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Abstract

We consider singular Cauchy problems for quasilinear equa-
tions of second order, and show that the solution is holomorphic
outside of two characteristic hypersurfaces. The characteristic
hypersurfaces themselves may have singularities, and the solu-
tion is described in terms of monoidal transformation.

1 Introduction
In this article we consider singular Cauchy problems for quasilinear
equations of second order. We investigate a particular phenomenon of
quasilinear problems.

Let $x=(x_{1}, x’)$ $=(x_{1}, x_{2}, x’)\in X=\mathrm{C}^{n}$ , and $D=\partial/\partial x$ . We
define $Z=\{x_{1}=x_{2}=0\}\subset \mathrm{Y}=\{x_{1}=0\}\subset X.$ We consider a
quasilinear operator

$Fu= \sum_{|\alpha|=2}F_{\alpha}(x, u, /u))D^{\alpha}u+f(x, u, \nabla u)$

in a neighborhood $\omega$
$\subset \mathrm{C}^{n}$ of the origin. We consider the following

Cauchy problem:

(1) $Fu=0,$ $u(0, x’)=u_{0}(x’)$ , $D_{1}u(0, x’)=u_{1}(x’)$ .

Let $\omega_{\mathrm{Y}}=\omega$
$\cap \mathrm{Y}$, $\omega_{Z}=\omega$ $\cap Z.$ We assume that the initial values are

holomorphic on the universal covering space $\mathcal{R}(\omega_{Y}\mathrm{z}Z)$ of $\omega_{Y}\backslash Z$ . We
assume the following conditions.
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First, $Y$ is a noncharacteristic hypersurface, and $F_{\alpha}$ do not depend
on $/u$ :

(2) $\{\begin{array}{l}F_{(2,0,\cdots,0)}=\mathrm{l}F_{\alpha}=F_{\alpha}(x,u’)\in \mathcal{O}_{\mathrm{C}^{n+1},(0,u^{\mathrm{o}})}f(x,u_{\mathrm{J}}p)\in O_{\mathrm{C}^{2n+1},(0,u^{\mathrm{o}},p^{\mathrm{o}})}\end{array}$

Here $\mathcal{O}$ denotes the sheaf of holomorphic functions, and $\mathit{1}^{\mathrm{O}}\in \mathrm{C}$ , $p^{\mathrm{o}}\in$

$\mathrm{C}^{n}$ are fixed points which we shall naturally determine from the initial
values later. Let us define the principal symbol a2 $(F)(x, u;\xi)$ by

$\sigma_{2}(F)(x, u;\xi)=\sum_{|\alpha|=2}F_{\alpha}(x, u)\xi^{\alpha}-$

We next assume that the characteristic roots are polynomials of $\xi$ :

(3) $\{\begin{array}{l}\sigma_{2}(F)(x,u\cdot,\xi)=\lambda_{1}(x,u\cdot.\xi)\lambda_{2}(x,u\cdot,\xi)\lambda_{i}(x,u\cdot,\xi)=\sum_{1\leq j\leq n}\lambda_{ij}(x,u)\xi_{j}\in \mathcal{O}_{\mathrm{C}^{2n+1},(0,u^{\mathrm{o}},0)}\lambda_{i1}=\mathrm{l}\end{array}$

We also assume that the characteristic roots are separate in the direc-
tion $\xi$ $=(0,$ 1, 0, $\cdot$ : , 0 $)$ :

(4) $\lambda_{12}(0, u^{\mathrm{o}})\neq\lambda_{22}(0,u^{\mathrm{o}})$ .

Finally we assume that the initial values satisfy

(5) $|D\alpha’u_{j}(x’)$ $|\leq\exists M$ , if $x’\in\omega_{Y}\backslash Z$ , $j+|$ cx$’|\leq 2.$

Under these assumptions, we want to solve (1), and study the propa-
gation of the singularities. Roughly speaking, we can solve (1) outside
of two characteristic hypersurfaces, but we must take some difficulties
into account.
Remark. Let $j+|\mathrm{C}\mathrm{h}’|\leq 1.$ We have

$D^{\alpha’}u_{j}(x’)= \int_{\epsilon}^{x_{2}}D^{\alpha’}D_{2}u_{j}(\tau, x’)d\tau+D^{\alpha’}u_{j}(\epsilon, x’)$

for small $\epsilon>0.$ Here we can let $x_{2}arrow 0,$ and we can define

$D^{\alpha’}u_{j}(0, x’)= \lim_{x_{2}arrow 0}D^{\alpha’}u_{j}(x’)\in \mathcal{O}(\omega_{Z})$ .
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Then we have $|D\alpha’$ ? $j(x’)-D^{\alpha’}u_{j}(0, x’’)|\leq 3M|x_{2}|$ . We define $u^{\mathrm{o}}=$

$u(0)$ , $p^{\mathrm{o}}=$ Vu(O) in this sense.

