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0 Introduction

We introduce the notion of regular sequences of holomorphic functions for microfunctions
with holomorphic parameters. Using this notion, we define the Fourier inverse transfor-
mation of functions which appear in second microlocalization.

First we recall the definitions of microfunctions with holomorphic parameters, second
hyperfunctions, etc. We introduce the sequence of manifolds

M=R'=REXR" S N=R¢xC" ¢ X=C"=C*x C"™*

with coordinates = = (z1,...,z,) = (z',2"), (¢/,2") and z = (21,...,2,) = (2/,2") of M,
N and X respectively. We also consider the conormal bundle

S i=THX ~ Tp.C* x C"¢ 25 N
on N and the bundle
Y =S xpex Ty X > M
on M.

Then the sheaf COy (resp. BOy) of microfunctions (resp. hyperfunctions) with
holomorphic parameter satisfies '

CON ~ #N(OX){d], (resp. BON ~ RFN(Ox)[d]),

where Ox denotes the sheaf of holomorphic functions on X and py denotes Sato’s mi-
crolocalization functor along N. We have the exact sequence

0—).AON — BON — er*CON — 0,

where AOy := Ox|n, and where 7y denotes the projection : TI’(,X — N. Note that a
section v(z’, 2”) of BOn can be represented as

v= [Z Fj], F, € O((U' +iG}) x U" n{|Im 2| < 6})
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with open subsets U’ C R? and U” C R™™, open convex cones Gj C R* and a positive
constant d, and the zero class is defined, locally in (z/, z”) variables, via a relation of edge
of the wedge type in the 2’ variables, which we omit here. We consider each class [F}] as a
(cohomological) boundary value of F; with respect to Im 2’ — 0. Also note that a section
of COn can be represented as a class of a section of BOy, and the zero class is given via
the notion of the analytic wave front set. Therefore a microfunction with holomorphic
parameter can also be written as a sum of boundary values of holomorphic functions.
And moreover, in a neighborhood of a microlocal reference point, a microfunction with
holomorphic parameter can be represented as a boundary value of a single holomorphic
function. ,

The sheaf C% (resp. B2%) of second microfunctions (resp. hyperfunctions) along ¥
satisfies

C: ~ us(CON)[n —d], (resp. B =~ RI'5(COyN)n —d)).

This gives the exact sequence
0— AL — B2 — 75.C% — 0.

Its sections can be also represented as classes of sections of CO, with some zero class
relation of edge of the wedge type in the z” variables. We also have a canonical injective
morphism

C MIZ — B%,

which is given by the correspondence

CM'S Su= bImz—)O(F) — Zblmz”—-)O(bImz'AO(-F_'j)) € B% (01)

J
Here each holomorphic function F; has some suitable domain of holomorphy and they
satisfy the relation F' = Ej F;. A section of B% belonging to the image of Cp|x is called
a classical second hyperfunction.

1 Regular sequences of holomorphic functions

As we saw in the previous section, a microfunction v(z’, z”) with holomorphic parameters
!

2" is, locally in the 2” variables, represented as a boundary value for Im2’ — 0 of a
holomorphic function h(z/,z”). However, in general, it will not be possible to obtain
such representations globally. Thus, instead. of using a single holomorphic function A,
we use a sequence of holomorphic functions {h;}; and represent a global section v(z’, 2”")
of microfunctions with holomorphic parameters in the form of a “boundary value of a
sequence of holomorphic functions”.

To state our main definition, consider an open set U’ C R¢, an open convex cone

G’ c R?, and an open set V" C C"4. Also fix IV C R
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Definition 1.1. A sequence {h;(z)};=12,. of holomorphic functions is called a regular
sequence of holomorphic functions on U’ x V" x TV if
(1) hi(z) € O({z € (U' +iG") x V}; | Im 2’| < &;}) for some increasing sequence of open
subsets {V'}j<12,.. in V" with Uj Vi =V" and some sequence of positive numbers
{53'}]':1,2,...-

(2) bImzl—)O(hj) = blmz’——>0(hj+1) in CO(U’ X ‘/;-” X F’) fOT any ]

