T ]. Hence, in this special case, the bench-
marked primary security accounts are the products of driftless geometric Brownian
motions and compensated Poisson processes. We are thus in a modelling paradigm
similar to that first introduced by Samuelson (1965) and extended by Merton (1976)
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to include jumps. Consequently, we refer to the model, where the benchmarked
primary security accounts are described by (2.38) and (2.37) as theMerton model
(MM), which is also known as the Merton jump-diffusion model.

2.9.2. The Minimal Market Model (MMM)
Without imposing significant constraints on the parameter processes, and work-

ing within the full generality of§ 2.8, it has been demonstrated in Platen (2004d,
§ 3) that the discounted GOP follows atime-transformed squared Bessel process of

dimension four. Since the discounted GOP is given byS δ∗t
S 0

t
= 1

Ŝ 0
t
, for all t ∈ [0,T ],

it follows that the benchmarked savings account is an inverted time-transformed
squared Bessel process of dimension four. This observation can be extended to
all benchmarked primary security accounts, modulo jumps, of course. Themin-
imal market model (MMM) for the benchmarked primary security accounts, first
introduced in Platen (2001), is obtained by modelling these time transformations
as differentiable and deterministic functions. We provide here an outline of this
model. Unfortunately, its detailed justification is beyond the scope of this paper
and the reader is referred to Platen (2004d,§ 3).

For eachj ∈ {0, . . . , d}, let η j ∈ R and define the functionα j : R+ → R+ by
setting

α j(t) := α j
0 exp{η jt}, (2.39)

for all t ∈ [0,T ], with α j
0 > 0. We refer toη j as thenet growth rate of the jth

primary security account, forj ∈ {0, . . . , d}. Next, define thesquare root processes
Y j =

{
Y j

t

∣∣∣ t ∈ [0,T ]
}
, for j ∈ {0, . . . , d}, through the system of SDEs

dY j
t =

(
1− η jY j

t
)

dt +
√

Y j
t dŴ j

t , (2.40)

for each j ∈ {0, . . . , d} and allt ∈ [0,T ], with Y j
0 =

1
α

j
0S j

0

. The continuous parts of

the benchmarked primary security accounts (2.36) are modelled in terms of these
square root processes by setting

Ŝ j,c
t :=

1

α j(t)Y j
t

, (2.41)

for eachj ∈ {0, . . . , d} and allt ∈ [0,T ].
As already mentioned, between jumps the benchmarked primary security ac-

counts are inverted time-transformed squared Bessel processes of dimension four.
The time transformations are deterministic in the case of the MMM. In detail, de-
fine the continuous strictly increasing functionsϕ j : R+ → R+, for j ∈ {0, . . . , d},
by setting

ϕ j(t) := ϕ j
0 +

1
4

∫ t

0
α j(s) ds, (2.42)

for eachj ∈ {0, . . . , d} and allt ∈ [0,T ], with ϕ j
0 ∈ R+. Continuity and monotonicity

imply thatϕ j possesses an inverse (ϕ j)−1 :
[
ϕ

j
0,∞

) → R+, for each j ∈ {0, . . . , d}.
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Now define the processesX j =
{
X j
ϕ

∣∣∣ϕ ∈ [ϕ j(0), ϕ j(T )]
}
, for eachj ∈ {0, . . . , d}, by

setting

X j
ϕ j(t)

:= α j(t)Y j
t =

1

Ŝ j,c
t

, (2.43)

for each j ∈ {0, . . . , d} and allt ∈ [0,T ]. It then follows (see Platen (2004d,§ 3))
that X j is a squared Bessel process of dimension four, for eachj ∈ {0, . . . , d}; so
that 1

Ŝ j,c is a time-transformed squared Bessel process under the transformation
(ϕ j)−1.

Under the MMM benchmarked primary security accounts are strict local mar-
tingales, and hence strict supermartingales. This observation holds, in particular,
for the benchmarked savings accountŜ 0. Since this is the putative Radon-Nikodym
derivative process employed by Girsanov’s theorem to transform from the real-
world measure to an equivalent risk-neutral measure, the fact that it is not a martin-
gale rules out this measure transformation. In fact, one can make an even stronger
statement: as will be demonstrated in Remark 3.1, the MMM does not admit any
equivalent risk-neutral measures. Consequently, risk-neutral derivative pricing is
impossible within the MMM, and we will resort to the more general fair pricing
approach. Despite this deviation from the standard risk neutral setting, the MMM
is attractive for a number of reasons.

1. In the light of accepted “stylized empirical facts”, it appears to agree well
with the real market. For example, it captures the observed negative corre-
lation between stock value and volatility, known as theleverage effect (see
Black (1976)).

2. If we accept thatα j is of finite variation, for j ∈ {0, . . . , d}, then squared
Bessel processes suggest themselves quite naturally and the derivation of
(2.39) from (2.35) follows, as demonstrated in Platen (2004d,§ 3).