Let us briefly review the results for linear problems and semilinear
problems. If $Fu$ is linear, there are many papers studying this problem.
We only refer to $[1, 6]$ , where the reader can find further references. In
this case the characteristic roots Ai, $\lambda_{2}$ are independent of $u$ , and we
can define the characteristic functions $\varphi 1(x)$ , $\varphi \mathrm{u}(\mathrm{x})$ by

$\sum_{1\leq j\leq n}\lambda_{ij}(x)D_{j}\varphi_{i}(x)=0$
, $/’ \mathrm{n}(0, x’)=x_{2}$ ,

and the characteristic hypersufaces $Z_{1}$ , $Z_{2}$ through $Z$ by $Z_{\dot{l}}=\{x\in$

$\omega$ ;Wi(x) $=0\}$ . Under the above assumptions $(2)-(5)$ applied for a
linear operator, it is known that there exists a unique solution $u(x)\in$

$\mathcal{O}(\mathcal{R}(\omega\backslash 2_{1}))$ $+\mathcal{O}(\mathcal{R}(\omega\backslash Z_{2}))$ , shrinking $\omega$ if necessary.
Semilinear problems were studied by E. Leichtnam [3]. In this case

the principal part is linear, and we can define Zi, $Z_{2}$ in the same way
as linear equations. We need to solve the problem in a function space
which is closed under nonlinear calculation. Since the above function
space $\mathcal{O}(\mathcal{R}(\omega \mathrm{z}Z_{1}))+\mathcal{O}(\mathcal{R}(\omega \mathrm{z}Z_{2}))$ does not enjoy this property, we
consider $\mathcal{O}(\mathcal{R}(\omega\backslash Z_{1\mathrm{S}}Z_{2}))$ instead. Leichtnam proved that there exists
a unique solution $u(x)\in \mathcal{O}(\mathcal{R}(\omega\backslash Z_{1}\backslash Z_{2}))$ .

Let us consider quasilinear problems. This case contains essen-
tial differences from the above cases, and we need a completely new
method. Let us point out two differences between quasilinear problems
and (semi)linear problems.

The first difference is as follows. In the above cases,

(a) We first determine the characteristic hypersurfaces $\underline{Z_{1},Z_{2}}$ from
the principal symbol as above.

(b) We next find a solution outside of $\underline{Z_{1},Z_{2}}$.

However, in quasilinear problems we have

(c) The princip$\mathrm{a}1$ symbol depends on the $\underline{\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}}$,

in addition. Therefore $(\mathrm{a})-(\mathrm{c})$ constitute a circular reasoning, and we
cannot determine none of $Z_{1}$ , $Z_{2}$ , $u$ in this way.
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Secondly, in quasilinear problems the characteristic functions $\varphi_{i}$

themselves may be singular. Of course they are holomorphic functions
in (semi)linear problems. We shall later give examples which explain
this.

To overcome these two difficulties, we use monoidal transformation
$Z\tilde{X}$ of $X$ with center $Z$ . Monoidal transformation was introduced in [2]
in order to consider a linear equation $Fu=g(x)$ for $g(x)\in \mathcal{O}(\mathcal{R}(\omega \mathrm{s}$

$Z_{1}\backslash Z_{2}))$ , and the generalization to higher order equations. It was used
to simplify the geometry of $\omega$ $\backslash Z_{1}2$ $Z_{2}$ in [2]. We shall employ this
method to resolve the above situation.
Remark. A. Nabaji and C. Wagschal $[4, 5]$ considered similar prob-
lems for quasilinear equations. However, he did not consider general
Cauchy problems. In general the solution should be singular along two
hypersurfaces Zi, $Z_{2}$ . However, sometimes the solution may be singular
along one of $Z_{1}$ , $Z_{2}$ alone, which was studied in $[4, 5]$ . In such a case
the two difficulties mentioned above do not appear. For example, if the
solution is singular along both $Z_{1}$ and $Z_{2}$ , then these two singularities
cause interference one another, and the characteristic functions /1 , $f2$

may become singular. This phenomenon is our main interest, which
was not treated by $[4, 5]$ .

