Oboo0o0oOoDoOonoO 13860 2004 0 237-246

2317

Triviality of hierarchical O(N') model
in four dimensions

Hiroshi Watanabe

Department of Mathematics, Nippon Medical School,
2-297-2, Kosugi, Nakahara, Kawasaki 211-0063, Japan

Abstract

The renormalization group transformation for the hierarchical O(NN) spin model in four dimen-
sions is studied and convergence of the critical trajectory to the Gaussian fixed point is shown
for a sufficiently large N.

1 Hierarchical O(N) spin model

There is a long-standing conjecture that the continuum limit of the classical spin models
in four dimensions will be Gaussian (the triviality of O(IV) spin models). We here consider
the hierarchical version of this problem and describe the outline of the study in [1].

Let N > 1 and A > 0 be integers. The d dimensional hierarchical O(/N) spin model
on the lattice L, = {0,1}* is defined as follows:

¢9 = ¢0A,...,01 € RN ’ 6= (61\7 seey 01) € 'C'A ’ (1)

1, 1 ’
H (¢) == o An ¢ Ase-sf1| 97 (2)

i 2 nZ=1 (20.)) 0m...,9§1=0,1 0,.,.;:0,1 ’ ?
(Foppgn = 5 [ d6F(@) ex(~Hx@) T] K (o), 3)
0 AR 6l
Zypn = [ dexa(-HA@) TT K (90), (@)
6elp
h§"M(x) = const.6(|x] - VNa), xeRY, (5)
where

=-“i;—1, w=2" d>92, (6)

a>0. )
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2 RG transformation

Define the block spins ¢' by

Z ¢701 ) = (TA—I’ ---7T1)-

91 =0,1
If there is a function F'(¢’) of the block spins such that
F(¢) = F'(¢),

then it holds that
(F>Ah‘”) (F' >A—1 RAM) >

where R is the mapping defined by

Rh(x) = const. exp( |x|2)/ \/—-x +y)h( x y)dy, x e RV, (8)

Consider the renormalization group trajectory

M =RrpM | n>o. (9)
Note that !
he(x) = const. exp(—zlxlz) , (10)

is the trivial (Gaussian) fized point of R.

3 Result

Let us state our result.

Theorem 3.1 Let d = 4. For a sufficiently large N, there ezists a positive constant
oy such that if A n > 0, are defined by (5) and (9) with a = ay, then the sequence of
measures hiY (x)dx,n > 0, weakly converges to the trivial fired point-measure hg(x)dx
as n — oo.

Consequently, if we construct the continuum limit of the hierarchical O(N) model in
four dimensions by means of the critical trajectory in Theorem 3.1, the limit is inevitably
Gaussian. The analogous fact will be shown for d > 4 dimensions by weaker bounds. See
also [2] for the case of the hierarchical Ising model (N = 1) in four dimensions.

The proof of Theorem 3.1 is decomposed into three parts:

1. O(N) trajectory in the weak coupling regime

We obtain a criterion for the trajectory (9) to converge to hg assuming that the
trajectory has entered a vicinity of hg. (Proposition 4.1)
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2. O(o0) trajectory

We explicitly calculate the O(oo) trajectories, i.e., the trajectories corresponding to
N = oo, and derive the asymptotic behavior of trajectories near the critical point.
(Proposition 4.2)

3. From O(N) trajectory to O(co) trajectory

We show that an O(N) trajectory converges to an O(co) trajectory as N — oo.
Consequently, we can find the critical O(N ) trajectory in the vicinity of the critical
O(oo) trajectory for a sufficiently large N. (Proposition 4.3)

4 Outline of the proof

The proof of Theorem 3.1 is based on the characteristic function method developed in [2].

4.1 Characteristic functions

We consider characteristic functions of effective measures

AV (€) = FRM(g) = / e/ TTENORM (x)dx | n=0,1,2, -,
RN

and write the renormalization group transformation for A%") as

A = FRFUB, = TSR, | (11)
where
o 1
Tg(£) = const, exp(—-gA)g(E) . (13)

In the above, A denotes the N dimensional Laplacian and the constant is chosen so that
Tg(0)=1
holds. Since A" has spherical symmetry, we shall often write
R (&) = AV (&),

where £ = |£|. Note that the mapping 7'S has the trivial fixed point Ag (€) = exp(—£€2).

4.2 The Lee—Yang property

The reason why we use the characteristic function is the fact that the ‘potential’ of the
characteristic function has the remarkable positivity due to the Lee-Yang property.
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Let us introduce a potential Vi )(5) and its Taylor coefficients u.(N) by
CRIGETSCHCR (14)

ARIGE ZM‘N’ﬁ" (15)

for n > 0. (Note that ESIN)(O) =1, i.e. V;.(N )(O) = 0.) The coefficient ﬂﬂ) is called a

truncated correlation. Since AN (&) is even, pﬁ? vanishes if k is odd.
__As is well-known, the hierarchical model has the Lee-Yang property for any N > 1:
AV (€) has only real zeros. (See e.g. [3].) As a result, the truncated correlations have the

bound [5]:
0 < kpgh < (2602, k>3, n>0. (16)

This implies the following:

1. The Taylor expansion in the right hand side of (15) has a nonzero radius of conver-
gence;

2. It suffices to prove limp_o0 pﬂ) = 0 in order to ensure lim, ug,:?, = 0 for all
k > 2, which implies weak convergence of the trajectory to a Gaussian measure.