3. Finally, the MMM represents a parsimonious model resulting from optimal
market dynamics. The only free parameters are the interest rate processr
and the net growth ratesη j, for j ∈ {0, . . . , d}, together with certain initial
values. These are all readily determined from market data (see Platen (2004d,
p. 523–524)).

In summary, we think that the MMM manages to capture endogenously many
of the features of observed markets. Furthermore, the modest number of parameters
make it easy to calibrate and practical to implement.

3. Fair Derivative Pricing Examples

3.1. Zero-Coupon Bonds

We consider first a standard default-free zero-coupon bond paying one unit of
the domestic currency at its maturityT . We could allow for any maturity date
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T̄ ∈ [0,T ], but this added generality has no impact on the calculations that follow.
According to the fair pricing formula (2.21), the value of the bond at timet is given
by

P(t,T ) = S δ∗t E

[
1

S δ∗T

∣∣∣∣∣∣At

]
=

1

Ŝ 0
t

E

[
exp

{
−

∫ T

t
rs ds

}
Ŝ 0

T

∣∣∣∣∣∣At

]
, (3.1)

for all t ∈ [0,T ]. While (3.1) is completely general and independent of any assump-
tions, it is also too generic to be directly useful. We will now examine it under the
two market models outlined in§ 2.9.

3.1.1. The MM Case
SinceŜ 0 is a martingale in this case, we get

P(t,T ) = exp{−r(T − t)} 1

Ŝ 0
t

E

[
Ŝ 0

T

∣∣∣∣At

]
= exp{−r(T − t)}, (3.2)

for all t ∈ [0,T ]. In other words, we obtain the usual bond pricing formula deter-
mined by discounting at the short rate.

3.1.2. The MMM Case
In Miller & Platen (2004, Assumption 2.1, p. 4) it is argued, with some em-

pirical support (see Miller & Platen (2004, Figure 2, p. 5), for example), that the
interest rate process and the discounted GOP are independent. If we accept this,
and apply it to (3.1), while remembering thatŜ 0 = Ŝ 0,c, we get

P(t,T ) = E

[
exp

{
−

∫ T

t
rs ds

} ∣∣∣∣∣∣At

]
1

Ŝ 0
t

E

[
Ŝ 0

T

∣∣∣∣At

]

= E

[
exp

{
−

∫ T

t
rs ds

} ∣∣∣∣∣∣At

](
1− exp

{
−1

2
Λ0

t

})
,

(3.3)

for all t ∈ [0,T ], from (B.5), withΛ0
t as in (B.3) in Appendix B

Remark 3.1. The bond pricing formula (3.3) poses an obvious arbitrage riddle,
which we now address. As demonstrated in Heath & Platen (2002,§ 5), there
exists a trading strategy, whose value is given by (3.3), which hedges the zero-
coupon bond under consideration. Imagine now a trading strategyδ consisting of
the aforementioned hedge, funded by borrowingP(0,T ) from the savings account
at initiation. Assuming, for the sake of argument, a zero short rate, the wealth
process associated withδ is given by

S δt = P(t,T ) − P(0,T ) = exp
{
−1

2
Λ0

0

}
− exp

{
−1

2
Λ0

t

}
, (3.4)

for all t ∈ [0,T ], according to (3.3). The following observations are immediate:

• S δ0 = 0;
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• S δT = 1− P(0,T ) > 0 a.s.; and

• S δt ≥ −P(0,T ) a.s.,

for all t ∈ [0,T ]. Thusδ is an admissible strategy, in the sense that its wealth pro-
cess is uniformly bounded below (see Delbaen & Schachermayer (1994, p. 467)).
However, it fails the NFLVR condition. By the fundamental theorem of asset pric-
ing (see Delbaen & Schachermayer (1994, 1998)), we may thus conclude that the
MMM admits no equivalent risk-neutral probability measures.

Now fix t ∈ [0,T ]. The monotonicity ofϕ0 and the relationX0
ϕ0(0)
= 1, which

follows from (2.3) and (2.43), together imply that

P
[
S δt < 0

]
= P

[
X0
ϕ0(t) >

ϕ0(T ) − ϕ0(t)
ϕ0(T ) − ϕ0(0)

X0
ϕ0(0)

]
≥ P

[
X0
ϕ0(t) > 1

]
> 0, (3.5)

remembering thatX0 is a squared Bessel process of dimension four. SoS δ is not an
arbitrage in the sense of Definition 2.5; in particular, its associated wealth process
can become negative at any time with strictly positive probability. It is an example
of what Loewenstein & Willard (2000) call afree snack. While the presence of
free snacks rules out the existence of equivalent risk-neutral probability measures,
Loewenstein & Willard (2000) argue that this alone does not constitute sufficient
grounds for dismissing a given market model.