2 Main result
In order to introduce monoidal transformation, we prepare some nota-
tions. We define the linearized characteristic roots $\lambda_{i}^{\mathrm{o}}$ by $\lambda_{i}^{\mathrm{o}}(\xi_{1}, \xi_{2})$ $=$

$\xi_{1}+\lambda_{i2}(0, u^{\mathrm{o}})\xi_{2}$ , and the linearized characteristic functions $y_{1}$ , $y_{2}$ by
$y_{i}$ $=x_{2}-\lambda_{i}^{\mathrm{o}}x_{1}$ . Let $y$ $=(y_{1}, y_{2}, y’’)=(y_{1}, y_{2}, x’)$ and $\omega_{i}=\{x\in$

$\omega;|y_{\mathrm{i}}|>\epsilon|$ $(y_{1}, y_{2})|\}$ for a small $\epsilon$ $>0.$ From (4) we have $dy_{1}\wedge dy_{2}\neq 0$

and $Z=\{y_{1}=y_{2}=0\}$ .
Remark. We explain our basic strategy. Roughly speaking, ) 3 is an
approximation of Aj, and $y_{i}$ is a characteristic function corresponding
to )7. As we have seen, we cannot determine the characteristic function
$\varphi_{i}$ in the usual way. But we can expect that $y_{i}$ is an $\mathrm{a}\mathrm{p}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{x}\mathrm{i}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\backslash$ of
$\varphi_{i}$ , as long as $\lambda_{i}^{\mathrm{o}}$ is not widely different from $\lambda_{i}$ . Therefore we can also
expect that the characteristic hypersurface $Z_{i}$ (which we cannot deter-
mine immediately) should be contained in $Z_{i}’=\omega\backslash \omega_{i}$ , whatever the
solution may be. In other words, we cannot determine $Z_{i}$ themselves,



$4\theta$

but we can determine their conoidal neighborhoods $Z_{i}’$ in the sense of
monoidal transformation.

Let us see how we can solve (1) by means of this notion. Omitting
the universal covering, we want to solve (1) on $\omega \mathrm{s}$ $2\mathrm{j}_{1}\backslash Z_{2}$ . However, if
$Z_{i}\subset Z_{i}’$ is true, we have

$\omega\backslash Z_{1}\mathrm{z}$ $Z_{2}=$ (cp $\backslash Z_{1}s$ $Z_{2}’$ ) $\cup$ (cp $\mathrm{Z}$ $Z_{1}’$
$2$

$2\mathrm{r}_{2}$ )

(See Figure 1).

$y_{2}$

$y_{1}$

Figure 1: monoidal transformation

Therefore we may solve (1) on $X_{1}=\omega$ $\mathrm{s}$ $Z_{1}\backslash Z_{2}’=\omega_{2}\backslash Z_{1}$ and
$X_{2}=\omega\backslash Z_{1}’\mathrm{s}$ $Z_{2}=\omega_{1}\mathrm{z}$ $27_{2}$ individually. In fact if $u^{i}(x)\in \mathcal{O}(X_{\dot{1}})$ satisfy
(1), we have $u^{1}=u^{2}$ on $X_{1}\cap X_{2}$ , due to the uniqueness of the Cauchy
problem on $X_{1}\cap X_{2}$ . Therefore we need to solve (1) on $X_{1}\subset\omega_{2}$ for
example, which we shall realize.

Now let us give the precise statement of the main result. Let $\pi_{2}$ :
$\mathcal{R}(\omega_{2})arrow\omega_{2}$ be the natural projection. Let $ii$ $\in \mathcal{R}(\omega_{2})$ and $\pi_{2}(\tilde{y})=$

$y\in\omega_{2}$ . Since we may regard $\mathcal{R}(\mathrm{c}\omega_{2})$
$\subset \mathrm{C}\cross \mathcal{R}(\mathrm{C}\backslash \{0\})\cross \mathrm{C}^{n-2}$ ,

we may write $\tilde{y}=$ $(\tilde{y}_{1}, \cdot\cdot\tilde{y}_{n})\in \mathrm{C}\cross \mathcal{R}(\mathrm{C}\backslash \{0\})\cross \mathrm{C}^{n-2}$, therefore
$\tilde{y}_{j}=y_{j}$

$\in \mathrm{C}$ if $j\neq 2.$ We define $|\tilde{y}_{j}|=|y_{j}|$ for every $j$ . Let $\mathrm{j}\mathrm{j}^{\mathrm{o}}\in R(\omega_{2})$

be a point such that $\pi_{2}(\tilde{y}^{\mathrm{o}})=(0, r, 0, , 0)\in\omega_{2}\mathrm{w}\mathrm{i}\mathrm{t}_{1}\mathrm{h}$ small $r>0.$

