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Abstract

We report on recent work, [1], concerning lower bounds on the localization length of
eigenfunctions in the three-dimensional Anderson model at weak disorders, that uses an
extension of methods developed by L. Erdos and H.-T. Yau. Our results are similar to
those obtained by C. Shubin, W. Schlag and T. Wolff, [8], for dimensions one and two.
Furthermore, we show that the macroscopic limit of the corresponding lattice random
Schr\"odinger dynamics is governed by the linear Boltzmann equations.

1 Introduction
In $d$ dimensions, the Anderson model is defined by the discrete random Schrodinger operator

$(H_{\omega} \psi)(x)=-\frac{1}{2}(\Delta\psi)(x)+\lambda\omega(x)\psi(x)$ ,

acting on $\ell^{2}(\mathbb{Z}^{d})$ , where A is a small coupling constant,

$( \Delta\psi)(x):=2d\psi(x)-\sum_{|x-y|=1}\psi(y)$

is the nearest neighbor lattice Laplacian, and $\omega(x)$ are, for $x\in \mathbb{Z}^{d}$ , bounded, i.i.d. random
variables. We here report on [1], where we study the case $d=3,$ and prove that with
probability one, most eigenfunctions of $H_{\omega}$ have localization lengths bounded from below by
$O(_{1\mathrm{o}\mathrm{g}_{\overline{\lambda}}}^{\lambda^{-2}}\neg)$ . In contrast to $d=1,2$ , we note that there are no restrictions on the energy range for
this result to hold. Furthermore, we derive the macroscopic limit of the quantum dynamics
in this system, and prove that it is governed by the linear Boltzmann equations.
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The paper [1] is closely related to work of L. Erdos and H.-T. Yau in [3], where the
weak coupling and hydrodynamic limit is derived for a random Schrodinger equation in the
continuum $\mathbb{R}^{d}$ , $d=2,3,$ for a Gaussian random potential. For macroscopic time and space
variables $(T, X)$ , microscopic variables $(t, x)$ , and the scaling $(X, T)=\lambda^{2}(x, t)$ , where A is the
coupling constant in the continuum analogue of $H_{\omega}$ , they established in the limit $\lambdaarrow 0$ that
the macroscopic dynamics is governed by the linear Boltzmann equations, and thus ballistic,
for all $T>0.$ We note that the corresponding result for sufficiently small values of $T$ was first
proved by H. Spohn [9]. For larger time scales, it has very recently been established that the
macroscopic dynamics in $d=3$ is determined by a diffusion equation, [4].

[1] is also closely related to a recent work of C. Shubin, W. Schlag and T. Wolff, [8], who
established, by techniques of harmonic analysis, for the Anderson model at small disorders in
$d=1,2$ , that with probability one, most eigenstates are in frequency space concentrated on
shells of thickness $\leq\lambda^{2}$ in $d=1,$ and $\leq\lambda^{2-\delta}$ in $d=2.$ The eigenenergies are required to be
bounded away from the edges of the spectrum of $- \frac{1}{2}\Delta_{\mathbb{Z}^{d}}$ , and in $d=2,$ also away from its
center. By the uncertainty principle, this implies lower bounds of order $O(\lambda^{-2})$ in $d=1,$ and
and $O(\lambda^{-2+\delta})$ in $d=2,$ on the localization lengths in position space. Closely related to their
work are the papers $[5, 6]$ by J. Magnen, G. Poirot, V. Rivasseau, and [7] by G. Poirot, which
address properties of the Greens functions associated to $H_{\omega}$ .

The proof of our main results uses an extension of the time-dependent techniques of L.
Erdos and H.-T. Yau in [3] to the lattice, and to non-Gaussian random potentials. Higher cor-
relations are now abundant, but are shown to have an insignificant effect, hence the character
of our results does not differ from that obtained in the Gaussian case.

