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Anderson Localization of the Green’s Function with

Complex Random Potentials and the 2D O(N) Spin Models

Keiichi R. Ito
Department of Mathematics and Physics,
Setsunan University, Neyagowa Osaka 572-8508, Japan*
(Dated: October 30, 2003)

We investigate Green’s function of the lattice Laplacian —A + m? + iy, where
1 are real valued random variables and m > Ovis an arbitrary small constant. This
arises from the Fourier transform of O(N) invariant classical spin model on Z2. We
show that the averaged Green’s function behaves like (—A + m? + a?|loga|)~! for
sufficiently small a. This enables us to improve the upper bound for the critical
inverse temperature f; at which a phase transition takes place in the 2D O(N) spin

model.

I. INTRODUCTION AND SUMMARY

In this paper, we argue properties of Green’s function of Laplacian which depends on real
random potentials {y(z); z € Z?} with pure imaginary coefficients:

1

G¥(zy) = —A+m? + iy

(z) (1.1)

where A is the Laplacian defined on the lattice space Z? ((A)sy = —40zy + 6jz—y,1) and
{¥(z);z € Z?} are random variables which obey the Gaussian probability distributions
dv(1). We then apply our analysis to O(/N) symmetric spin models in two dimensions. The

Gaussian probability distributions dv (i) we consider here are:

case 1: locally and identically independently distributed:

av(y) = [ ~=—d(o) (1.2)

*Electronic address: ito@mpg.setsunan.ac.jp,ito@kurims.kyoto-u.ac.jp; Also at: Division of Mathe-
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case 2: correlating via Yukawa potential:

Il

dv(y) = expl—3 3 Gola,)w(@v ()] [] d0(@)

= exp[—-% <Y, Goyp >] Hd¢(z)

where Go(z,y) = (—A +m2)~(z,y) is the Yukawa potential where mZ > 0 is an arbitrarily
small constant which may be set at zero after all calculations.
Theorem A Let

Gl (3, y) = / G (2, y)dv (1) (1.3)

(averaged Green’s functions). Assume |logm|exp[—a™!] << 1 in case 2. (No assumption
is needed in case 1.) Then

1
—A+m§ff

G (5, ) ~ (z,9) | (1.9)

where m?;; = O(c?|logal) for case 1 and mZ;; = O(c?) for case 2.

This problem arises from the study of O(N) spin models in two dimensions [5, 6] and this
theorem is closely related to non-existence of phase transitions in two-dimensional O(N)
spin models with N > 3, the problem which remains unsolved since the last century. The
parameter « is equal to (N8)~! in case 1 and equal to (N B)~%/2 in case 2, where N{ is the
inverse temperature of the system. Main conclusion which is derived from these bounds is
(I admit that this is still provisional since some parts remain proved rigorously)

Quasi Theorem Let 3. be the inverse critical temperature of the 2D O(N) spin model

(the real inverse temperature is N§3). Then
B.>N° 6>0 (1.5)

This is an extension of our previous work {7, 9]. See also [3] which established an existence

of first order phase transitions in 2D O(N) spin models which have exotic interactions like

=Y ey (0(@) - 6(®))F, p>> 1.

II. AUXILIARY FIELDS AND SPIN MODEL

In models such as O(N) spin modes and SU(NN) lattice gauge models [11, 14], the field

variables form compact manifolds and the block spin transformations break the structures.
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In some cases, this can be avoided by introducing an auxiliary field % [1] which may be
regarded as a complex random field. The v dimensional O(N) spin (Heisenberg) model at

the inverse temperature N3 is defined by the Gibbs expectation values
1 2
<f>= g5 | F@exl-Hr@)] ][ 667 - NB)de: (2.1)

Here A is an arbitrarily large square with center at the origin. Moreover é(z)
(6(z)D, -+, ¢(x)™) is the vector valued spin at z € A, Z, is the partition function defined
so that < 1 >= 1. The Hamiltonian H, is given by
1
Hy= -3 .,,_%;:1 $(z)(v), (2.2)
where |z|; = >_._; |zl
We substitute the identity 6(¢*> — NB) = [exp[—ia(¢? — NB)]da/27 into eq.(2.1) with

the condition that Ima; < —v [1], and set
2

m 1
Ima; = —(v+ 7), Rea; = ﬁ‘/"' (2.3)

where m > 0 will be determined soon. Thus we have

7, = clAI/,,,/exp[_% <6, (m?— A+ —y)p> +Zz\/_5% 11 da&;:%

Vi
= cAldet(m? — A)~N/2 / / F(y dw’ (2.4)
where c’s are constants being different on lines, A;; = “21/61;1' +4}ij),1 is the lattice Laplacian
and
2G Ny :
F(y) = det(1+ ﬁw) exp[iVNB Y " 4]. (2.5)
J

Moreover G = (m? — A)™! is the covariant matrix discussed later. In the same way, the

two-point function is given by

<dote> = 2 [ [ -+ wpro) [[ 2 (26)

namely by an average of Green’s function which includes complex fields ¥(z), z € Z2, where

the constant Z is chosen so that < @2 >= NB. We choose the mass parameter m > 0 so

that G(0) = 8, where

T

e’ ap;
Glz) = / m? +23 (1 — cosp;) ;- H 27)
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This is possible for any 8 if v < 2, and we easily find that
m? ~ 32¢7*" for v =2 (2.8)

as 8 — oo. Thus for v = 2, we can rewrite

F(y) = det3 V21 + %w) exp[— < ¥, G%%p >], (2.9)
det3(1+ A) = det[(1+ A)e~4+4"/?) (2.10)

where G°2(z,y) = G(z,y)? so that Tr(Gy)? =< 9, G*%) >.