We define $\arg\tilde{y}_{2}$ for jj $\in \mathcal{R}(\omega_{2})$ in such a way that $\arg\tilde{y}_{2}^{\mathrm{o}}=0$ and
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$y_{2}$ $=|\tilde{y}_{2}|$ $\exp(\sqrt{-1}\arg\tilde{y}_{2})$ for $y$ $=\pi_{2}(\tilde{y})$ . Since $\tilde{y}$ is determined by
$J\mathit{7}$

$=\pi_{2}(\tilde{y})$ and $\theta=\arg\tilde{y}_{2}$ , we denote $\tilde{y}$ also by $y^{\theta}$ and sometimes
simply by $y$ , if confusion is not likely. Using the $x$ variables, we denote
the same point by $x^{\theta}$ or simply by $x$ .

In the following theorem, we shall define a characteristic function
$\varphi_{1}=y\mathrm{x}$ $-\varphi_{1}’(y’)\mathrm{E}$ $\mathcal{O}(\mathcal{R}(\omega_{2}))$ corresponding to $\lambda_{1}$ . Let

$Z_{1}=\{\tilde{x}\in \mathcal{R}(\omega_{2});y_{1}=\varphi’(y’)\}$

and
$\omega_{2}’=\mathcal{R}(\omega_{2})\backslash Z_{1}$ .

Let $\pi_{2}’$ : $\mathrm{q}(\omega \mathrm{S})$ $arrow\omega_{2}$ be the composition of the natural projections
from $\mathcal{R}(\omega_{2}’)$ to $\omega_{2}’\subset \mathcal{R}(\omega_{2})$ and from $\mathcal{R}(\omega_{2})$ to $\omega_{2}$ . if $i\in \mathcal{R}(\omega_{2}’)$ , then
we can define $\theta_{1}=\arg(y_{1}-\varphi_{1}’(y’))$ and $\theta_{2}=\arg y_{2}$ as before. In this
case $\tilde{y}\in \mathcal{R}(\omega_{2}’)$ is determined by $y=\pi_{2}’(\tilde{y})$ and $\theta_{1}$ , $\theta_{2}$ , therefore we
denote $\tilde{y}$ also by $y^{\theta_{1},\theta_{2}}$ or by $y$ . Using the $x$ variables, we denote the
same point by $x^{\theta_{1},\theta_{2}}$ or by $x$ . Then we have the following

Theorem 1. We assume $(2)-(5)$ . There exists a holomorphic function
$\mathrm{f}" \mathrm{r}$ $(y’)$ on $\mathcal{R}(\omega_{2})$ , and for any small $\Xi$ $>0$ there exists a unique solution
$u(x)$ of (1) on

$\omega_{2}^{\prime/}=$ $\{x^{\theta_{1},\theta_{2}}\in \mathcal{R}(\omega_{2}’);|\theta_{1} -\theta_{2}|<1/\epsilon\}$,

shrinking $\omega$ if necessary. Here $\omega_{2}’$ is defined as above. Furthermore, $Z_{1}$

is a characteristic hypersurface through $Z$ corresponding to $\lambda_{1}$ (and to
the present solution $u$), in the following sense: We can define $u(x)$ $|_{Z_{1}}=$

$\lim_{y_{1}arrow\varphi_{1}(y)},,u(x)$ and $\varphi_{1}’(0, y’’)=\lim_{y_{2}arrow 0}\varphi_{1}’(y’)$ , and we have

$\{\lambda_{1}(x, u(x), D_{x})(y_{1}-\varphi_{1}’(y’))\}|_{Z_{1}}=0,$

$\mathrm{f}\mathrm{S}(0, y^{\prime/})=0.$

3 Examples
Here we give two examples. The first one does not satisfy assump-
tion (2), but in this example we can evidently see what happens in
quasilinear problems. The second one satisfies all the assumptions.
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Example 1. Let $n=2$ and consider