2 Localization Lengths
We shall first address the lower bounds on the localization lengths. For the random potential,
it is assumed in [1] that $\mathrm{E}[\omega_{x}^{2m+1}]=01x$ $\in \mathbb{Z}^{3}$ , $im$ $\geq 0.$ This helps to reduce some of the
notation, but for the methods to apply, only $\mathrm{E}[\omega_{x}]=0$ is necessary. In addition, the uniform
moment bounds

$\mathrm{E}[\omega_{x}^{2m}]=:\tilde{c}_{2m}\leq c_{\omega}$ , $\tilde{c}_{2}=1$ , $\forall x\in \mathbb{Z}^{3}$ , $lm$ $\geq 1$ , (1)

are assumed, where the constant $c_{\omega}<00$ is independent of $m$ . $H_{\omega}$ is a selfadjoint linear
operator on $\ell^{2}(\mathbb{Z}^{3})$ for every realization of $V_{\omega}$ .

Let $L\in \mathrm{N}$ with $L\gg$ A-2, and $\Lambda_{L}=\{-L, \mathrm{L}- \mathrm{l}, \ldots, -1,0,1, \ldots, L-1, L\}^{3}\subset \mathbb{Z}^{3}$ , and let
$\{\psi_{\alpha}^{(L)}\}$ denote an orthonormal basis in $\ell^{2}(\Lambda_{L})$ of eigenfunctions of $H_{\mathrm{t}v}$ restricted to \^A. That
is,

$(H_{\omega}-e_{\alpha}^{(L)}))t_{\alpha}^{(L)}=0$ on $\Lambda_{L}$ and $\psi_{\alpha}^{(L)}=0$ on $\partial\Lambda_{L}:=\Lambda_{L+1}\mathrm{Z}$ $\Lambda_{L}$ , (2)
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for $\alpha\in A_{L}:=\{1$ , $\ldots$ , $|$’$L|\mathrm{L}$ and $e^{(}$,$L$ )
$\in$ R. Let $Box_{\ell}(x)$ denote the translate of the cube

$\mathbb{Z}^{3}’(\ell \mathbb{Z})^{3}$ that is centered at $x$ , for $1\ll\ell<<L,$ and let $R_{x,\delta,\ell}$ denote a suitable approximate
characteristic function for the shell $Box_{\ell}(x)\backslash$ Box\mbox{\boldmath $\delta$}\ell (x). Then, we define

$A_{L,\epsilon,\delta,\ell:=}\{\alpha\in A|$ $\sum$ |’a$L$ )
$(x)|||R_{x,\delta,\ell}$ $\mathit{1}$ $\alpha(L)||\ell^{2}(\mathrm{A}\iota)$ $<\epsilon\}$ ,

for $\epsilon>0.$ For $\epsilon$ small, { $\psi_{\alpha}^{(L)}|$ a $\in$ $4_{L,\mathrm{s},\delta},\mathrm{J}$ contains the class of exponentially localized states
concentrated in balls of radius $\sim\frac{\delta\ell}{1\mathrm{o}\mathrm{g}\ell}$ or smaller, where $\delta$ is independent of $\ell$ . This observation
and Lemma 2.1 below are joint results of the author with L. Erdos and H.-T. Yau.

The following main theorem states that most eigenstates are expected to have localization
lengths larger than $O( \frac{\lambda^{-2}}{|1\mathrm{o}\mathrm{g}\lambda|})$ .

Theorem 2.1 Assume for $L\gg\lambda^{-2}$ , that $\{\psi_{\alpha}^{(L)}\}$ is an orthonormal $H_{\omega}$-eigenbasis in $l^{2}(\Lambda_{L})$ ,
satisfying (2) with $\alpha\in A_{L}$ , and $e_{\alpha}\in$ R. Then, for $\lambda^{\frac{14}{15}}<\delta<1,$ $\epsilon_{\delta}:=\delta^{\frac{3}{7}}$ ,

$\mathrm{E}[\frac{|A_{L}\backslash A_{L,\epsilon_{\delta},\delta,\lambda^{-2}}|}{|A_{L}|}]$
$\geq 1-c\delta^{\frac{3}{14}}-\frac{c(p)}{L}$

for a constant $c<\infty$ independent of $L$ , $\delta$, A. Furthermore,

$\mathrm{P}$ $[ \lim_{Larrow}\inf_{\infty}\frac{|A_{L}\backslash A_{L,\epsilon_{\delta},\delta,\lambda^{-2}}|}{|A_{L}|}\geq 1-c\delta^{\frac{3}{14}}]=1$

for $\lambda>0$ sufficiently small, and a constant $c<\infty$ that is uniform in A and $\delta$ .