A. Feshbach-Krein Decomposition of The Determinant

Assume A = A; UA,, where A; are squares of large size such that A;NA, = 0. Introduce
notation Ga = XaGxa, Ga,a; = Xa;GXa; and Ya = xa¥xa. Then we have
det ~M2(1 + ikGathy) = det N/ (1 + imz GA,v,Aijj)

i,J
= det ™2 (1 + W) [ det ™2 (1 + ikGa,va,)

where k = 2/ VN and W has the following expression which depends on the variables 1

W = W(A1,As)

= _(ix)? Ga,, 1 1

A”A?H ikGa,Un Gazar¥a ikG A, VA
2 2 1 1

This is an immediate consequence of the Feshbach-Krein formula discussed in the Remark

added below. This can be easily generalized. Put
A=UL1Ai Ay =Ul D
Then we have

det “M2(1 + ikGathr)
n—1 n
= |[]det ™2 (1 +W(Ai, M) [ ] det™/* (1 +ixGaioa,) (2.11)

=1 i=1

1 1
A N)=—(¢ PG N T T
W(Bo M) = = R G, TN YN T G,

1 1
: Ga 7 'Ga, aa,
[GAJ_I + 1KY, [ A'] Gaun¥n, [GA'.]_I + TKYp

EIWNIN (2.12)

[G/\i]—lGl\i,Aid"Ai (2'13)
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Since [Ga]™! is a Laplacian restricted to the square A with suitable boundary conditions,
we regard ([Ga]™! + ikya)™! as massive Green’s functions which decrease fast, and more

over we regard ¢ be the Gaussian random variable of zero mean and covariance [G°2]~L.

Remark 1 The Feshbach-Krein formula of matrices is

(A D) ( I o) (A 0 ) (1 A‘lD)
X = - (2.14)
C B ca' 1] \oB-cap)\o 1

which holds for matrices A of size £ x £, B of size m x m, C of size m x £ and D of size

£ x m respectively.

B. The local measure

Let us consider the measure localized on each block:

dpa = det V(1 + —}—j.\,.am) expl—(wa, G29)] [ dv(z) (2.15)

, zeA :
Since the norm of G is of order O(|A|B) >> 1, it is still impossible to expand the determi-
nant. However this comes with the factor exp[—(1a, G32%a))], so there is a chance to make
the norm of j——%GMﬁA small. '

Note that G(z,y) = 8 — 6G(z,y), 6G(z,y) ~ log(|]z — y| + 1). Then G ~ B2 —
260G (x,y) ~ 28G(z,y) — B% Then [GZ]™! ~ G~1/28 = (m? — A)/28 since (8- 6G) ~ 0
where we regard S(z,y) as a matrix whose components are S independent of z,y.

The most difficult problem in this approach is that the norm of G = (—A + m?)~1 is

m~2 ~ e >> 1 and the determinant cannot be expanded. Put

dua = det77*(1 +ikGata) [ ] dvo(z)

TeA
= det ;V%(1 + ikGatha) exp[— < ¥a, Gtpp > 1] d¢(=) (2.16)
ZEA
and introduce new variables ¥, (z) by
¥a(z) = 2= SR @ 1)9) (217)

yeEA
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so that dua is rewritten

dua = det7V2(1 +inka) [] exp[—%zﬁ(m)z]dw(x), (2.18)
€A
Ka = =G (GE )Gy (2.19)
Put
¥ (z)/2 W(T)

dva =[] e ¥ )/2—\-/—2_; | (2.20)

and define

i/p

it = ( [ Tr(K*K)p/ZduA) (2.21)

The following lemma means that K is approximately diagonal but not so much:

Lemma 1 It holds that

1
/TrKZdVA = '2‘|/-\|, (2.22)
[[Kally < (0= DilKall2, for allp 22 (2.23)
Proof. The first equation is immediate. See [13] for the second inequality. Q.E.D.

Thus we see that kK, are a.e. bounded with respect to dva, and converges to 0 as

N — 0o. To see to what extent Ka is diagonal, we estimate

4
1
/Tl‘KidI/A = Z ZHGA(%IE;'H)

;€A T i=1

x [2(G°* ™M (1, 22)[G™) (@, ) + (G (21, 73)[G°%) 7 (22, 7))

where z5 = ;. As we will show in the next section,

G2 ) = 35

Ba(z,y) = O(87)

Gl — Ba,

The main contribution comes from the term containing 2[G°%]~!(z, z,) - - -. To bound this,
set Ga(zi, Zip1) = BD — 6G(zi,Tiy1), (i = 1,3) where D is the matrix of size |A| x |A]
such that D(z,y) = 1 for all z,y. Moreover 6G(z,z) = 0, 6G(z,z +¢,) = 0.25 — O(Bm?),
(=A)zy = 0 unless |z —y| < 1. Thus we have

/TrngduA > const. Z :1%.2. {5225%“ -l—ZG?(zl,m)}
T4 T4

T1€A
> const.(|A] + |A[?)
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which means that K, is approximately diagonal but off-diagonal parts are still considerably

large.