(6) $\{\begin{array}{l}u(0,x_{2})=x_{22}+q(x_{2}+cx_{2}^{q})^{q}Fu=D_{1}^{2}u-\frac{D_{1}u}{+cxD_{2}u}D_{\mathrm{l}}D_{2}u--0D_{1}u(0,x_{2})=1+q(x_{2}+cx_{2}^{q})^{q-1}\end{array}$

for $2<q\in \mathrm{R}\backslash$ Z. Here $F_{(1,1)}(x, u,p)=p_{1}/p_{2}$ , which does not satisfy
assumption (2). Note that the initial values belong to $\mathcal{O}(\mathcal{R}(\omega_{Y}\mathrm{z}Z))$

for small $\omega$ , because we have

$(x_{2}+cx_{2}^{q})^{q}=x_{2}^{q}($

$=x_{2}^{q}\{$

$1+cx_{2}^{q-1})^{q}$

$1+cqx_{2}^{q-1}+ \frac{c^{2}q(q-1)}{2}x\mathit{2}^{(q-1)}$ $+$ $)$

$\in \mathcal{O}(\mathcal{R}(\omega_{Y}\backslash Z))$ ,

for example. Let $h(x)=x_{1}+x_{2}+cx_{2}^{q}$ . We can directly see that
$u=h+h^{q}$ is a unique solution of (6).

Let us rewrite this in terms of our general result. The characteristic
roots are

$\lambda_{1}=\xi_{1}-p_{1}\xi_{2}/p_{2}$ , $\lambda_{2}=\xi_{1}$ .

Here we modify the definition of )$3$ by $\lambda_{i}^{\mathrm{o}}=\lambda_{i}|_{x=0,u=u^{\circ},p=p^{\circ}}$ , and from
the initial values in (6) we have $u^{\mathrm{o}}=0,p^{\mathrm{o}}=$ $(1, 1)$ . It follows that

$\lambda_{1}^{\mathrm{o}}=\xi_{1}-52,$ $\lambda_{2}^{\mathrm{o}}=\xi_{1}$ , $y_{1}=x_{2}+x_{1}$ , $y_{2}=x_{2}$ .

Therefore we have
$\omega_{1}=$ {x $\in\omega;|x2+x_{1}|>\epsilon|(x_{2}+x_{1},x_{2})|\}$ ,
$\omega_{2}=\{x\in\omega;|x_{2}|>\epsilon|(x_{2}+x_{1},x_{2})|\}$ .

Let us consider the above solution $u=h(x)+h(x)^{q}$ in $\mathcal{R}(\omega_{2})$ . $\ln$

this domain $x_{2}^{q}$ is a holomorphic function and we do not discuss of such
a singularity. This solution $u$ has a singularity along the hypersurface
$2\mathrm{j}_{1}=\{x\in \mathcal{R}(\omega_{2});x_{1}+x_{2}=\varphi_{1}’(x_{2})\}$ , where $\varphi_{1}’=-\mathrm{c}\mathrm{z}_{2}^{q}\in \mathcal{O}(\mathcal{R}(\omega_{2}))$ .
It follows that $u\in O(\mathcal{R}(\mathcal{R}(\omega_{2})\backslash Z_{1}))$ .

We next consider in $\mathcal{R}(\omega_{1})$ . We have

$(x_{1}+x_{2}+$

$=(x_{1}+x_{2})^{q}$

$=(x_{1}+x_{2})^{q}\{$

$cx_{2}^{q})^{q}$

$(1$ $+ \frac{cx_{2}^{q}}{x_{1}+x_{2}})^{q}$

$1+q \frac{cx_{2}^{q}}{x_{1}+x_{2}}+\frac{q(q-1)}{2}(\frac{cx_{2}^{q}}{x_{1}+x_{2}})^{2}+\cdot$ . $\}$



52

which is convergent in $\mathcal{R}(\omega_{1})$ . Here $(x_{1}+x_{2})^{q}$ and $1/(x_{1}+x_{2})$ are
holomorphic, and the solution has a singularity along the hypersurface

$Z_{2}=\{x\in \mathcal{R}(\omega_{1});x_{2}=\varphi_{2}’(x_{1}+x_{2})\}$ ,

where $\mathrm{j}\mathrm{x}$ $=0.$ This means $u\in \mathcal{O}(\mathcal{R}(\mathcal{R}(\omega_{1})\mathrm{s}Z_{2}))$ . In this way we
can discuss the two singularities along $Z_{1}$ , $Z_{2}$ separately by monoidal
transformation.

Example 2. Let $n=2$ and consider

(7) $\{\begin{array}{l}Fu=D_{1}^{2}u-\frac{\mathrm{l}}{1+u}D_{1} D_{2}u+\frac{\mathrm{l}}{\mathrm{l}+u}(D_{1}u)^{2}=0u(0,x_{2})=0D_{1}u(0,x_{2})=x_{2}^{q}\end{array}$

for $1<q\in \mathrm{R}\backslash$ Z. We have $u^{\mathrm{o}}=0$ and
$\lambda_{1}=\xi_{1}+\xi_{2}/(\mathrm{I}+u)$ , $\lambda_{2}=\xi_{1}$ ,

$y_{1}=x_{2}-x_{1}\lambda_{1}^{\mathrm{o}}=\xi_{1}+\xi_{2},$

,
$y_{2}=x_{2}\lambda_{2}^{\mathrm{o}}=\xi_{1}$ ,.