This theorem is a corollary of Lemmata 2.1, 2.2, and 2.3 below. Lemma 2.1 links the
dynamics generated by $H_{\omega}$ to lower bounds on the localization lengths.

Lemma 2.1 Let $\{\psi_{\alpha}^{(L)}\}$ denote an orthonormal basis in $p^{2}(\Lambda_{L})$ , consisting of eigenvectors of
$H_{\omega}$ satisfying (2), and assume that $1<<\ell\ll L.$ Let

$A_{L,\epsilon,\delta,\ell}^{c}:=A_{L}\mathrm{s}$ $A_{L,\epsilon,\delta,\ell}$ ,

and suppose that for all $x\in \mathbb{Z}^{3}$ ,

$\mathrm{E}[||R_{x,\delta,\ell}e^{-itH}.\delta_{x}||_{\ell^{2}(\mathrm{Z}^{3})}^{2}]\geq 1-\Xi$ (3)

is satisfied for some $\epsilon=\epsilon(\delta,\ell, t)>0.$ Then,

$\mathrm{E}[\frac{|A_{L,\epsilon,\delta,\ell}^{c}|}{|A_{L}|}]\geq 1-2\epsilon^{1/2}-\frac{c(l)}{L}$

where $c(\ell)$ is a constant that only depends on $\ell$ .
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Proof. To prove this result, we represent $\delta_{x}$ on the left hand side of (3) in the basis $\{\psi_{\alpha}^{(L)}\}$ , and
separate the contributions stemming from $A_{L,\epsilon,\delta,\ell}$ and its complement by a Schwarz inequality.
Averaging over $\Lambda_{L}$ (where $|$ A$L|=|$ $4_{L}|$ ), we find

$\frac{1}{|\Lambda_{L}|}\sum_{x\in\Lambda_{L}}||R_{x,\delta,\ell}e^{-itH_{\omega}}\delta_{x}||_{\ell^{2}(\Lambda_{L})}^{2}\leq(1+\epsilon^{1/2})\frac{|A_{L,\epsilon,\delta,\ell}^{c}|}{|A_{L}|}+1.1\epsilon^{1/2}$ (4)

The left hand side and

$\frac{1}{|\Lambda_{L}|}\sum_{x\in\Lambda_{L}}||R_{x,\delta,\ell}e^{-itH_{\omega}}\delta_{x}||_{\ell^{2}(\mathrm{Z}^{3})}^{2}$ (5)

differ only by boundary terms of order $O( \frac{1}{L})$ . Taking expectations, the assertion of the lemma
follows.

Lemma 2.2 Under the same assumptions as in Lemma 2.1,

$\mathrm{P}$ $[ \lim_{Larrow}$inf $\frac{|A_{L,\epsilon,\delta,l}^{c}|}{|A_{L}|}\geq 1-2\epsilon^{1\mathit{1}2}]=1$

Proof. We note that by unitarity of the translation operator on $2^{2}(\mathbb{Z}^{3})$ ,

$(5)= \frac{1}{|\Lambda_{L}|}\sum_{x\in\Lambda_{L}}||R_{0,\delta,\ell e^{-itH_{\tau_{-x}\omega}}}\delta_{0}||_{\ell^{2}(\mathbb{Z}^{3})}^{2}$ , (6)

where $\tau_{x}$ : $\omega_{y}\mapsto\omega_{x+y}$ , for $x\in \mathbb{Z}^{3}$ , is the family of shift transformations, which acts ergod-
ically on the probability space on which the random potential is realized. The assertion of
the lemma follows from (4), and from applying the Birkhoff-Khinchin ergodic theorem to (6).

Lemma 2.3 provides the condition (3).

Lemma 2.3 Let $t=\delta^{\frac{6}{7}}\lambda^{-2}$ , and $H_{0}:=- \frac{1}{2}\Delta$ . Then, for A sufficiently small, $0<\delta<1,$ and
all $x\in \mathbb{Z}^{3}$ , the free evolution term satisfies

$||R_{x,\delta,\lambda}1e^{-itH_{0}} \delta_{x}|\pi|_{2}\geq 1-c\mathit{6}\frac{3}{7}$ , (7)

while the sum over collision histories yields

$\mathrm{E}[||R_{x,\delta,\lambda}1(\pi e^{-\dot{\iota}tH}-e^{-\dot{*}tH_{0}})\delta_{x}||_{2}^{2}]\leq c’\delta^{\frac{6}{\tau}}+t^{-}\mathrm{i}$ , (8)

$/or$ positive constants $c$ , $d<\infty$ that are independent of $x$ , A and J.