C. Inverses of Green’s Functions

We define (—A + m2)§§’), the Laplacian operator satisfying the Dirichlet boundary con-
dition at the exterior boundary of A, i.e. at tA = {z € A¢|dist(z,A) = 1}, by

(-8)P(z,9) = xa(@)(—-A + m?)xa (2.24)

and the lattice Laplacian satisfying the free boundary conditions at the inner boundary of

A, ie. at 0A = {z € A;dist(z, A°) = 1} by

(£ (-89 = 3 (f@) - fu)9(a) - 9w), =y eA. (2.25)
lz—yl=1
The Green’s function G{*) = [(—A~}-7r12)(AD)]—1 is obtained as the inverse of (—A +m?) with

m=ooforz ¢ A. Thus GP)(z,y) = 0if z € 9T A or y € O+ A where
OtA =0A, A = {z;dist(z,A) < 1}.

We first show that G3' is almost equal to (—A + m?2) on £2(A) with free boundary
conditions at A. This can be again shown by the Feshbach-Krein formula eq.(2.14). Then

we see that
1
G -1 = G-l - G_l [ B — cG—.l 22
[G) XAGTXA = XaGT xXne e —xa G X (2.26)
1
= xpG 'xp - E———FE* 2.27
XA XA G Txhe ( )
XacGxaxaG rxa = XaeGxaexacG ™ xa (2.28)
= XaGxaeE” (2.29)
where G™! = —A +m? and
E = xaG 'xae = xa(—A)xAc (2.30)

The following two theorems are proved in [6, 8].
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Theorem 2 Let Gy = xaGxa- Then

Gyt = (- A‘*'m)( ) BaA

(2.31)
(2.32)

where Baa(z,y) # 0 if and only if z € OA, y € A, and Bf?i) is a Laplacian defined by

Bgi)(xay) = Jx,y [Z B(IE, C):| - (1 - 5z,y)B(xa y)

CEBA

namely by
< f,B{Rg>== Z Boa(z,y)(f () — F(®))(9(z) — 9(¥))
T,yEQA
Moreover
1
— —_ 2
BaA(xay) 0(1+l$_yi2)=0

and 8sa is a strictly positive diagonal matriz defines by

Z BaA(;L', y) = Z —E(x,y) - 53,\(.’1)), 53,\(2?) =0 (mlTl—/E)

YyEBA yEA®

Theorem 3 Let G2 = (Ga)*? = xa(G°*)xa. Then

[GoAz]_l = 2,3GA - BaA
where
Boa(z,y) = 0(67%)0 (1—‘*‘——1%——372)
III. GREEN’S FUNCTION WITH COMPLEX FIELDS iy
A. Decay of [-A+m? + ia;p]‘l with i.i.d. ¢¥’s
We set

) = (—grmrriag) @9

and define the averaged Green’s function G(e) by

G (z,y) = f G (z, 3)duo

duo = [ [ expl —-1/)2( )]dj;@

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(3.1)

(3.2)

(3.3)
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We will denote G(#*¢) simply by G(® when the dependence on « is specified, and there is no

danger of confusion. Put
(=A+m?) +iayy =4+ m? +iayp — J (3.4)

where J;y = 61 |5y Then

1
4+m?+iayp — 7@ =2 H A+ m? + zaw(k))n(k) (3.5)

w:z—Y kéw

where w are random walks on Z2 which start at z and end at y and visit k € Z2 n(k)times.

Lemma 4
/ ! , dug = ” "t exp[—(4 + m? + iay)t]dtduo
(4 +m? + iayh)" A
= i Ooot" Lexp[—(4 +m?)t — o?3)dt
1 n
= (4 +m? + ca2n)

where c ~ 1/8

This is easily proved by the steepest descent method. Since (1+ia)™ ~ €%, the role of iay)
is to yield oscillating integrals which cancel divergences and thus improve the convergence.

Thus we have obtained

Lemma 5 The averaged Green’s function G'%®) (z,y) obeys the bound

G(ave) z,y) < _1__2_) z, 3.6
(z,9) (—A+meff (z,9) (3.6)

where
mie = m? + c(a)a? (3.7)

and c(o) > 0 is a strictly positive function which tends to co as a — 0.

Remark 2 Our argument is close to the Anderson localization [4]. Our results in this
section are very similar to those in [2] and [12]. It is shown in [2] that the spectrum of the
random lattice Hamiltonian —A + dw (w are i.i.d.) has a localization in < \?|log )| for
D=3, and in [12], it is shown that the spectrum of —A + Aw localizes on shells of thickness

A2-0 in two dimensions.
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Theorem 6 With the above definitions, it holds that

1 1
< @ (o)
[ S e g e € CVENG W), (39
1

(z,9) (w, 2)dpe > G(ﬁ“)(a: y)G(‘/—"‘)(w,z) (3.9)

1
/—A+m2+z’aw —A+m?+iay

where GV2) s the qveraged Green’s function with o replaced by V2a.