3.2. Forward Contracts

In this section we fixj ∈ {0, . . . , d} and consider a forward contract with
delivery dateT on the jth primary security account. According to the fair pric-
ing formula (2.21) the forward priceF j(t,T ) at timet ∈ [0,T ] for this contract is
implicitly determined by

S δ∗t E

[
F j(t,T ) − S j

T

S δ∗T

∣∣∣∣∣∣At

]
= 0. (3.6)

Solving this equation yields the following expression for the forward price:

F j(t,T ) =
S δ∗t E

[
Ŝ j

T

∣∣∣∣At

]
S δ∗t E

[
1

S δ∗T

∣∣∣∣∣At

] =


S j
t

P(t,T )
1

Ŝ j
t

E

[
Ŝ j

T

∣∣∣∣At

]
if S j

t > 0;

0 if S j
t = 0,

(3.7)

for all t ∈ [0,T ], by (3.1).

3.2.1. The MM Case
With reference to (2.38), the same argument which established that the bench-

marked savings account is a continuous martingale also applies to the driftless geo-
metric Brownian motion̂S j,c; while the compensated Poisson processŜ j,d is a jump
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martingale. Consequently,Ŝ j is the product of independent martingales, and hence
itself a martingale. Together with (3.2), this fact enables us to write (3.7) as

F j(t,T ) = S j
t exp{r(T − t)}, (3.8)

for all t ∈ [0,T ]. Thus, in the MM we recover the standard expression for the
forward price.

3.2.2. The MMM Case
In this case,Ŝ j,c is an inverted time-transformed squared Bessel process of

dimension four, according to (2.43), whileS j,d is an independent jump martingale,
as before. Thus,

1

Ŝ j
t

E

[
Ŝ j

T

∣∣∣∣At

]
=

1

Ŝ j,c
t

E

[
Ŝ j,c

T

∣∣∣∣At

] 1

S j,d
t

E

[
S j,d

T

∣∣∣∣At

]
= 1− exp

{
−1

2
Λ

j
t

}
(3.9)

for all t ∈ [0,T ], by (B.5). Putting (3.7) together with (3.3) and (3.9) gives the
following expression for the forward price:

F j(t,T ) = S j
t

1− exp
{
− 1

2Λ
j
t

}
1− exp

{
− 1

2Λ
0
t

}E[exp

{∫ T

t
rs ds

} ∣∣∣∣∣∣At

]
, (3.10)

for all t ∈ [0,T ].

3.3. Asset-or-Nothing Binaries

Binary options may be regarded as basic building blocks for complex deriva-
tives. This has been exploited in a recent approach to the valuation of exotic op-
tions, where a complex payoff is decomposed into series of binaries (see Ingersoll
(2000) and Buchen (2004)).

In this section we fixj ∈ {0, . . . , d} again and consider anasset-or-nothing
binary, with maturity T and strikeK ∈ R+, on the jth primary security account.
We also fixk ∈ {m + 1, . . . , d} and assume thatσ j,k � 0 andσ j,l = 0, for each
l ∈ {m+1, . . . , d}with l � k. In other words, we assume that thejth primary security
account responds only to thekth jump process. This does not affect the generality
of our calculations below, but it does result in more manageable expressions. In
addition, we will assume a constant interest rate throughout, so thatrt = r, for all
t ∈ [0,T ]. Although this is already in force in the case of the MM, we require it to
obtain a convenient pricing formula under the MMM.

At its maturity the instrument under consideration pays its holder one unit of
the jth primary security account if this is greater than the strike amountK, and
nothing otherwise. According to the fair pricing formula (2.21), its value is given
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by

Aj,k(t,T,K) = S δ∗t E

[
I{

S j
T≥K

} S j
T

S δ∗T

∣∣∣∣∣∣At

]

=
S j

t

Ŝ j
t

E

[
I{

Ŝ j
T≥K(S 0

T )−1Ŝ 0
T

}Ŝ j
T

∣∣∣∣∣At

]

=
S j

t

Ŝ j,c
t

E

[
I{

Ŝ j,c
T ≥α(Nk

T−Nk
t )Ŝ 0

T

}
× exp

{
σ j,kλk(T − t)

}(
1− σ j,k)Nk

T−Nk
t Ŝ j,c

T

∣∣∣∣∣∣At

]

=

∞∑
n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!
exp

{
σ j,kλk(T − t)

}(
1− σ j,k)n

× S j
t

Ŝ j,c
t

E

[
I{

Ŝ j,c
T ≥α(n)Ŝ 0

T

}Ŝ j,c
T

∣∣∣∣∣∣At

]
,

(3.11)

for all t ∈ [0,T ], where

α(n) :=
K

S 0
t S j,d

t

exp
{−(r + σ j,kλk)(T − t)

}(
1− σ j,k)−n

, (3.12)

for all n ∈ Z+.

3.3.1. The MM Case
Combining (3.11) and (3.12) with (A.18), and remembering thatŜ 0,c = Ŝ 0,

yields

Aj,k(t,T,K) =
∞∑

n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!