By definition, boundary values by, .o coincide on the common domain of defini-
tion, and give a global section in CO(U’ x V" x I'). We denote this global section by

brm 2 —0({Ps})-
In the case when we consider defining functions for second hyperfunctions, a typical

and important case for regular sequences is the one when V” and V}’ have the form

V" ={Z" e U"+iG";|Im2"| < 68}, (1.1)

V! = {2" € V";|Im2"| > 1/}, (12)
with U” some open set in R”~¢, G” an open convex cone in R*~¢, and § a positive constant.
In this case it makes sense to consider the boundary value

4 = bimsroso(brmzso({hs}7)) € B(U' x U" x T),

which we denote by b*({h;};). Note that if V” has the form (1.1) and if we are only
interested in b%({h,};) in a neighborhood of a point in ¥, we may assume that V;" has the
form (1.2) after shrinking U”, G” and ¢, and renumbering j.

Trivial examples of regular sequences are constant sequences, which define classical
second hyperfunctions. Conversely, we can show that any classical second hyperfunction
is a finite sum of boundary values of constant regular sequences.

For general second hyperfunctions, we give,

Theorem 1.2. Let u(z',2") € B} ; be a second hyperfunction defined in a neighborhood
of ¢ = (&,3";€) € £. Then there exist reqular sequences {h¥}; on a set of type

U' x (U +iG}) x ' n{ly"| < 6}
with u = Y, b2({h¥};), where U' x U" x I" is a neighborhood of ¢ and G}’s are open

convez cones in R* 2.

2 Weight functions

For an open convex cone [V C R?, we define
F:={p:R*xR"™% = R;; Vj € N,3§; > 0,3C; > 0 such that
p(€) < |€"1/7 if 1€"] < 6;1€| and | > Ci}-
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To define the Fourier inverse transform, we give a definition of spaces of functions
which will be Fourier inverse transformed into second hyperfunctions.

Definition 2.1. a) Consider some open convez cone I' C R%. We denote by M?*(I") the
space of measurable functions p : IV x R*~¢ — C such that we can find sublinear functions
£, p and ¢ € F so that

()] < exp [€(8) + (8)], if € €T, |€"] = p(€)), 1€"] < d1€|. (2.1)
b) Two functions p € M2(I") and i € M) will be called equivalent on T NT” if we
can find ¢ > 0, sublinear functions £, p', and d > 0 so that ‘

(€) - BE)| < exp[€(€) - dlg"|], V& €T'NI, €7 > P(¢), 1" < cl€’).  (2.2)

Note that there is no deep meaning in the presence of the term ¢'(£) in the exponential
in (2.2). Indeed, we can alternatively ask that for some suitable sublinear function p we
have

|u(€) = A(E)| < exp[—d¢"]], if € € TN T, |€"] > p(€"), 1€"] < cl€']-

We shall also need a corresponding space in the case of second microfunctions.

Definition 2.2. Let IY € R? and I C R™ ¢ be open convex cones. We denote by
M2V, T") the space of measurable functions p : IV x T — C such that we can find
sublinear functions £, p and ¢ € F so that (2.1) holds, if we add to it the condition
¢ € I". Moreover, two functions p € M2(I",I") and i € M2(I",T) will be called
equivalent on (I'NTY) x (" NT") if (2.2) holds if we add the condition £” € T" NI there.

3 The Fourier-inverse transform

Let I C R, I' ¢ R" be open convex cones, consider a sublinear function p : R - R
and let p: A= {£ €I xI";p(&) < |£"] < 6|¢|} — C be a measurable function. We
shall assume for simplicity, if not specified otherwise, that I and I'” are proper cones.
We assume that for some sublinear function ¢ and some ¢ € F

u(€)] < exp[(€') + (§")], £ €A,
ie., p € M*(I",I"). We can then choose §; \, 0 and C; / co so that
(€] < exp [6(¢)) + 1€"1/7] if € € A, |€"] < &;[€'], €] = C;. (3.1)

We want to give a meaning to the integral

/ exp [i(z, £)]u(€) de, (3.2)
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which, apart from a multiplicative factor (27)™™", should be the Fourier-inverse of 4. Since
the integrand u(€) exp [i{z, £)] is not L! for fixed z € R", we give instead a regularization
procedure for (3.2) in second microfunctions.