$\pi_{\lambda}$

while the sum over collision histories yields

$\mathrm{E}|||R_{x,\delta},1\mathrm{T}\backslash (e^{-\dot{\iota}tH}-e^{-\dot{*}tH_{0}})\delta_{x}||\begin{array}{l}22\end{array}|\leq c’\delta^{\frac{6}{\tau}}+t^{-\frac{1}{3}}$ , (8)
$\mathrm{T}\lambda$

$/or$ positive constants $c$ , $d<\infty$ that are independent of $x$ , $\lambda$ and $\delta$ .
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Proof. The bound ( 7) follows from a simple stationary phase argument. The proof of ( 8)

in [1] is based on an extension of methods in [3] to the lattice system and non-Gaussian
distributed random potentials, and comprises the following four key steps.

1. The small parameters are A and $t^{-1}=O(\lambda^{2})$ .
We expand $1_{t}$ $=e^{-itH_{\omega}}\delta_{x}$ into a truncated Duhamel series with remainder term $\phi_{t}=$

$\sum_{n=0}^{N}\phi_{n,t}+R_{N,t}$ , where

$\phi_{n,t}=$ $($–jA$)^{n} \int ds_{0}\cdots ds_{n}\delta(\sum_{j=0}^{n}s_{j}-t)e^{-\dot{\iota}s_{0}H_{0}}V_{\omega}e^{-i\epsilon_{1}}$
H. $\ldots V_{\omega}e^{-:s_{\hslash}H_{0}}5_{x}$

and
$R_{N,t}=-i$ $/tdse^{-}$”t-,)H,

$V_{\omega}f_{N,s}$

The number $N$ remains to be determined. Evidently, the left hand side of (8) is bounded by

2 $\sum_{n=1}^{N}$ E $[||\phi_{n,t}||_{\ell^{2}}^{2}]+$ $2\mathrm{E}$ $[||R_{N,t}||_{\ell^{2}}^{2}]$ .
2. For every fixed $n$ with $1\leq n\leq N,$ we determine the expectation $\mathrm{E}[||\phi_{n,t}||_{\ell^{2}(\mathrm{Z}^{3})}^{2}]$

explicitly by taking all possible contractions among random potentials. This produces $O(n!)$

terms containing only pairing contractions, and $\leq O(2n^{2n})$ terms containing higher order
contractions.

To estimate the individual integrals, we classify them according to their contraction struc-
ture, which we represent as Feynman graphs.

To this end, we draw two parallel, horizontal solid “particle lines” accounting for $\phi_{n,t}$ and
$\phi_{n,y}^{*}$ , respectively. On each particle line, away from its endpoints, we insert $n$ vertices, corre-
sponding to $n$ copies of 14. The $n+1$ edges on each particle line thus obtained correspond
to free particle propagators. The particle lines are joined together at, say, both left ends, to
account for the $\ell^{2}$-inner product. Furthermore, we draw dotted “interaction lines” intercon-
necting those vertices which are mutually contracted. Letting $\Gamma_{n,n}$ denote the set of all such
graphs on $n+n$ vertices, we have

$\mathrm{E}$

$[|| \phi_{n,t}||_{\ell^{2}(\mathrm{Z}^{3})}^{2}]\leq\sum_{\gamma\in\Gamma_{\mathrm{n},\mathrm{n}}}|$

Arnp(t) $|$ ,

where $Amp(\gamma)$ is the integral (Feynman amplitude) corresponding to the graph $\mathrm{y}$ .
Let $\Gamma_{n,n}^{(pair)}$ denote the subset of graphs in $\Gamma_{n,n}$ that comprise only pairing contractions

among the random potentials. The a priori bound

$|Amp(\mathrm{t})|\leq P(n, t)$ (9)
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holds for all $\gamma\in$
$\Gamma(\mathrm{p}\mathrm{a}^{\mathrm{i}\mathrm{r})}$ , with $P(n, t):=(\log t)^{3}(ct\lambda^{2}\log t)^{n}$ . Due to the factorially large number

of pairings, this bound is insufficient $(n!P(n, t)$ is not summable), and it is thus necessary to
perform a finer classification of graphs.

