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1 Introduction

In this note we give a simple proof of Fefferman-Phong inequality by means of Wick calculus,
instead of FBI operator discussed by Tataru[T]. Recently, the Wick calculus has been used by the
first author in [L2, L3], treating irregular symbols which appear in the local solvability problem for
pseudo-differential operators of principal type. As a generalization of the product formula given
there, Ando and the second author [AM] have given a full expansion formula as follows (similar to
that of Weyl pseudo-differential operators):

) ' wi 1 1 Wick
aWtckazck = (ab) ek 5 (a’ Y - ?{a’ b}) N

(1.1)

Wick

k
1k [ [ & Hx,
+(2k ;21 > 0x,0z,+ Txaz,-) a(X)b(Z) foen,
! =

Z=X
where, for a(z,£) = a(X), (X € RZ x R?), we define a¥ick = aWi*(z, D)) on L?(R™) by

(1.2) aVik(z, D)u(z) = (W*a*Wu)(z) for ue L*R™).
Here (Wu)(Y) = (Wu)(y,n) is a windowed Fourier transform of u € L?(R") defined by

W) = [ F@uleds 0¥(@) = oz~ ),

with a Gauss function g = (473)~™4exp(—|z|?/2) ,

a* is the multiplication operator by a(Y) on L2(R?") and W* is the adjoint operator of W. The
formal expansion formula (1.1) seems to be known for polynomial symbols since the Wick calculus
is classical and has a long history(cf., [S]). In fact, it is not difficult to obtain (1.1) in formal
arguments because the Wick operators can be converted to the Weyl pseudo-differential operators
and one may apply the product formula ( in p.155 of [H]) of Weyl calculus *. However our interest
here is to estimate the remainder term in the frame of Wick operators, yielding a variant of Bony’s
proof [B] of the Fefferman-Phong inequality.

Though our methods can be applied to the expansion formula of any order, for the brevity we
confine ourselves to the one of first order in what follows:

*see the last paragraph of Section 2.



Proposition 1.1. If a(X),b(X) and those derivatives belong to L™ then we have

— 1 1 Wick
achkazck =(ab —_ '2'(1, - b, + ﬂ'{a, b}) + R2a

where the remainder term Ry is an operator from L2(R™) to L?(R™) satisfying two different esti-
males:

3 || R2llc(za@ny) < Cllal|Lee (Z ”b(ﬂ)“lﬁ*’)
18l=2

or

HR2HL(L2(1R7~))SC'( 3 116z |16 oo
|a)=|8|=2

(1.4)
f X 1@V s 3 u(ab‘a))("’)nuo),

181=2,]a|=]v}=1 la|=2,|7|=2

provided that all terms on the right hand side of (1.8) or (1.4) are well-defined . Here al®(X) =
%a(X). Purthermore, we have

Wick ,Wick _ 1 AR 1 Wick r
b a = ab—aa-b—'z—i{a,b} +R21

where the remainder term Ry has the same estimates as (1.8) or (1.4).

It should be noted that estimates (1.3) and (1.4) are not symmetric with respect to a and b.

It is now well-known (ex., [L1]) that the sharp Garding inequality follows directly from the Wick
calculus because the Wick operator approximates the pseudodifferential operators (see Proposition
2.1 in Section 2). Here, by means of Proposition 1.1 we can prove:

Theorem 1.2.([FP], Theorem 18.6.8 of [H], [B]). Let 0 <4 < p < 1. Assume that a(z,£) 2 0 and
(1.5) 10508 a(,§)| < C < & >E+IWPIIDZ - for 4 < Ja| +1]

(1.6) |8282a(z, £)| < C < € >He=OHABI=plel  for || + 18] < 4.
Then there exists a constant C' > 0 such that

Re (a(x, D)u,u) > —C'|[u|[* for ue$§.