Proof. We expand the left hand side by random walk, and we show that

1 1 1
d 3.10
_/ (4 +m2 + iay)t+k o < / (4 + m2 + iah)* Mo/ (4 + m? + iay)* Ho (3.10)
where the right hand side is

(k- 1)!1(e —1)! /Ow /Om s*7't"dsdt exp— (4 + m*)(s + 1) = %Oﬂ(s? +t)] (311

We then set X = s+ ¢ and use s2 + t2 = X2 — 2st < X? and

[{- o= A

to complete the first inequality. The second is immediate from the above. Q.E.D.

We note that
Z 1
—— 2 y

= (-2 + MG (z,9) + i [ V@) g V)

[(—A +m)G(z,y)
2 1 1
+a /——A+m2+iav,b(x’x)—A—l-m?+z‘az/)(x’y)d“°
= 0z (3.12)

where we have used integration by parts. Taking the sum over x on the both sides of (3.12),

we have
1
o2
Z/ A+m2+za1,b( z)z +m2+za'¢( Z,y)duo
2 a — 2
=1-m ZG( Nz,y) =1 -m?O(——— 2+a2) (3.13)
Then from this and Theorem 6 (3), we obtain
1
) (3.14)

ave v 2
o? zx:G( Nz, z)G@) (z,y) < 2(1-m O(m2 Y
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We now rewrite (3.12) as
[(=A +m? + ®G(0))GD](z,y) = bz + 206G (2, 7) (3.15)
where
6G @) (z,y)
- / (G(a) 06 (,v) - —A + ni'é’ T OO T rrt2 Fiap @ y)) d““’ (3.16)

- ¥ 1l wo—mmo=T / [T o dscat

w:iz—=z N:T—Y (EwUn {EwlUn

x exp[—(4 + m?)(s; + t¢) — §a2(34+t<)]( —exp[—a® Y sct]) 20 (3.17)

Put y = 0 and multiply e and take the sum over z in (3.15). Then we have

1+ a?8G(p)
4 — 23" cosp; + m? + a2G(eve)(0)

Glave) (p) = (3.18)

where 026G (p) is bounded uniformly in « and tends to 0 as o — 0 (G® = G(@)). Thus

we have
G(m"e) (0) — 14 QZJG'(p) ) d2p
[4 — 23 cosp; + m? + a2G(eve)(0)] (2)?
1 1
= [log (m2 - aZG(ave)(O)) +3log2 + 0(1)] . (3.19)
Theorem 7
1
G (z,z) = log ol + O(loglog m),

2

= m? +-2—— (log|1| +O(loglog| |))

B. Case of A = Z? or of du = exp[— < ¢,Gy >][[dy

For very large A, we may regard A as Z2 and replace [1dpa by the following Gaussian

measure whose covariance is just the Laplacian (—A + m2):

dp = 5 expl~5 < 9,6 > [ dwla), (3.20)

G(z,y) = ;5—17 (mo<m) (3.21)
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where we have scaled ¢ by 2v/8 and my = v/2m in the actual system, but here my may be

put 0 after the calculation. In this case, we have

1 -

Thus we have

Theorem 8 Assume |logml|e” OWNB) < 00. Then under the same assumption, G obeys

the following bound:

G(z,y) < (~A+mi) 7 (z,y),

mi;; = m? +ea?
where o = a2/2 = (2NB)~! and e = O(1) is a strictly positive constant.

Proof. We estimate

G(ave) ZL' y Z H n(c — 1 / H s'n(C) -1 eXp 4 + m2 + Eaz)S(C)]

WLy

X exp 60223(0 - a? Z (s(¢) = s(£)) ]HdS(C)

I€—¢l=1
where ¢ > 0 is a constant determined later. Replace (4 + m? + ea?)s(¢) by new variables

s(¢) so that

Jeo] o0
G(a‘ue)(x’y) — Z (%) ( H _(T(O}:FL S(c)n(C)—le—s(C)ds(C))

wiz—Y {Esuppw
ea? 9
X exp [—T— > (0~ ;3 60) - s€) } (3-23)
{€suppw [¢—¢l=1
where
T =T(a) =4+ m®+ea? (3.24)

We set s(¢) = n(¢) + /n( ) so that

@) = Y (,}) o [ Zn(c) 3 0(6) - n(©)Y]

WY

/ ( I 96,5 f))) II £G)dv(3(¢)) (3.25)

[¢—¢|=1 {Esuppw
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where
v(§) = —1——3”( =1 exp[—~s s
W) = O els(Qlds(0), (3.26)
606 = exp [ a@ys(0) - 25 scr]. @27
9(3(0),5(6)) = exp | % (2(n(6) ~ n(E)(VATIFE) ~ VAETS(6)
+VOVAEQ5E))] (3.28)

We note that

/ () =1 / 5du(s) = 0

(=v/n < § < o0) and so on, and

dv(3) = (m &(18) e~ (VP8 /nds ~ exp[—-;-§2]\/—2_7rd§ (3.29)

It is enough to consider the contributions of walk whose visiting numbers n(¢) at ¢ €
suppw satisfy [n(¢) — n(€)| < max{y/n(¢), \/n(£)}. Otherwise we can extract the factor

e=@"™O) or =) from e~**(MO-")’  Thus we can apply the standard techniques of

polymer expansion. It is again proved that 4G is small, see [8]. Q.E.D.