It follows that
$\omega_{1}=$ {x $\in\omega;|x_{2}-x_{1}|>\mathrm{a}|(\mathrm{L}_{2} -, x_{2})|\}$ ,
$\omega_{2}=\{x\in\omega;|x_{2}|>\epsilon|(x_{2}-x_{1},x_{2})|\}$ .

In this case we cannot immediately obtain the solution, but after some
calculation we can prove the following results. We define

$Z_{1}=$ {x $\in \mathcal{R}(\omega_{2});x_{2}-x_{1}= \mathrm{p}_{1}’(x_{2})\}$ ,
$Z_{2}=$ {x $\in \mathcal{R}(\omega_{1});x_{2}=\varphi 2(x_{2}-x_{1})\}$

where $\mathrm{j}"$) $=x_{2}^{q+2}/(q+1)(q+2)$ , $\mathrm{f}\mathrm{z}$ $=0.$ There exists
$h(x)\in \mathcal{O}(\mathcal{R}(\mathcal{R}(\omega_{2})\backslash Z_{1}))$ satisfying $|h|\leq 1/2$ such that we have a
solution of (7) of the form

$u(x)= \frac{(1+h(x))(x_{2}-x_{1}-\varphi_{1}’(x_{2}))^{q+1}-x_{2}^{q+1}}{q+1}$.

Let us consider in $\omega_{1}$ . As before, $(x_{2}-x_{1}-?’1)^{q+1}$ is singular, $x_{2}^{q+1}$ is
regular in $\omega_{1}$ , and $h$ is singular but small. Therefore tz has a singularity
along $Z_{1}\subset R(\omega_{2})$ , mainly caused by $(x_{2}-x_{1}-\varphi_{1}’)^{q+1}$ . Therefore
we have $u$ (x) $)\in \mathcal{O}(\mathcal{R}(\mathcal{R}(\omega_{2})\backslash Z_{1}))$ . Similarly we can prove $u(x)$ $\in$

$\mathcal{O}(\mathcal{R}(\mathcal{R}(\omega_{1})\backslash Z_{2}))$ .
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4 Sketch of the proof
By a holomorphic transformation around the origin, we may assume
that $\lambda_{1j}(x, u_{0}(0, x’))=0$ for $2\leq j\leq n.$

Let us determine $Z_{1}\subset R(\omega_{2})$ and solve (1) in $\omega_{2}’\subset \mathcal{R}(\mathcal{R}(\omega_{2})\backslash$

$\mathrm{y}_{1})$ . The principal part is divided into two characteristic components
$\lambda_{1}(x, u, D_{x})$ and $\lambda_{2}(x, u, D_{x})$ . Roughly speaking, $\lambda_{i}(x, u, D_{x})$ corre-
sponds to the characteristic hypersurface $Z_{i}$ , but we have deleted a
neighborhood 64 of $Z_{2}$ and we consider (1) in $\mathcal{R}(\omega_{2})=7’(\mathrm{c}\omega\backslash Z_{2}’)$ .
On the initial hypersurface $\mathrm{Y}$ the singularity existed on $Z$ , therefore
A2(x, $u$ , $D_{x}$ ) does not make such singularity propagate toward any di-
rections in $\omega_{2}$ . In this sense, $\lambda_{2}(x, u, D_{x})$ has nothing to do with the
singularity propagation in this domain, and we can expect that the
propagation is caused by Ai $(x, u, D_{x})$ alone, from $Z\subset Y$ into some di-
rection $Z_{1}$ . Applying the Hamilton-Jacobi method of first order equa-
tions to $\lambda_{1}(x, u, D_{x})$ , we can simultaneously determine the characteris-
tic hypersurface $Z_{1}$ and the solution $u$ .

Let $x=x$(t) and $u=u(\mathrm{t})$ be expressed by complex parameters
$\mathrm{t}$ $=$ $(\mathrm{t}_{1}, \cdot \mathrm{r} , \mathrm{t}_{n})$ . We require that they satisfy the characteristic system
defined by $\lambda_{1}(x, u, D_{x})=\sum_{1\leq j\leq n}\lambda_{1j}(x, u)D_{x_{j}}$

:

(8) $\{\begin{array}{l}D_{t_{1}}x_{j}(t)=\lambda_{1j}(x(\mathrm{t}),u(\mathrm{t}))x_{1}(0,\mathrm{t},)=0x_{j}(0,t’)=t_{j}\end{array}$ $1\leq j\leq n2\leq j\leq n’$

.