× exp
{
σ j,kλk(T − t)

}(
1− σ j,k)nS j

tN
(
d1(n)

)
,

(3.13)

for all t ∈ [0,T ], where

d1(n) :=
ln S j

t

K +

(
r + σ j,kλk + n ln(1−σ j,k)

T−t + 1
2

(
σ̂0, j)2

)
(T − t)

σ̂0, j
√

T − t
, (3.14)

for eachn ∈ Z+.

3.3.2. The MMM Case
As we have just seen, calculating the fair price of a contingent claim written on

a primary security account requires the evaluation of a double integral involving the
transition density of a two-dimensional process. This is a consequence of choosing
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the GOP as nuḿeraire. Closed-form fair derivative prices can be obtained for the
MM, but in the case of the MMM things are more difficult, because the transition
densities of two-dimensional squared Bessel processes are apparently not known.
The natural response to this is to solve the partial integro-differential equation asso-
ciated with the derivative price numerically. However, to give the reader a feeling
for the types of formulas that emerge from applying fair pricing in the MMM, we
will now assume thêS 0 and Ŝ j,c are independent. Combining (3.11) and (3.12)
with (B.15), and remembering thatŜ 0 = Ŝ 0,c, then results in the following:

Aj,k(t,T,K)

=

∞∑
n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!
exp

{
σ j,kλk(T − t)

}(
1− σ j,k)n

× S j
t

[
G′′0,4

((
ϕ0(T ) − ϕ0(t)

)
α(n);Λ j

t ,Λ
0
t

)
− exp

{
−1

2
Λ

j
t

}]
,

(3.15)

for all t ∈ [0,T ]. The paragraph preceding (B.15) in Appendix B explains the
notation in (3.15).

3.4. Bond-or-Nothing Binaries

In this section we price abond-or-nothing binary, with maturityT and strike
K ∈ R+, on the jth primary security account, wherej ∈ {0, . . . , d} is fixed. As
before, let us assume that this primary security account only responds to thekth
jump process, wherek ∈ {m + 1, . . . , d} is fixed. We will also require a constant
interest rate for the MMM as well as the MM.

At its maturity the instrument under consideration pays its holder the strike
amountK if the value of thejth primary security account is in excess of this, and
nothing otherwise. According to the fair pricing formula (2.21), its value is given
by

Bj,k(t,T,K) = S δ∗t E

[
I{

S j
T≥K

} K

S δ∗T

∣∣∣∣∣∣At

]

= KP(t,T ) − KS δ∗t E

[
I{

S j
T<K

} 1

S δ∗T

∣∣∣∣∣∣At

]

= KP(t,T ) − K
S 0

t

Ŝ 0
t

E

[
I{

Ŝ 0
T>K−1S 0

T Ŝ j
T

} Ŝ 0
T

S 0
T

∣∣∣∣∣∣At

]

= KP(t,T ) − K exp{−r(T − t)} 1

Ŝ 0
t

E

[
I{

Ŝ 0
T>α(N

k
T−Nk

t )−1Ŝ j,c
T

}Ŝ 0
T

∣∣∣∣∣∣At

]

= KP(t,T ) − K exp{−r(T − t)}
∞∑

n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!

× 1

Ŝ 0
t

E

[
I{

Ŝ 0
T>α(n)−1Ŝ j,c

T

}Ŝ 0
T

∣∣∣∣∣∣At

]
,

(3.16)
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for all t ∈ [0,T ], whereα(n) is given by (3.12), for eachn ∈ Z+.

3.4.1. The MM Case
Applying (A.18) to (3.16), (3.12) and (3.2), and remembering thatŜ 0

t = Ŝ 0,c
t ,

gives

Bj,k(t,T,K) = K exp{−r(T − t)}

×
(
1−

∞∑
n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!
N(−d2(n)

))

=

∞∑
n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!
K exp{−r(T − t)}N(

d2(n)
)
,

(3.17)

for all t ∈ [0,T ], where

d2(n) :=
ln S j

t

K +

(
r + σ j,kλk + n ln(1−σ j,k)

T−t − 1
2

(
σ̂0, j)2

)
(T − t)

σ̂0, j
√

T − t

= d1(n) − σ̂0, j
√

T − t,

(3.18)

for eachn ∈ Z+. To obtain the second equality in (3.17), we have used the re-
lationN(−(d2(n)

)
= 1 − N(

(d2(n)
)
, for eachn ∈ Z+, together with the fact that∑∞

n=0 exp
{−λk(T − t)

} [λk(T−t)
]n

n! = 1, as it is the total probability of a Poisson random
variable with parameterλk(T − t).

3.4.2. The MMM Case
Subject to the assumption thatŜ 0

t and Ŝ j,c
t are independent, as before, we can

combine (B.15) with (3.16), (3.12) and (3.3), to get

Bj,k(t,T,K) = K exp{−r(T − t)}
(
1− exp

{
−1

2
Λ0

t

})

−
∞∑

n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!
K exp{−r(T − t)}

×
[
G′′0,4

(
ϕ j(T ) − ϕ j(t)
α(n)

;Λ0
t ,Λ

j
t

)
− exp

{
−1

2
Λ0

t

}]

=

∞∑
n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!