C. Case of finite A or of []dua

Let A; be squares of size L x L (L > 1), such that U;A; = Z2 and A;NA; = (. We again
define

G(a,y) = [ 69w,y (3:30)
where
1
Vew) = (g ) @0 ~‘ (831)
duo = T 5 expl~(a, G20a)] [ dv(a). (3:32)
ACZ? A z€EA

We estimate
/ H A (4 +m? +'Lm/)(z))"(x) dia(¥)
B Hm/o [1 2 expl~(4+m®) St = ° <, (G2t 5] [T

where [G22]™! ~ (—A)a/2B. Then we have [6, 8]
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Lemma 9 Assume 8 > |A|. Let meyy be given by

1
mis; = m?+ ‘NG (3.33)

where ¢ > 0 is a constant. Then

G (z,y) < (z,y) (3.34)

More precise bounds are obtained by applying dua to

: 1 _
Zg:(—A +m? + 1K) (—A e imp) (¢, y) =bzy (3.35)
Then we have
[(=A + m? + TG (z,y) = &, + 6G(z,y) (3.36)
where
2
(e (¢ £) = %_[Gog]—l(c’ )G9, £) (3.37)

is a strictly positive block-wise diagonal matrix and 6G(z,y) is the remainder given by
2
e @0 [ 1690 066w - CVE GVl dus (338)
¢

which tends to 0 as a — 0.

We decompose I'(*?¢) into a differential operator part and a diagonal part. Note that
1
26
2
K - av
+Ex6A(4)x6A(s)Bé’2(c,5)0(““)(4, £ +0(B7)(¢,OG™I(CE)  (3.39)

A d

1 (6,6) = 5 { -0 6) + xan(Ocetn0)} S0

Since
4,3,2,1if(=€¢€ A
-2, 8) = ¢ -1 if|C—¢l =1 (3.40)
0 otherwise
we see that

(=A)NC,6)G @, €) = m(=A)T(¢,€) + e (D)X OG™NC, Q) —m)  (341)



1s strictly positive, where
71 = ming_g < {G((,€)} = log f — O(1)

Similarly, since BS(¢,€) = 8¢.e[Ycean Boa(C: )] — (1 — 6.¢)Boa(C, £), we have

(64,5 [ Y Baalc, 5’)} -(1- 5c,£)BaA(Ca§)) Glo((, ) =
£

'edA

= bcema | D Boald, s')] +0ce Y Boa(C,E)(G)((,€) — )

£'€0A §'edA
—(1 = 8,) Boa (¢, )(GC(¢, €) — )

which is strictly positive, where
Y2 = ming¢ean{G* (¢, €)} = log B — O(1)
Theorem 10 I'(**®) hqs the natural decomposition
[lave) I-«t(ia.'ue) i P(()ave)
F((ja'ue) > NC/_B~ , Fgwe) >0

where I‘f;"’e) is a diagonal matriz, and T is a positive differential operator:
(ave) _
> Te"(z,y) =0
y

Theorem 11 Let

1
T A+ m?+ I@e)(z, q)

Dazy (fsfx—y|,1 — [(ave) (37: y))

Then

1 2
— (ave)
szy 4+m2+r(ave)(x, 1‘) (4+m +T (iE,IL')
y

__YVEB { Z (G(ave) (.’L‘,l‘) _ G(ave) (.’I:, y))
yilz—yl=1

225

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

+Xoa(z)x0a () Z Boa(z,y)(G™ (z,) — G+ (z, y))}) (3.50)

YEDA
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IV. THE O(N) SYMMETRIC SPIN MODEL

What we have shown in the previous section is that the averaged Green’s functions Gf{we)
are decreasing fast, smooth and that ¢ acts as differentiations. These facts mean that W, in
the expression of the partition function are small. This is a good news. On the other hand,
this argument must be taken with a grain of salt since our analysis depends on cancellations
of integrals due to complex impurities. Namely |W (A, A)| can be large though [ Wdp tends

to zero. But this result can be justified by deforming contours of ¢, in the integrals.

A. Smallness of |IW| and the Possibility of the Polymer Expansion

To prove that the free energy is analytic in 3 € [0,00), we use the cluster expansion to
express thermodynamic quantities by convergent sums of finite volume quantities. Finite
volume quantities are analytic in 8. Then absolute convergences imply the analyticity of the
thermodynamic quantities. In the present model, this would be ensured by the integrability
of det ~M/2(1 4+ ikGatha) and convergence of polymer expansion of det(1 + W (A, A;)). But
we discuss this problem in the forthcoming papers, and the remaining part of this paper is
devoted to some plausible arguments (some of them are, of course, rigorous).