The set $\Gamma_{n,n}^{[\mathrm{p}air)}$ is subdivided into:

(i) The ladder graph $\{l_{n}\}$ , where the $\dot{7}$-th vertex on the upper particle line is contracted
with the $\dot{7}$-th vertex on the lower particle line, for $7=1$ , $\ldots$ , $n$ (enumerated along the
same direction on both lines).

(ii) Simple pairings, which correspond to decorated ladders. On each particle line, between
the rungs of the ladder, there are possibly progressions of immediate recollisions, that is,
pairings between neighboring copies of $V_{\omega}$ . By definition, simple pairings include $\{/\mathrm{n}\}$ .

(iii) Crossing and nested graphs, accounting for all non-simple pairing graphs.

$p_{\mathit{0}}$

$p_{2\overline{n}}$

Figure 1. A graph containing pairing (types $\mathrm{I}$ , $\mathrm{I}_{:}’ \mathrm{I}\mathrm{I}$) and non-pairing (type III) contractions.

A key ingredient of the proof are the bounds

$|A\mathrm{v}\mathrm{r}zp(\{l_{n}\})|$ $\leq$
$\frac{ct\lambda^{2}}{(n!)^{\frac{1}{2}}}$ (10)

$|A_{\mathrm{t}\mathrm{t}\mathrm{t}}p\mathrm{e}\mathrm{y}$ $\in\Gamma_{n,n}^{(pair)}\backslash \{l_{n}\})|$ $\leq$ $t^{-\frac{1}{2}}P(n, t)$

: (11)

obtained from the corresponding singular momentum space integrals. In this part of the
analysis, there are significant differences between the lattice situation of [1], and the continuum

$\mathrm{c}\mathrm{a}\mathrm{e}$ studied in [3]. The bound ( 10) on the ladder graph $\{l_{n}\}$ is summable in $n$ , and by (11),
all other pairings yield integrals that are, due to strong phase cancellations, at least $O(t^{-\frac{1}{2}})$

smaller than the a priori bound (9) on pairing contractions. Furthermore, it is shown that

$\sum_{\gamma\in\Gamma_{n_{1}n}\backslash \Gamma_{\mathfrak{n}_{1}n}^{(pa\cdot r)}}.|Amp(\mathrm{y})$

$|$ $\leq$ $Q(n, t):=C(t^{-\frac{1}{2}}(n!)+t^{-2}(2n)^{4n})P(n, t)$



130

holds for the sum of all non-pairing graphs (which are absent in [3]). Thus,

$\sum_{n=1}^{N}\sum_{\gamma\in\Gamma_{\iota,n}}.|$Aynp(7) $|\leq ct\lambda^{2}+CNQ(N,$ $t|$

.

follows.
3. We estimate $\mathrm{E}[||R_{N,t}||_{\ell^{2}(\mathrm{Z}^{3})}^{2}]$ by splitting the time integration into $\kappa$ intervals of equal

size, and by exploiting the rarity of the event that a large number of quantum collisions take
place in a small time interval. The result is

$\mathrm{E}[||R_{N,t}||_{\ell^{2}(\mathrm{Z}^{3})}^{2}]\leq(N^{2}\kappa^{2}+\frac{t^{A}}{\kappa^{N}})CNQ(4N,$ $t|$

.

4. For a choice

$N(t)$ $\sim$ $\frac{\sqrt \mathrm{l}1\mathrm{o}\mathrm{g}t}{1\mathrm{o}\mathrm{g}1\mathrm{o}\mathrm{g}t}$

$\kappa(ti)$ $\sim$ $(\log t)^{\beta_{2}}$ ,

and some positive constants $\beta_{1}$ , $\beta_{2}$ that are independent of $t$ , we have $1<<$ K(t) $\mathrm{K}(\mathrm{t})<<t$ ,
and the asserted estimate (8) follows. In other words, we prove that the sum of all graphs
containing crossing, nested, and non-pairing contractions, only contributes to a small error of
order at most $O(t^{-\frac{1}{3}})$ . The sum of contributions ffom ladder diagrams for $n\geq 1$ is bounded
by $t\lambda^{2}$ , up to a multiplicative constant that is independent of A and $t$ .