We consider the functions h; defined formally by

b = [ exp [i(z, £) (€) d€. (33)
§€A,E|<551€|
Under suitable additional assumptions h; will be holomorphic on R™ + iG; with
G =Int(I" x I N {IE"| < &,1€')",

this is e.g. the case when |u(¢)| < exp [¢(¢')] with some sublinear £. Regularization of
F~1(u) will then essentially be in classical second hyperfunctions.

However, in the general case, the domain of holomorphy of h; will be smaller and
in particular remain at some distance from the real space, due to the factor exp(|£”|/7)
in (3.1) which is of exponential growth type. To calculate reasonably large domains of
holomorphy, let us fix a vector %" € Int I+ with inferepv(y”,€"/|€"]) = 1 and consider
the sets

V; =R +i((0,9"/5) + G;), i=12,....
The integral in (3.3) is then defined for z € V; and defines an analytic function there. In
fact, we have, for any y = (0,9"/j) + ¥ with § € G;, the estimate

(9,€) 2 €"/5 +(§,€), f E e T" x I",[€"] < §[¢].

Therefore, if we fix some compact set K C G, then we obtain at first that (7,£) > cl¢|,
Vi e K,VE e IV x I, |¢"] < §;|¢|, for some ¢ > 0 which depends only on K and then
that

| exp [i(2, €)]u(€)| < exple(¢)) — (5,6)] < exp [¢(€) — cléll, §=1Imz—(0,9"/5) € K,

if £ € A, |€"] < 6;|¢|, |€] > C;. This shows that the integrand in (3.3) has an exponential
decay estimate uniformly in z on any compact set in V;.

Now define &' = IntT"L+, G” = IntT"*. Then G; includes G’ x G" and G; increases
with j. Moreover if we set V¥ = R* ¢ +iG” and V' = R**+4(3"/j + G"), we have that
V' also increases and exhausts V”, ie., V" =,V Tt follows in particular from our
discussion that the h; are holomorphic on (R?% +4G’) x V;". And we can prove

Lemma 3.1. {h;}; forms a regular sequence on (R?® +iI") x V".

Denote by u = (2)~" sp% (b*({h;};»1))- It is immediate that the second microfunction
u does not depend on the choice of the §;. This shows that u is associated directly with
i. We shall call u the Fourier-inverse of u and write |

U= .7_-—1(‘”)’
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or sometimes
-1
U = frvxrw(fl:),

if we want to make I'" and I' explicit in the notation. This F~'(u) is defined on R? x
R¢ x R*4 x R"¢, and satisfies

supp F(u) c RY x TV x R*™¢ x T7.

Note that the second hyperfunction ?({h;};>1) does not depend on the choice of 4;.
However, if in the definition of the set A, we replace p by some other sublinear function g/,
¢’ larger than p, then the regular sequence defined by (3.3) will change, and the difference
gives a non-zero contribution as a second hyperfunction. (Actually this difference belongs,
in general, to A%). This is the reason why we have defined the Fourier-inverse transform
F~1(u) as a second microfunction and not as a second hyperfunction. Also see remark
3.3 later on.

We shall also consider the corresponding situation that u € M?3(I"). In this case,
we take a covering U;=1 r{ = R™¢ consisting of open convex cones Iy c R"¢ and
decompose p into 4 = Y. u; with the p; defined on {¢€ € IV x R*%; p(¢') < |¢"| < d]¢'[},
but supported in {£” € I'j} and satisfying |u;(£)| < |u(§)|. We have then already given a
meaning to F~*(u;) and set

S
-FI:—/iRn—d(IJ’) = Z f[;ir;f(/v"j)'
Jj=1
It is easy to see that as a second microfunction (i.e., as an element in B?/.A2) on R? x
IV x R*¢, F~!(u) does not depend on the splitting of x in the form p = > i1 M-
The results in the following proposition are obvious.

Proposition 3.2. a) Assume that u € M?(I”) and that it satisfies for some sublinear
function £ and some constants c,d > O the estimate

u(€)] < exp[€(&') — dlg"l], & €T,p(¢) <€ <cl¢l.