Next we introduce the scaled potential vi"’ (n) and its Taylor expansion by

o) = SV (V) = S s, n>o. (17)
k=1
In other words, we scale the truncated correlation p(N)

ng) N"/z‘lu(N) k>1, n>0.

,n,

Then, V,(CI? turns out to be O(1) with respect to N. We refer to v (N) as a scaled truncated

correlation. In particular, for the trivial fixed point measure hG(x) the scaled potential
is given by

ve(n) =n" . (18)
4.3 Differential equations for potentials

In view of (12) and (13), we consider the following equation:

2100 = -0KM L8, n21te0p/, (19)

or, equivalently

N-18
G

25m,e) = —Z i) -

ot o€ =8, n>1,te(0,8/2,



with the initial condition
(N ) 0,¢ (N) 2 n>1.
(0,8) = hp 25 ( \/—5) >

Then, we have
A g
}AZLN)(E) = T)—g_a n2 1.
S (N

We also define the ¢-dependent scaled potential and its expansion by

vM(t,n) = —71,- log A (¢, VNn) = Zv,(,’f.)(t)n” , n>1t€[0,8/2].

Then, the potentials o (t,m),n > 1, obey

9 oy (9. : ___13 (2 _1&
5o = (o) - - DL -~ Lo,

oM(0,7) = 20{™)

—1)
\/2—w77 ’
o) = o, n) ~ (L, 0),

and the Taylor coefficients vgﬁ(t) Jj=1,n>1, obey

uz,)(t)_ > maM N (@) - (zj+2)(1+3-)u§jv+>2n(t),

m+£=2j+2
mt>2
(N)( 0) = A
2_1,11 (2 )J 2,7,n—"
N N
Vg = ué,,,k ) -

In particular for j =1,2,3,4, the equation (23) gives
LU0 = (07 - a1 Y (t)

jtsf:’m = 164" (t)vi,’x’(t)—e( PO

SU00(0) = 200D (1) + 160420 1)? - 8(1+—)u§”)(t),

d
e 0) = 32D O @) + 48 (A (0) — 100+ 2 1)

Note that uéj,,), (t) has the positivity due to the Lee~Yang property

V@) 20, i>1Ln>1,
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(20)
(21)

(22)

(23)

(24)

(25)

(26)
(27)
(28)

(29)

(30)

since ng,), (t) is regarded as a scaled truncated correlation for a hierarchical model with

t—dependence.



242

4.4 Weak coupling regime

The positivity (30) implies that we have upper bounds of the solutions by dropping the
last negative contributions in the right hand sides of (23). Furthermore, we can derive
lower bounds by substituting the upper bounds in the last terms.

We perform the analysis described above in the weak coupling regime, i.e., in the
vicinity of the fixed point (18). As is well-known, the quartic coefficient uﬂ) of the
critical renormalization group trajectory has power decay in four dimensions, which can
be seen by the second order perturbation. For this purpose, it suffices to bound 1/2(,”)1 for
j =1,2,3,4 by using (26)-(29).

In order to state the result of the analysis in the weak coupling regime, we write

u,(c?, k = 2,6, 8, as follows:

2

oM =14 \/§(H ) + (31)

v = " + (U’ (32)
3

Vim = G Vim | (33)

where ug,v,) is assumed to be small. In fact, we have:

Proposition 4.1 Suppose that there erist a positive integer n, and positive constants
ay (0 < o) such that

1. it holds that

M=¢, fa=oay, (34)
M=—¢, fa=a-, (35)

2. for a € [a_, a4, the following conditions are satisfied:

N
V< ¢,
V,EI:? <e€,

N)| (N
[Gom i < €0

I < e

8,n1174,n,

where {, €, €g and €, are positive constants.
Then, there erists a value ay € [a—, ] such that

(v _

Ve =1 o)
(N)

o, V=0 0

hold at a = ay.

In the statement of Proposition 4.1, the condition 2 means that we are in the weak
coupling regime, whereas the condition 1 enables us to perform the Bleher-Sinai argument
ensuring existence of the critical mass parameter.