Since $\lambda_{11}=$ 1, we have $x_{1}=\mathrm{t}_{1}$ . We also need to rewrite $Fu$ in $\mathrm{t}$

variables. Let $C_{ij}(\mathrm{t})=\partial x_{i}/\partial \mathrm{t}j-\delta_{ij}$ and $C(\mathrm{t})=(C_{ij}(\mathrm{t});1\leq i,j\leq n)$ .
We also require

(9) $|C_{ij}|$ $<1/2n$ .

Then we have $\partial x/\partial \mathrm{t}=I_{n}+C.$ It follows that $\partial \mathrm{t}/\partial x=(\partial x/\partial t)^{-1}=$

$\sum C^{k}=C’=(C_{ij}’;1\leq i,j\leq n)$ and $D_{x_{j}}= \sum_{1\leq i<n}C_{ij}’D_{t}.\cdot$
. from now

$0\leq k<\infty$

on, we regard $C$, $C’$ as functions of $Vtx$ $=\partial x/\partial \mathrm{t}$ . $\overline{\mathrm{W}}$e have

$\lambda_{1}(x, u, D_{x})=$ $D_{t_{1}}$ ,
$\lambda_{2}(x, u, D_{x})=$ I $\lambda_{2j}(x, u)D_{x_{\mathrm{j}}}$

$=$ $\sum_{1\leq i,j\leq n}^{1\leq j\leq n}\lambda_{2j}(x, u)C:_{j}(\nabla_{t}x)D_{t}.\cdot$ .
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Let

$u=$
$\sum_{|\alpha|=2}F_{\alpha}(x, u, \mathit{7}u)D’ u+f(x, u, \mathit{7}_{x}u)$

$=$ A2 $(x, u, D_{x})(\lambda_{1}(x, u, !)_{x})u)$ $+$ $\mathrm{g}\{\mathrm{x}$ , $u$ , $\nabla_{x}u$).

We regard

$\mathit{7}_{x}u={}^{t}(D_{x_{1}}u, \cdot\cdot, D_{x_{n}}u)=tC’(\nabla tx)^{t}(D_{t_{1}}u, \cdot , D_{t_{n}}u)$ ,

and we have

$Fu=$
$\sum_{1\leq i,j\leq n}\lambda_{2j}(x(\mathrm{t}), u(\mathrm{t}))C_{ij}’(\nabla_{t}x)D_{t}.\cdot D_{t_{1}}u(\mathrm{t})$

$+g(x, u, ;_{t}x, \nabla_{t}u)$

$=$
$\sum_{1\leq i\leq n}G_{i}(x, u, \nabla_{t}x)D_{t}D_{t_{1}}u(:\mathrm{t})+g$

( $x$ , $u$ , Vtx, $\nabla_{t}u$)

$=$ $Gu(\mathrm{t})$ ,

where
$G_{i}(x, u, \mathit{7}_{t}x)=\sum_{1\leq j\leq n}\mathrm{X}_{2j}\mathrm{G}x(\mathrm{t})$

, $u(\mathrm{t}))C_{ij}’(\nabla_{t}x)$ . Therefore we need

to solve

(10) $Gu(\mathrm{t})=0,$ $u(0, \mathrm{t}’)=v_{0}(\mathrm{t}’)$ , $D_{t_{1}}u(0, \mathrm{t}’)=v_{1}(\mathrm{t}’)$ ,

where $v_{0}$ , $v_{1}$ are naturally defined by $u_{0}$ , $u_{1}$ :

$v_{0}(\mathrm{t}’)=u_{0}(\mathrm{t}’)$ ,
$v_{1}( \mathrm{t}’)=u_{1}(\mathrm{t}’)+\sum_{2\leq j\leq n}\lambda_{1j}(0,\mathrm{t}’,u_{0}(\mathrm{t}’))D_{t_{j}}u_{0}(\mathrm{t}’)$

.

We need to solve (8) and (10) under the assumption (9). We emphasize
again that $\lambda_{2}$ is not an important operator, and we have transformed
the important operator $\lambda_{1}$ into $D_{t_{1}}$ . $D_{t_{1}}$ alone propagates the singu-
larity in the present domain. Therefore we can easily investigate the
propagation of the singularity, using $\mathrm{t}$ variables. By an elementary
calculation, we can prove the following fact.