3 Linear Boltzmann Equations

In this section, we discuss the derivation of the macroscopic limit for the quantum dynamics
for the system at hand. Let $\phi_{t}\in\ell^{2}(\mathbb{Z}^{3})$ solve the random Schrodinger equation

$\{$

$i\partial_{t}\phi_{t}$ $=$ $H_{\omega}\phi_{t}$ ,
$\phi_{0}$ 6 $\ell^{2}(\mathbb{Z}^{3})$

(12)

for a fixed realization of the random potential. Then, $W_{\phi_{t}}$ : $\mathbb{Z}^{3}\cross \mathrm{T}^{3}arrow \mathbb{C}$ ,

$W_{\phi t}(x,v)= \sum_{y\in \mathrm{Z}^{3}}\overline{\phi_{t}(x+y)}\phi_{t}(x-y)e^{2\pi iyv}$
, (13)

defines its Wigner transform.



181

We introduce macroscopic variables $T:=\epsilon t$ , $X:=\epsilon x$ , $V:=v,$ and consider the rescaled
Wigner transform

$W_{\phi_{t}}^{\epsilon}(X, V):=\epsilon^{-3}W_{p}(\mathrm{X}/\mathrm{e}, V)$ (14)

with $X\in(\epsilon \mathbb{Z})^{3}$ , and $V\in \mathrm{T}^{3}$ .
Theorem 3.1 Let $\epsilon=\lambda^{2}$ , and let 5: be a solution of (12) with initial condition

7C $(x)=\epsilon \mathit{3}/2h(\epsilon x))e^{i}$
s(ex) $/\epsilon$ , (15)

where $h$ , $S\in S(\mathbb{R}^{3})$ . Then, for any $T>0,$

$\mathrm{E}[W_{\phi_{Tf\epsilon}^{\epsilon}}^{\epsilon}(X, V)]arrow F_{T}(X, V)\backslash$.

for $X\in \mathbb{R}^{3}$ , $V\in \mathrm{T}^{3}$ , weakly as $\epsilonarrow 0,$ where $F_{T}(X, V)$ solves the linear Boltzmann equation

$FT(X, V)+2 \sum_{j=1}^{3}\sin 2\pi V_{j}$ . $\nabla_{X_{j}}F_{T}(X, V)$

$=/3$ $\mathrm{d}\mathrm{U}\mathrm{a}(\mathrm{U}, V)[F_{T}(X, U)-F_{T}(X, V)$] ., (16)

with collision kernel

$\mathrm{E}[W_{\phi_{Tf\epsilon}^{\epsilon}}^{\epsilon}(X, V)]arrow F_{T}(X, V)\backslash$.

for $X\in \mathbb{R}^{3}$ , $V\in \mathrm{T}^{3}$ , weakly as $\epsilonarrow 0,$ where $F_{T}(X, V)$ solves the linear Boltzmann equation

$\partial_{T}F_{T}(X, V)+2\sum_{j=1}\sin 2\pi V_{j}$
. $\nabla_{X_{j}}F_{T}(X, V)$

$= \int_{\Gamma^{3}},dU\sigma(U, V)[F_{T}(X, U)-F_{T}(X, V)]$ ., (16)

$\sigma(U, V)=4\pi\delta(e(U)-e(V))$ ,

and initial condition $F_{0}$ given by

$W;_{\mathrm{g}}0$ $arrow|h(X)$ $|^{2}\delta(V-\nabla S(X))=:F_{0}(X, V)$ , (17)

weakly as $\epsilonarrow 0.$

This result is established by extracting the main terms from the expectation of the Wigner
distribution, consisting exclusively of simple pairings, which converge weakly to a solution of
the linear Boltzmann equations as $\epsilonarrow 0,$ in analogy to the case in [3]. To prove that the
errors stemming from the remaining classes of graphs tend to zero as $\epsilonarrow 0,$ one essentially
uses the $\ell^{2}$-estimates described above.
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