First of all, we show that W (A, A) is a.e. finite uniformly in B with respect to dug. In
fact, W(A, A) is similar to

W(A,A) = — (ik)> Ua(¥a) G2 2 CantiaG Y Ur(9a) Gy *Gan¥aGY’ (4.1)

where
Ua(a) = L (4.2)
T T 4 ikG s G '
| |
Ur(yn) = (4.3)

1+ ikGY  PpGy?

are normal operators whose norms are less than or equal to 1. Set
Xaa(¥a) = GgllzGA,AiﬁAG}\ﬂ, Xaa(a) = le/zGA,MPAGlA/z- (4.4)

We show that X’s are (component-wise) bounded uniformly in 8 with respect to duo (or

bounded if {1;;i € A} satisfy [¢;] < cB7Y2 and | 3,0 il < ¢671):
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Lemma 12 The following bounds hold uniformly in 8 > 0:

WUa@a)ll < 1, (4.5)
/Tr ‘A a(Va)Xaa(a)dpe < O(lA)) (4.7)
/TYXZ,A(¢A)XA,A(¢A)d#0 < O(JA)) (4.8)

where |A| < B is assumed in the last two inequalities.

This lemma is immediate because of our previous analysis. But the norm may grow like

|A| and we show that the norm of W(A, A)is bounded by O(|A|) uniformly in 8 by the

localization.

B. [WP?du is small uniformly in A
1. Structures of G

Now we assume that all {1} are small, Ya(z) = 2712([G32]"Y/%)(z), |(z)| < O(1). Let

the spectral resolutions of Ga and G32 be given respectively by

|al-1 |Aj—1
Ga = ey Py + Z e; P, 022 = éop(] -+ Z éipi, (49)
=1 i=1

where {eg > -+ > ejp_1} (resp. {€y > -+ > éz-1} ) are the eigenvalues of G5 (resp. G2)
and P, (resp. P,) are the projections. Then

|A|-1
Ca=[GRV? =&*B+ Y &P, (4.10)
=1
where & = O(B?|A|) (resp. ey = O(B|A]) is the largest eigenvalue of G52 (resp. Ga) and
and P, ( resp. Py ) is the projection operator to the eigenspace. For simplicity, we set
1

Gyl = 72—‘5(—A>z’2 +0(87 A2 By,

G{* = (-A){" + 0(A}8 )R,
Ga = (-0){* + o(A[ 18Ry
where we put 32171 (e,)V/2P, = (~A)Y/2 since P, are the projections to the subspaces of

{#i; 229 = 0}. (We are sorry for the abuse of notation.)
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We put
1 A g~
¥(z) = 7§[GA ¥)(z) (4.11)
_ L 1/2 1 5 Tl
= 2\/3[( A)a Pl(z) + O (T/W) [Py a¥) (), (4.12)
Ga = (G2 (4.13)

where P, is the projection operator to the eigenspace of G52 of the largest eigenvalue eg =

O(|A|B?) and

Bo~mPo=r= | P | +0(55) (4.14)

ﬁIA!

We remark that
W(A,A)
= _—UA(xI:A)G‘V Ganl D Galva,]

A;CA

1 A .-
— G7'GAAlGFYAGY? (415
le+im,bA A A,A[ A¢A] A ( )
are the matrices of size |A| x |A| which are functions of infinite variables t)(z) and, as we
have shown, are bounded uniformly in 8 if A is finite.

We show that these matrices are finite almost everywhere uniformly in 8 > 0 and A C Z2.

To discuss this, we first approximate Ua(%a) by 1 since A is small, and replace
1

— G;!G 4.16
by
1
e GG adug ~ GGG A, 4.17

Since Gf\m‘”)(x, y) is close to G(™ess)(x,y) for all z,y € A if A is large, we take |A|Y/2 > NS

~ so that _
G~ xAGMer Dy, (4.18)

Then we have

G765 Gral(z,y) = Y, GF " (@,0)VaG(C,)
¢edn

+ 3 5B G (2,0) - 6 (3,) (66, ) - Gw,€)

,6€0A

+ 3 bor OGS @, GG, )

(edA
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Since daa () ~ m for large A and mZ;, = O((NB)~!), we see the last term of the above is

rather small, and we see that the most leading term is the surface term

3 G @, VWG = 33 (VG (2,0)(V,G) ()

{edA CEA p=1,2

N 2(1 — cosp,) Gave) (p)e ip(z—y) =2 L de
4+m? —23 cosp, (@r)?

= G(meff)(x, y)

forz € A and y € A.
We discussed thath{we) (z,y) are close to [xaG™/1)x](z, y) if A are sufficiently large (if
side-length of A is larger than vNS). Then we can first assume that [G7' +ik1s]~! behaves

like the restriction of G(3®) to A:

1

Gave)y vy G(Mess) , GUmers) =~
XA XA ™~ XA XA AT msz

2. [WPdy is bounded uniformly in A

We first show that the averages of W(A, A)? are small and tend to 0 as N — oo uniformly
in 8. We substitute the previous expressions into (4.15) and have the decomposition W =

16 . . .
k=1 Wk, where under the previous simplifications,

Wi =~ (A Ganl(-A) G -8Bl (- A) Y,
A m 7 !
Wa = — Ll 026 al- A BICT (~2) 5 B P
1 . .
Wig = _2ﬁ2N|A|P0AGAA[P0A¢A]G( 'ff)[Po,MbA]Pé,A
where we have used the following abbreviation:
(=A)a = (A)R%C, (-A)r= ) (-A)EEC, (4.19)
ACA
Py = Poa, Pop = Z Po.a; (4.20)
A;CA

Lemma 13 Again under the same approrimation, [ W (A, A)P(x,y)duo is finite and tends
to 0 (as N, B — 0o) where duo = [[dua(a). More precisely

const.