Let $\lambda_{22}^{\mathrm{o}}=\lambda_{22}(0, u^{\mathrm{o}})$ . If $1<<a<<1/R$ , we define

$\Omega_{0}(R)=$ $\{\mathrm{t}$ $\in \mathrm{C}^{n};|\mathrm{t}_{2}|<a|\mathrm{t}_{2}-$ $\lambda_{22}^{\mathrm{o}}\mathrm{t}_{1}1$

$|\mathrm{t}_{2}-\lambda_{22}^{\mathrm{o}}\mathrm{t}_{1}|<R,$ $|\mathrm{t}_{j}|$ $<R(2\leq j\leq n)\}$ ,
$\Omega_{1}(a, R)$ $=$ $\{\mathrm{t} : \Omega_{0}(R);\mathrm{t}_{2}\neq 0\}$ .
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$\Omega_{0}(R)$ corresponds to $\omega_{2}$ , and $\{\mathrm{t}_{2}=0\}$ corresponds to $Z_{1}$ in the
base space, using $\mathrm{t}$ variables. Let $\pi 0$ : $\mathcal{R}(\Omega_{0}(R))arrow\Omega_{0}(R)$ and
$\pi_{1}$ : $\mathcal{R}(\Omega_{1}(a, R))arrow\Omega_{1}(a, R)$ be the natural projections. An arbitrary

point $\tilde{t}\in \mathcal{R}(\Omega_{0}(R))$ is determined by $\mathrm{t}=\pi_{0}(\tilde{\mathrm{t}})$ and $\theta=\arg(t_{2}- \lambda_{22}^{\mathrm{o}}\mathrm{t}_{1})$

as before, therefore we denote $\tilde{\mathrm{t}}$ by $\mathrm{t}^{\theta}$ or $\mathrm{t}$ . An arbitrary point $\tilde{\mathrm{t}}\in$

$\mathcal{R}(\Omega_{1}(R))$ is determined by $\mathrm{t}=\pi_{1}(\tilde{\mathrm{t}})$ and $\theta_{1}=\arg(\mathrm{t}_{2}-\lambda_{22}^{\mathrm{o}}\mathrm{t}_{1})$ , $\theta_{2}=$

$\arg \mathrm{t}_{2}$ , therefore we denote $\tilde{\mathrm{t}}$ by $t^{\theta_{1},\theta_{2}}$ or $t$ . We finally define
$\Omega_{2}(a,R)=\{\mathrm{t}^{\theta_{1},\theta_{2}}\mathrm{E}$ $\mathcal{R}(\Omega_{1}(a,R));|’ 1^{-\theta_{2}|<a\}}$

Then we have the following

Proposition 1. Let $a$ be a large number (It may be as large as we
wish). Then choosing a small $R>0_{f}$ there exists a unique solution
$x(\mathrm{t})$ , $u(\mathrm{t})$ of (8) and (10) satisfying (9).

In order to prove Theorem 1, we change the variables from $\mathrm{t}$ to $x$ .

Since $u(\mathrm{t})$ is defined for $\mathrm{t}$ $\in\Omega_{2}(a, R)$ , it is determined in the image
$\{x(\mathrm{t});\mathrm{t} \in\Omega_{2}(a, R)\}$ of $\Omega_{2}(a, R)$ , as a function of $x$ . We can prove that
$\omega_{2}’$ is a subset of this image.

References
[1] Y. Hamada, The singularities of the solution of the Ccruchy prove

lem, Publ. ${\rm Res}$ . Inst. Math. Sci., Kyoto Univ., 5 (1969), 21-40.

[2] E. Leichtnam, Le probleme de Cauchy ramifie, Ann. Sci. Ec. Norm.
Sup., 23 (1990), 369-443.

[3] E. Leichtnam, Le probleme de Cauchy ramifie, semi-lin\’eaire d ’ordre
deux, Ann. Sci. Ec. Norm. Sup., 24 (1991), 189-214.

[4] A. Nabaji, Construction de solutions singuli\‘eres pour des

op\’erateurs quasi-liniaires, Bull Sci. Math., 119 (1995), 509-527.
21-40.

[5] A. Nabaji and C. Wagschal, Singularity \‘a croissance lentes, J.
Math. Pures Appl., 72 (1993), 335-375.

[6] C. Wagschal, Probleme de Cauchy analytique, J. Math. Pures
Appl., 51 (1972), 375-397. 21-40.