× K exp{−r(T − t)}
[
1−G′′0,4

(
ϕ j(T ) − ϕ j(t)
α(n)

;Λ0
t ,Λ

j
t

)]
,

(3.19)

for all t ∈ [0,T ]. For the second equality in (3.19), we have once again used the

fact that
∑∞

n=0 exp
{−λk(T − t)

} [λk(T−t)
]n

n! is the total probability of a Poisson random
variable with parameterλk(T − t).
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3.5. European Options

In this section we fixj ∈ {0, . . . , d} again and consider a European call option
with maturityT and strikeK ∈ R+ on the jth primary security account. As before,
we make the simplifying assumption that thejth primary security account is only
sensitive to thekth jump process, for some fixedk ∈ {m + 1, . . . , d}. We also
continue to require a constant interest rate for both market models. According to
the fair pricing formula (2.21) the option premium is given by

C j,k(t,T,K) = S δ∗t E

[ (
S j

T − K
)+

S δ∗T

∣∣∣∣∣∣At

]
= S δ∗t E

[
I{

S j
T≥K

} S j
T − K

S δ∗T

∣∣∣∣∣∣At

]

= Aj,k(t,T,K) − Bj,k(t,T,K),

(3.20)

for all t ∈ [0,T ].

3.5.1. The MM Case
Combining (3.13) and (3.17) gives

C j,k(t,T,K) =
∞∑

n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!

[
exp

{
σ j,kλk(T − t)

}
× (

1− σ j,k)nS j
tN

(
d1(n)

) − K exp{−r(T − t)}N(
d2(n)

)]
,

(3.21)

for all t ∈ [0,T ], whered1(n) andd2(n) are given by (3.14) and (3.18), respectively,
for eachn ∈ Z+.

It is easily seen that (3.21) corresponds with the original pricing formula for
a call on a stock whose price follows a jump-diffusion, given by Merton (1976,
(19), p. 135). The only difference is that there the jump ratios were taken to be
log-normally distributed, while in our case they are constant. Furthermore, since
we can havei, j � 0 in (A.18), this formula can be used to price an option to ex-
change thejth primary security account for theith primary security account. In that
case, the option pricing formula we obtain in place of (3.21) is essentially that of
Margrabe (1978, (7), p. 179), modified for the presence of jumps. Note, in par-
ticular, the correspondence between (A.12) and the expression forv2 in Margrabe
(1978, p. 179).

3.5.2. The MMM Case
For the sake of completeness, we present the call option pricing formula under

the MMM, obtained by subtracting (3.19) from (3.15), according to (3.20):

C j,k(t,T,K) =
∞∑

n=0

exp
{−λk(T − t)

} [λk(T − t)
]n

n!

[
exp

{
σ j,kλk(T − t)

}

× (
1− σ j,k)nS j

t

(
G′′0,4

((
ϕ0(T ) − ϕ0(t)

)
α(n);Λ j

t ,Λ
0
t

)
− exp

{
−1

2
Λ

j
t

})

− K exp{−r(T − t)}
(
1−G′′0,4

(
ϕ j(T ) − ϕ j(t)
α(n)

;Λ0
t ,Λ

j
t

))]
,

(3.22)
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for all t ∈ [0,T ], whereα(n) is given by (3.12), for eachn ∈ Z+.
3.6. Defaultable Zero-Coupon Bonds

Since we have incorporated event risks in our modelling, we have a framework
which is appropriate for pricing credit-risky instruments. Here we consider the
canonical example of such a contract, namely a defaultable zero-coupon bond with
maturity T . To keep the analysis simple, we fixk ∈ {m + 1, . . . , d} and assume
that the bond under consideration defaults at the first jump time ofNk, provided
that this time is not greater thanT . In other words, default occurs if and only if
τk

1 ≤ T , in which caseτk1 is the default time. As a further simplification, we assume
zero recovery upon default. According to the fair pricing formula (2.21), the price
P̃k(t,T ) at timet of this instrument is given by

P̃k(t,T ) = S δ∗t E

[
I{τk

1>T }
S δ∗T

∣∣∣∣∣∣At

]
= S δ∗t E

[
1

S δ∗T

∣∣∣∣∣∣At

]
E

[
I{τk

1>T }
∣∣∣∣At

]
= P(t,T )P

[
Nk

T = 0
∣∣∣At

]
,

(3.23)

for all t ∈ [0,T ]. Note that the second equality above follows from the indepen-
dence of the GOP and the underlying point processes, as is clear from (2.27), for
example.

Equation (3.23) is naturally interpreted as expressing the price of the defaultable
bond as the product of the price of the corresponding default-free bond and the
conditional probability of survival. The latter may be further evaluated as follows:

P
[
Nk

T = 0
∣∣∣At

]
= E

[
I{Nk

t =0}I{Nk
T−Nk

t =0
} ∣∣∣∣∣At

]

= I{Nk
t =0}P

[
Nk

T − Nk
t = 0

∣∣∣At
]
= I{Nk

t =0}E
[
exp

{
−

∫ T

t
λk

s ds

} ∣∣∣∣∣∣At

]
,

(3.24)

for all t ∈ [0,T ].
One can, of course, combine (3.23) and (3.24) with (3.2) to obtain an explicit

pricing formula for the defaultable bond under consideration in the MM. Similarly,
one can combine (3.23) and (3.24) with (3.3) to obtain the pricing formula for this
instrument in the MMM.