Then F~'(u) = 0. In particular, equivalent p’s will lead to the same Fourier-inverse
transform.
b) Assume that there is an open convez cone I C R*¢ so that

u(6)] < exp [£(€) — dI€"]l,€ € TV x T, p(€') < |¢"] < cle]].

Then F~1(u) = 0 as a second microfunction on R? x R"~¢ x I x [

Remark 3.3. The main reason why in (3.3) we restrict integration to the set p(¢') <
1€"| < 6;1€'| is that (3.1) is only known to hold there. Thus a calculation of F~(u) is
considered here in second microfunctions rather than second hyperfunctions.
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When on the other hand, j is defined on a set of form {¢& € I/ xR™%; |¢"| < §|¢'|} and
satisfies |u(€)| < exp [£(€") + (€)] on that set, then we can define a regularization of the
formal integral [ exp [i{z, £)|u(€) d€ in second hyperfunctions on R™ x I in the following
way: we consider a finite collection of open conver cones I'Y C R™* with |J, Iy = R™4,
and split p into a sum of form p = >, p with p(§) =0 if ¢ I X fz, lue(€)] < |(®)]-
We are then left with the problem of regularizing F~'(uy) in second hyperfunctions, and
this will be done by considering regular sequences of form

hai(2) = / exp iz, €)] e £) dE.
[€"1 <851’}

The main new thing is here of course that we do not cut away the part |£"| < p(€') in the
domains of integration. It is easy to see that >, F~(ux) is then well-defined as a second
hyperfunction.

Also the following remark is elementary

Remark 3.4. Let p be a measurable function on T = {¢ € T" x R* % |¢"] < 6|¢'|},
0 < 6 < 00, and assume that for some sublinear function £ we have

u(€)] < exp £(¢'), VEET.

This is thus a function in M?(T), but it is also a function of the type for which one
can calculate the Fourier-inverse transform in classical hyperfunctions. Indeed, we can
calculate the Fourier-inverse F~'(u) in the following way: at first we consider the function

h(z) = /5 _explifz lule) de.

It is immediate that h is defined and analytic on the set {z € C*;Im z € IntT+}. We
can therefore set u = (21r)"b(h) where b(h) means the hyperfunctional boundary value in
first hyperfunctions.

On the other hand, we can also calculate v' = F~*(u) as a second hyperfunction. It
is then interesting to note that u' is precisely the second hyperfunction associated with u
by the immersion of microfunctions into second hyperfunctions. In fact, we can take a
decomposition p =Y, pr with supp p, C TN{¢" € T}} for open convez cones Il C I
as above, and define

ha(z) = / exp [i{z, €)1 (€) dE.
gergery

Then hy is holomorphic on R® +i(Int T+ + Int %) and each hy forms a constant reqular
sequence on R x R? x (R™? +iInt T}*), which we sum up to define u'. It follows then
immediately from the definition that these hx satisfy h =, hi on their common domain

of definition, which corresponds to the decomposition F' =3 . F; in (0.1).
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In the sequel a function p : F' — C, F open in C", shall be called almost analytic, if
there is a constant d > 0 and a sublinear ¢, so that

10u(¢)] < exp [e(Re (") — d|Re(”|) for ¢ € F.

Now we mention the following result of Paley-Wiener type (for a related result in
distributions, cf. proposition 2.1.15 in [4]):

Theorem 3.5. Consider IV, T”, p, as above and let p: A — C be a function with the
following properties:

(1) ()| < exp [£(£) + ()], V€ € 4,

(2) there exists a sublinear function p and an almost analytic extension of u to a set of

form:
F={¢eC%|Im¢| < c|Re¢"|,Re¢ € I’ x I, p(Re (') < |Re¢”| < 8| Re('[}

such that
[u(Q)] < exp[¢(Re(’) + p(Re() + €| Im(]], on F.

Then F~Y(u) =0 C*(|z| > ¢, € Int IV x Int T).

Remark 3.6. We also note that our Fourier inverse transforms satisfy
FH(&kp) = (—10/ 0z ) F (1)

and
—izeF () = FH((8/ 8¢ 1)

under suitable assumptions, for example, the differentiability with respect to & and the
growth of the derivative for the latter formula.
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