4.5 Analysis of O(o0) trajectory

Next we formally put NV = oo in (20). Namely, we consider the equation

0 o 2 10
9 () _ {9, (o _ 10 (o)
5iUn (t,m) ( 5n'n (t, n)) s (t,m)

with
(c0) o) 1
v, (0,m) = 2”71—1(\/7—;;77) )
42 = o G ~ (5,0,

where the initial point is chosen as follows:

n 2a%n
. N
w™ () = Jim v () =/o LV
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(38)

(39)

(40)

(41)

The solution is referred to as the O(oo) trajectory. We however have to be aware that we

have no spin system corresponding to the O(oco) trajectory.
In order to solve (38)—(41), we define functions u,(t, ) and u,(z) by

un(t,n?) = v, ), n>1,
un(n?) = v (n) , n 20,

respectively. Then, (38)-(41) become

—a—un(t,x) =4z (iu,,(t,:z:))2 - 2-?—14,.(15, z),

ot oz oz
un(0,7) = Zun_l(%) ,
un(2) = un(5,2) ~ un(2,0),

w(a) = [ iy
° o 1++/1—4da?y =

(42)
(43)

(44)
(45)
(46)

(47)

where n > 1. Furthermore we denote the inverse of p = ul,(z) by z = w,(p) and the
inverse of p = u; (¢,z) by z = w,(¢,p) for each t. Then, w,(p) and w,(t,p) obey the

following recursion relations:

Owy, _ 20wy,
7@7 p) - 4}7 —aF(t1p) spiun(tip) +2 ’

wn(0,p) = 2wwn_1(wp) ,

w@=%éw,

1 o?

wo(P)=5I;-4jp5-

(48)
(49)
(50)

(51)
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The system (48)—(51) is explicitly solved and we have

1 1 2 no?
=52 5 T 31 >
1 21' 1,2, ,
n —a\l, ’ Z lat 2 ) .
wy(t,p) = % (p ZZwJ pp Z(w)a) n 0,p>0. (53)
Let us find the cntlcal value of a. Introduce the variable s by
1
P=1"% (54)
and regard s as a function of z(= w,,(p)) From (52) we see that
2 n 2
2zp° = o pi ) (65)
Substituting
] AN EAY 2\ & .
_[z il >
- (2) (&) s+(ws) DT 920
wd

into (55), we obtain
8 = 0,(22p + Yo — Rn(3)) ,

where
_w 1+(_]L 2____1 En
=T TRY Tt /W)
1~/ 2\
-1 __
; -”52(@) ,

Ry(s) =

This shows that the critical value of o is /2 + v/2 and the critical trajectory tends to
the trivial fixed point (18) (in the above notation we have s = 0) as n — oo, since , — 0

and R,(s) is convergent.
Now, consider the Taylor expansion

v (n) = Z u§;°,2772’ , n>0. (56)
j=1
Based on the above analysis, we can deduce asymptotic behavior of the Taylor coefficients
near the critical point. Let us write u,(c n), k=2,6,8 n2>0,as:

1
vim = 1+ sl + G v (57)
V§°2’ = 4" 4 (L (58)
3

Then we have the followmg proposxtlon
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Proposition 4.2 There erist a positive integer n, and positive constants o4t and a__
(44 > a__) such that

1. it holds that

CZ(O:I) 2 .2C , ata= a++; (60)
G <=2, ata=a__, (61)

2. for a € [a-_,ay], the following conditions are satisfied:

1

0< Vg’:l) < 56 ; (62)
1
IS < e, (63)
1
I < ey . (64)

In the above, (,¢€, € and €; are the same constants as in Proposition 4.1.

4.6 From O(N) trajectory to O(co) trajectory
Finally we show that the O(IV) trajectory is approximated by the O(co) trajectory.

Proposition 4.3 For each j =1,2,---, and for each n =0,1,2,---, it holds that

. (N) _ (o)
]\}1_1)20 Vajm = V2jn - (65)

The convergence is uniform in a on any compact subset of (0, 00).

This fact is by no means trivial, because (20) is a singular perturbation of (38), to
which the standard theory of differential equations does not apply: (19) is a diffusion
equation in the inverse direction of time. Proposition 4.3 is shown by means of 1 /N
expansion developed by Kupiainen [4].

In order to apply Kupiainen’s argument, we have to establish the reflection positivity
[6] for our model. For [ =1,2,---, A, we define the reflection pi on the lattice L5 by

— 0]&:’ k # l ’
(Pzﬂ)k-—{l_ek, k=1 ek, .
Then, the measure (-), ey has reflection positivity with respect to p;,{ = 1,2, A.

Furthermore, since the reflection planes for p,l = 1,2,--- A, separate the 24 points in
L4 from each other, we have the chessboard bound [6).

The 1/N expansion yields the existence of the limit in the left hand side of (65).
The fact that the limit coincides with the right hand side of (65) is shown by using the

differential equations ((23) with N = 00) for limy_,e ng,l(t)



246

4.7 Proof of Theorem 3.1

Theorem 3.1 follows from Proposition 4.1,Proposition 4.2 and Proposition 4.3.
We first use Proposition 4.2 and fix the integer n;. Then using Proposition 4.3 for
n =n,; and j < 4, we see, for a sufficiently large N, that

N

2(,,;3 >2¢, ata=oyy,
N

2(,113 < —C ’ ata=a__,

and that, for a € [a__, a4],

0< uﬂz <e€,
N N
|C§,n“y§,ni S €o
N N
Ka(,nnui,n)l <e

Since ng is continuous with respect to ¢ € [a._,a,+], we can choose a subinterval
[a,a4] C [@-—,a44] so that the assumptions of Proposition 4.1 are satisfied. Theo-

rem 3.1 follows from (36) and (37) by virtue of (16).
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