Remark 3.2. Note that the expression obtained by combining (3.23) and (3.24)
is similar to the familiar formula for the price of a defaultable zero-coupon bond
in a simple reduced-form model for credit risk (see Schönbucher (2003, (5.10),
p. 118), for example). The difference is that in the standard formula all expectations
are computed with respect to an equivalent risk-neutral measure; in particular, the
survival probability is a risk-neutral probability. In (3.23) and (3.24), however,
only the real-world measure is in evidence. The crucial advantage of this is that
we avoid the undesirable dichotomy between real-world default probabilities, as
determined by historical data and credit rating agencies, and risk-neutral default
probabilities, as determined by observed credit spreads. Substantial effort has been
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expended on the problem of reconciling real-world and risk-neutral probabilities
of default (see Albanese & Chen (2005), for a recent example). This unresolved
problem is, fortunately, avoided altogether with fair pricing under the benchmark
approach, since the real-world measure is the pricing measure. In future work we
intend to exploit this, to produce credit risk models which can be calibrated both to
real-world probabilities of default, derived from historical data and credit ratings
information, as well as to traded credit spreads.

Of course, Assumption 2.6 is probably not ideal for a realistic model of credit
risk. Nevertheless, formulas analogous to (2.22) and (3.24) would emerge for
defaultable bond prices, even if market prices of jump risks were not taken to be
identically zero; and the comments above would still apply.

4. Conclusion

In this paper we have set out to achieve two objectives: to introduce bench-
marking and the associated concept of fair derivative pricing; and to illustrate fair
pricing by valuing some common contingent claims in two different market mod-
els. With respect to the first objective, we have demonstrated that the applicability
of benchmarking and fair pricing depend only on the modest assumptions neces-
sary to ensure the existence of agrowth optimal portfolio (GOP). Furthermore, we
hope to have convinced the reader that a case can be made for also considering
market models that do not admit equivalent risk-neutral measures. In such models
it appears that fair pricing is a natural generalization of risk-neutral pricing, with
no need for measure changes.

Contrary to what one might expect, models for which equivalent risk-neutral
measures do not exist do not necessarily admit arbitrages; provided that one adopts
an appropriate notion of arbitrage. The definition of arbitrage we advocate, namely
that no market participant can make something from nothing without the possibility
of becoming insolvent in the interim, has a clear economic meaning.

The benchmarking approach is concerned with modelling benchmarked wealth
processes. In the two market models we consider, these are jump-diffusions, based,
respectively, on geometric Brownian motions and on squared Bessel processes of
dimension four. In the former case, we obtain what we call theMerton model (MM);
this is very much the standard market model, for which risk-neutral pricing would
be appropriate. The model obtained in the latter case is called theminimal market
model (MMM); it does not admit equivalent risk-neutral measures, though it does
exhibit a number of features which recommend it as a potentially realistic descrip-
tion of observed markets. For the MM we demonstrate that the familiar derivative
pricing formulas, usually obtained through risk-neutral pricing, are retrieved by the
fair pricing methodology. Fair pricing in the MMM, however, producesfree snacks,
as well as yielding option pricing formulas where the non-central chi-square distri-
bution plays an important role.
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A. Appendix: Merton Model Calculations

This appendix provides some useful expressions for computing fair prices in
the MM. For this section fixi, j ∈ {0, . . . , d} such thati � j. Then the function

pi, j
s,t(xi, x j;yi, y j) :=

1

2πyiy j|σi||σ j|(t − s)
√

1− (ρi, j)2

× exp

− 1
2(1− (ρi, j)2)


( ln yi

xi
+ 1

2 |σi|2(t − s)

|σi| √t − s

)2

− 2ρi, j

(
ln yi

xi
+ 1

2 |σi|2(t − s)
)(

ln y j

x j
+ 1

2 |σ j|2(t − s)
)

|σi||σ j|(t − s)

+

( ln y j

x j
+ 1

2 |σ j|2(t − s)

|σ j| √t − s

)2

 ,

(A.1)

for all xi, x j, yi, y j ∈ (0,∞), wheres, t ∈ [0,T ] such thats ≤ t, is the joint transition
density ofŜ i,c and Ŝ j,c over the time interval [s, t]. The parameterρi, j in (A.1) is
determined by

ρi, j :=
m∑

k=1

σi,kσ j,k

|σi||σ j| . (A.2)

It follows from (2.32) thatρi, j is the correlation between the Brownian motionsŴi

andŴ j.