/W (z,9)%dpy < ﬂNIAlz —0 (4.21)
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Proof. Put W = W(A, A) for simplicity, and we have

/W(.’I),y)zd,uo = N2 Z Z {Z Z GOA?i]—l(x”,y")[GoA?]— ( m,ym)

GA 1"” y’”GA A1_C1\ 1:" y"EA,
(3 0, G216 i (a", 2" G (", y)

x G3*(2,4)Ganlts v )G (" y"GL W v) }
Since we can set (with some abuse of notation)

Gi? = (=A% +O0(|A]V?BY%) By
Gi* = (-A)Y? +o(AI"V2872) Py

and since both z’ and z™ are in A of small size, we introduce three types of functions

fi(z,2) = Ganlz, )G (2, 2), (4.22)

folz,7) = 3 (=) (@, OGan((, 2)GTE (7', 2), (4.23)
¢

fawa) = S (D)@, 0Gan((, &) (A (@ OGTE (2, €)  (4.29)
€3

Their Fourier transforms f; (1 =1,2,3) are given by

: 1 d’k
hi= / [m? +23 (1 — cosk)][m2;; + 23 (1 — cos(p — k)] (2m)?
S X<mess (p) mﬁff +X>meff(p);n'_’8'_;?
= / k| &k
27 ] Im*+232(1 - cosk)][mZ; + 23-(1 — cos(p — k)] (27)?
< Xy B + Xomy ) 08 e P
- [kllp— K &k
3 [m? + 2> (1 — cosk)][m2;; + 23 (1 = cos(p ~ k)] (27)?

1

< X<mes; (D) 10g Mesf| + X>m, sy (P) —F——-
\/Megs P

where mZ;; = ¢/NB, X<m,;; (resp. X>m,;,) is the characteristic function of {Ip| < mess}
(resp. {|p| > mess}) and we have assumed m < ms; < 1 without loss of generality. The
second bound for f;(p) = 0 comes from the estimate

1 d*k
m? + 23 (1 — cos(p; — ki)) (27)?

< —const.log m < const.
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Note that (A)s = (—=A)E5C is hermitian though there is a boundary effect, (—A)(z,z) = 4
and then )., wca(=A)(z',y )@ —¥) yields the factor bounded by (1 — cos p).

Thus we have

> e < cméif < eNg? (4.25)

and
3 oA ORER) S o+ cllogmapl’s (4.26)
Zfs (2,Q)(=A)alC ) f3(€, ") £ cxmidyy|logmess| + c20(1) (4.27)

We furthermore substitute

[GR]™ { A)RPC + (=2)5R°} + 0(87%)
T 28
The we see that these are enough to conclude the conclusion. Q.E.D.
These analysis implies that if we assume that 1o do not interact v’s contained in the

denominators, then their effects are bounded by O(871).

8. Tadpole Contributions in [ WPdy

In the previous integrals, we have neglected tadpole contributions in the integrals of W.
In fact, they are the most important contributions and are larger than the non-tadpole
contributions though they tend to 0 as N — oco. We set

_1/2 1 -1
W(A A)(z,y) = «* %—-—.— GA Gan
+ ikPa

1
leGA,AGXQ] (z,9) (4.28)

and we use integration by parts. Let

duo =[] {exp[ < ¥, Gpa > [] dv x)} (4.29)
A T€EA
(except for the normalization constant). Then by integration by parts, we have

[ OF®m = 3 SERGO) [ 5P (4.30)

¢'ea
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where ¢ € A and

0 1 : 1 , 1 ,
81,0((') G;\-l +2/€1j)(x’y) o _ILK:GXI + “ﬂp (Z‘, C )G;\:l + ’&li’(p (C ’ y)

etc. Similarly we have

| OO gy e

1 1 1
= §[G°Az]—l(<1 E) / M(xa y)d,uo + ZK'2 CZE:,[GZE]_l(C) C’) [G0A2]—-1(£, E’)

1 ! ) 1 /
./G +m1/; )GX1+' w(@f)m(f,y)duo

+(same as above with (' = ¢ )

The first term on the RHS in the above is the approximation which we just have argued in

the previous section. The second and the third are the contraction terms (tadpoles diagrams)

and the reminiscence of tr(Gy)*. Thus we have

[Verm=--5 ¥ ¥ ¥

ACA o',z (CVEA EE€A; T EA

x[GR]THE ONGR] T (6:€)
1

1
G~1/2 , I’
x/ 2= x)Ggl s < G+ intn

1 1 1 y -1 m ,N1/20 01
X GXI + ’I;K/l/)A (575) le + ilﬁ'/(,bA (§ » X )(GA GA,A) (CL' aC )GA (C ,y)dp.o (431)

(<7 :IJ”) (GzlGA,A) (:L‘”, 6)

Since the size of A is so small compared with 5, we can put

Z Gz x)——l——( ' C)——-l.——(C,x") = G{*(z,¢)Ga(¢, ")