A.1. An Expression for Computing Fair Binary Prices

Fix t ∈ [0,T ] and letαt be a non-negativeAt-measurable random variable. We
will now evaluate the following expression:

1

Ŝ j,c
t

E

[
I{

Ŝ j,c
T ≥αt Ŝ

i,c
T

}Ŝ j,c
T

∣∣∣∣∣At

]
=

∫ ∞

0

∫ ∞

αt x

y

Ŝ j,c
t

pi, j
t,T

(
Ŝ i,c

t , Ŝ
j,c
t ; x, y

)
dy dx. (A.3)

After the change of variables

x̄ :=
ln x

Ŝ i,c
t
+ 1

2 |σi|2(T − t)

|σi| √T − t
; (A.4)

ȳ :=
ln y

Ŝ j,c
t

+ 1
2 |σ j|2(T − t)

|σ j| √T − t
, (A.5)
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(A.3) becomes

1

2π
√

1− (ρi, j)2

∫ ∞

−∞

∫ ∞

d(x̄)
exp

{
− 1

2(1− (ρi, j)2)

[(
−x̄ + ρi, j|σ j| √T − t

)2

− 2ρi, j
(
−x̄ + ρi, j|σ j| √T − t

)(
−ȳ + |σ j| √T − t

)
+

(
−ȳ + |σ j| √T − t

)2
]}

dȳ dx̄,

(A.6)

where

d(x̄) :=
ln αtS

i,c
t

S j,c
t

−
(

1
2 |σi|2 − 1

2 |σ j|2
)
(T − t)

|σ j| √T − t
+
|σi|
|σ j| x̄, (A.7)

for all x̄ ∈ R. Another transformation of variables,

x̃ := −x̄ + ρi, j|σ j| √T − t; (A.8)

ỹ := −ȳ + |σ j| √T − t, (A.9)

allows us to express (A.6) as

1

2π
√

1− (ρi, j)2

∫ ∞

−∞

∫ d(x̃)

−∞
exp

{
− 1

2(1− (ρi, j)2)

[
x̃2 − 2ρi, j x̃ỹ + ỹ2

]}
dỹ dx̃, (A.10)

where

d(x̃) :=
ln S j,c

t

αtS
i,c
t
+ 1

2

(
σ̂i, j)2(T − t)

|σ j| √T − t
+
|σi|
|σ j| x̃ =: a + bx̃, (A.11)

for all x̃ ∈ R, with

σ̂i, j :=
√
|σi|2 − 2ρi, j|σi||σ j| + |σ j|2. (A.12)

After the transformation of variables

ŷ := ỹ − bx̃, (A.13)

for all x̃ ∈ R andỹ ∈ (−∞, d(x̃)), (A.10) becomes

1

2π
√

1− (ρi, j)2

∫ a

−∞

∫ ∞

−∞
exp

{
− 1

2(1− (ρi, j)2)

×
[
x̃2 − 2ρ j x̃(ŷ + bx̃) + (ŷ + bx̃)2

]}
dx̃ dŷ.

(A.14)

Now, performing the change of variables

x̂ :=

√
1− 2bρ j + b2

1− (ρi, j)2

(
x̃ +

b − ρi, j

1− 2bρi, j + b2
ŷ
)
, (A.15)



112 H. Hulley, S. Miller and E. Platen

for all x̃ ∈ R, transforms (A.14) into

1√
1− 2bρi, j + b2

1√
2π

∫ a

−∞
exp

{
−1

2
ŷ2

1− 2bρi, j + b2

}
dŷ. (A.16)

Finally, we set

z :=
ŷ√

1− 2bρi, j + b2
, (A.17)

for all ŷ ∈ (−∞, a), so that (A.16) becomes

1√
2π

∫ a√
1−2bρi, j+b2

−∞
exp

{
−1

2
z2

}
dz = N

(
a√

1− 2bρi, j + b2

)

= N

ln S j,c

t

αtS
i,c
t
+ 1

2

(
σ̂i, j)2(T − t)

σ̂i, j
√

T − t

 ,
(A.18)

whereN is the standard cumulative normal distribution function.

B. Appendix: MMM Calculations

In this appendix we perform some calculations that are useful for deriving ex-
pressions for fair prices in the MMM. The derivations are based upon similar work
done in Platen (2003, Appendix) and Miller & Platen (2005). SinceX j, defined by
(2.43), is a squared Bessel processes of dimension four, forj ∈ {0, . . . , d}, it is a
time-homogenous diffusion with transition density

qϕ1,ϕ2(x, y) :=
1

2(ϕ2 − ϕ1)

√
y
x

exp
{
− x + y

2(ϕ2 − ϕ1)

}

×
∞∑

n=0

1
n! Γ(n + 2)

( √
xy

2(ϕ2 − ϕ1)

)2n+1

,

(B.1)

for all ϕ1, ϕ2 ∈ [ϕ j(0), ϕ j(T )] with ϕ1 < ϕ2 and allx, y ∈ (0,∞) (see Revuz & Yor
(1999, Corollary 1.4, p. 441)). In (B.1)Γ denotes thegamma function (see Davis
(1970)). We recall the important identity