= Gt +isa T Gl +ikpa
Note that 95 and 9, are independent and that
/ (&¢€) . (&', z")dpo
Gyt + mwA Gl +ikpy

= G@I(E,€)G™ (¢, 2") + O(B7)O(G™I(€,€)G ™I (¢, z™)  (4.32)

and

K 021—1 (ave)
5 [G3TH(=z,9)G" (z,y)
= T (z,y) + TP (z, y) + 6T (z, y) (4.33)

r®(z,y)
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where
e,y = SED Ay (434)
r*y) = 750 @1)0(z - o)
STtz ) = O (%ﬁ&—!) (4.35)

and T fi"”e) (z,y) is regarded as a diagonal matrix whose diagonal components are 1/(Np3)

since (—A)g)(x, y) = 0 unless |z — y| < 1. This follows from

o211 no o i -1 !
Ga(¢,¢") = (=A)a +O(BA|) P
see (4.9), namely Pa o is the projection operator to the eigenspace of the largest eigenvalue
= O(B2|Al) of G22.

Similarly we define
2

Ta(e,y) = S1GE (@16 (z,y)

= To(z,y) + Ca(z,y) + 6T (z,y) (4.36)
where
Lo(@9) = (-8 (z,9) (437)
Lule,9) = 75" (@, 9)0(z - v)

_ log B

and I'4(z,y) is again regarded as a diagonal matrix whose diagonal components are 1/(Np)
since (——A)(;BC) (z,y) =0 unless |z —y| < 1.
Then we have

/W z,y)duy = -ZZZGW(:E, OTa(¢,¢)Ganl(c,m)

¢y w
x @) (i, 1) G (0, w) G AP (w, v)

where we can again put (for notational simplicity) »

GL(¢,¢) = (-A){* + O(VBIAD Py,

G376, ¢) = (-2 +0( ﬂll )P

]
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see (4.9).
Thus it is easy to see that the largest contribution comes from I‘fi“”e) in I'(@v¢) and Iy in

s and it is easy to see that

{/Wzyduo < const. Z Z

(,('eAweA

{Z Z GY%(z,0)Ta(¢, ¢)Gan (', mT (n,7)G (m”f)(n w)G1* (w, y)}

A;CAn el

1 Me
const.Nzﬁ2 ZGAA z,() G( & ¢, )
CeA

A

1 B 1
< const.———— ~ const.—
- N252 Meff N

where we have used mﬁff > 1/BN. This converges to zero as N — oo. For other con-
tributions which comes from (—A)l/ 2 G3', etc. also converge to quantities bounded by
(NBJA|)~!. (We multiply these differential operators to the Green’s functions, which im-

prove the convergence.) This is left to the reader as an exercise.

V. WORKS IN FUTURE : POLYMER EXPANSIONS ETC.

To complete our discussion, we need to establish polymer-expansion for the present system
by introducing paved sets O; which are collections of A; and chosen large. Namely A = U0;,

0; = Uker, Dk, Gi N0, = @, i # j. Then using the Feshbach-Krein formula [7], we have

n—1
det (1 + ikGryha) = Hdet (1 +ikGa,o,) [ [ det (1 + W (T, A))
i=1 i=1
where
Ai=A—UL_ O : (5.1)
and
1 1

W(Di,Ai) - - (52)

. N2
——————————Gp, AU, G, o
(ZE) ¢D| 1 _+_ ’i’gGD‘-wDi D«.,A;/‘/)A, 1 + ZK:GA'wA' GA“D,

Furthermore we decompose O; into smaller cubes A, in the same way, that is

det (1 + ’l:liGaiwgi) = H det (1 + iK'GA;,kwA;,k) det (1 + W(A,ﬁ,k, Di,k))
k
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where O; = Up A, O, = 0; — US_ A, ; and putting A = A, O = O; for simplicity,

1 1

b a p— ) 2, - — —_— e
w(a.0) (%) ¢A1+MGA¢AGA’D7’Z)D1+MGD¢D

Goa (5.3)

Or sandwiching them with GH? and GY ? we rather consider

1 1

W(0;,A) = —(6)2CY g ———— G athr ——— Cr ~ G=V2
( ’ ) (Zh:) GD llel + 'iKG’DiwDi GB“AlwAt]- + iK;GAid)Ai GA“DIGD
) 1 - 1 - -
= —(ZKJ)ZGlD/?wDimGDEGDbAi’tﬁA‘.mGAt,IGAi,DiGDI/Z
1 1 _
M = —(Ge20Y2 ) & 1/2
w(A,0) (k)G A wA1+iI€GA’L/)AGA’D¢D—_—_1 T inGatn Go,aGx
1 1 _
= —(iK)*GY A G3'Ga o G5'GoaGRY?

Gl +ikya Gg! + iko
These new W functions have better properties since A’s are embedded in paved sets O;.
As before, for each A € O, we put |

dus = det;"*(1+inGaya) [ do(a)
z€A

= det;"/*(1+ ikGata) expl— < v, G2ya >] [] d¥(a). (5.4)

TEA
We regard W (0O;, A;) and W (Ag, O;) as two types of corrections to the (almost Gaussian)
measure []dua,. The works in this direction are now in progress, and will be published in

the forthcoming paper [6].
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