Γ(n + 1) = n! , (B.2)

for eachn ∈ Z+.
For eachj ∈ {0, . . . , d}, define the processΛ j =

{
Λ

j
t

∣∣∣ t ∈ [0,T )
}

by setting

Λ
j
t :=

X j
ϕ j(t)

ϕ j(T ) − ϕ j(t)
, (B.3)
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for all t ∈ [0,T ). We will typically be interested in the process exp
{− 1

2Λ
j}, for

j ∈ {0, . . . , d}. It is easily extended to [0,T ], by setting

exp
{
−1

2
Λ

j
T

}
:= exp

{
−1

2
Λ

j
T−

}
= 0 a.s., (B.4)

for eachj ∈ {0, . . . , d}.

B.1. An Expression for Computing Fair Bond Prices

Let j ∈ {0, . . . , d} and t ∈ [0,T ). We now use the Markov property ofX j to
compute the following:

1

Ŝ j,c
t

E

[
Ŝ j,c

T

∣∣∣∣At

]
= X j

ϕ j(t)
E

[
1

X j
ϕ j(T )

∣∣∣∣∣∣At

]

=

∫ ∞

0

X j
ϕ j(t)

y
qϕ j(t),ϕ j(T )

(
X j
ϕ j(t)
, y

)
dy

=
1

2(ϕ j(T ) − ϕ j(t))
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{
−1

2
Λ

j
t
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n=0

1
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×
(
X j
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0
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1
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}(
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{1
2
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− 1
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2
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j
t

}
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(B.5)

In the derivation above, the fourth equality follows from the definition of the gamma
function; the fifth equality is an application of (B.2); and the sixth equality is an ap-
plication of the MacLaurin series expansion of the exponential function. According
to (B.4) we can extend (B.5) to include the caset = T .

B.2. An Expression for Fair Binary Prices

Let i, j ∈ {0, . . . , d} such thati � j. Also fix t ∈ [0,T ) and letαt be a non-
negativeAt-measurable random variable. If we make the assumption thatŜ i,c and
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Ŝ j,c are independent processes, then it follows that

1
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(B.6)

Here we have made the substitutions

x̄ :=
x

ϕi(T ) − ϕi(t)
; (B.7)

ȳ :=
y

ϕ j(T ) − ϕ j(t)
. (B.8)

The constant in the upper limit of the inner integral in the last line of (B.6) is thus
given by

ᾱt :=
(
ϕi(T ) − ϕi(t)

)
αt. (B.9)

With the aid of another change of variables, namely

ỹ :=
ȳ
x̄
, (B.10)
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(B.6) now becomes

exp
{
−1

2
(
Λ

j
t + Λ

i
t
)} ∞∑

l=0

( 1
2Λ

j
t
)l+1

l! Γ(l + 2)2l+1

∞∑
q=0

( 1
2Λ

i
t
)q

q! Γ(q + 2)2q+2

×
∫ ᾱt
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(1+ ỹ)q+l+3
dỹ
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= exp
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, (B.12)

where2F1 is Gauss’ hypergeometric function (see Oberhettinger (1970)). The sec-
ond and fourth equalities above were obtained using Mathematica’s symbolic inte-
gration facility, while the last equality is an application of (B.2). Note that
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(B.13)

The first equality follows from (B.2) and the properties of the hypergeometric

function; for the second equality, note that
∑∞

q=0
exp

{
− 1

2Λ
i
t

}(
1
2Λ

i
t

)q

q! is the total prob-

ability of a Poisson random variable with parameter1
2Λ

i
t. Thus, putting (B.12) and
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(B.13) together, and then rewinding from (B.12) to (B.11), we see that (B.6) can be
written as

[ ∞∑
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ỹm−1
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(B.14)

Finally, we are able to conclude with the remarkable observation that ifZ1 ∼
χ′20

(
Λ

j
t
)

andZ2 ∼ χ′24
(
Λi

t
)
, whereχ′2ν(λ) denotes thenon-central chi-square distri-

bution with dimensionν and non-centrality parameterλ, then the expression in the
square brackets in (B.14) isP

[ Z1
Z2
≤ ᾱt

]
, according to Johnson, Kotz & Balakrishnan

(1995, (30.49), p. 499). It is not clear whether the distribution ofZ1
Z2

has an estab-
lished name; however, from its relationship to adoubly non-central F-distribution
(see Johnson, Kotz & Balakrishnan (1995, p. 499)), it seems appropriate to call
it an unscaled doubly non-central F-distribution. In keeping with the notation of
Johnson, Kotz & Balakrishnan (1995, p. 499), we will writeG′′0,4( · ;Λ j

t ,Λ
i
t) for its

cumulative distribution function, so that

G′′0,4
((
ϕi(T ) − ϕi(t)

)
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j
t ,Λ

i
t

)
− exp
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2
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j
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(B.15)

provides an interesting expression for (B.14).
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