We remark that the condition (1.5) is satisfied if a(z, §) belongs to S;‘:,(f %) because

p+9o
2

This generalization of Fefferman-Phong inequality and further investigation was given by [B]. It
should be noted that (1.5) is required only up to finite order of a, B ( see (3.3) and (3.9) in Section
3). For the proof of Theorem 1.1, addition to Proposition 1.1 we need the usual Littlewood-Paley
decomposition and the following lemma:

2(p - 5) + 6161 - plel = L5324 = ler+ BI) + £5=(18] ~ ).
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Lemma 1.3.([T], cf. [G], Lemmal8.6.9 of [H]). Let a(X) be a non-negative C*! function defined
in R? such that sup ||a{?||po < 1. Then there exist an M € N and a C > 0 depending only on

a|=4

the dimension d such that

M
a(X) =) bj(X)’
i=1
where b;j(X) are C1 functions satisfying

| ' B\ ()
(L7 S M=+ Y () - <c.
|of=2 [a|=2,|8l=|=1

Note that bg.ﬂ ) with |8l =1 is a Lipschitz function and the lemma is claiming that the first

derivative in the distribution sense of bg-a)b;ﬁ ) with |o| = 2,18 =1 is in fact L.

We remark that the fact b; € C1! is optimal in the case d > 4 ([BBCP]) though it looks like a
function belonging to C?! in the proof in [T] under rescaling arguments ' . Since b; only satisfies
(1.7) we shall apply carefully Proposition 1.1 and its proof to the proof of Theorem 1.2.

2 Proof of Proposition 1.1

The formula in the proposition with the remainder term Ry satisfying (1.3) is nothing but (2.4)
of [AM] in the case of N = 2 ( cf., Proposition 2.3 of [L2]). So we shall prove the second estimate
(1.4) for Ry. If we define the operator Xy as

(2.1) (Eyu)(z) = (Wu)(Y)g¥ (z) for ue L*R"M).

Then it follows from (1.2) that for a € L>°(R") we have

2.2) Wick _ / a(Y)SydY .
R2n

Since Sy is a Weyl pseudo-differential operator with a symbol py (X) = 7~"e~1X =Y for each fixed
Y (see Lemma 2.9 of [AM], cf.,(2.2) of [L2]) it follows from (2.2) that a¥i¢*(z, D) = b¥(z, D), with
its Weyl symbol :

(2.3) - b(z,€) = b(X) =n"" / a(X +Y)e ¥ dy.
]R?n

Furthermore we have ( see Lemma 2.10 of [AM] )

(2.4) TyZy = (27)"Zy  on L3*R"),

(2:5) ISy Szl can) < @m) eIV -2F,

By means of (2.2) we have

aWickpWick _ / / a(Y)b(Z)EyXzdY dZ.
Rg,"’ XR’Z"'

tIn particular the product 4'6™ is not meaningful but requiring (b'6”) — b”b" € L™ makes sense for b = b; € C1*
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() —Y)®
Using the Taylor formula b(Z) = Z b (Y)(Z‘ Y) + bo(Y, Z) with
!

o<1
W(Y,Z2)=2) / (1 -0 N(Y +6(Z - Y))da(—’i)—
lo=2
we have .
aW’ickaick - Z Z Qa + R(2)’
where

o= [, e -Y) By Bzdvaz,
]RanlRi?n

R = / / a(Y)ba(Y, Z)Sy SzdY dZ
R xRY:
If o(Q.) denotes the Weyl symbol of Q4, we have the formula

-n

(26) 0o(Qa)= / a(X + )@ (X +Y) Z(quZ) ze YRy

T

9lalqg)
=0 Z—3Y+Hy/1f

as in the same way in p.134 in [AM]. If |a| = 1 then we have the only term with g = 0, that is,

ol 17
o) = To- [ a(X+ VWX + V)@ + Hy e dY
Y

- I; Ran {(—(6y + Hy /1))* (a(X +Y)B@(X + Y)) } e_lylde’

where we have used the integration by parts in the last equality. In view of (2.3) we have
(2.7) ' ||Zl Qo = (-——a b+ ,{a, b} — Eanb>
27

because Z Hg8%b = 0. We shall calculate RY, whose principal part cancels the third term of the
|e|=1
right hand side of (2.7). Using the Taylor formula for a(Y’) at Y + 8(Z - Y), we have

B o=2% U/thm"/(l—o){a(y-yez Y))

|al=2

-3 aP(Y +6(Z2-Y))8(Z - Y)?
18|=1

+2 / 1- 0)a(f’)(Y+ (1-6)8(Z - Y))wdo}

\6l=2
- a
xb@)(Y +6(Z - Y))do(—Z—J’lzyz dedZ}

= Ji+Ja+J3.
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Since we have

- _ Y
K= ¥ o / / d6df(1 - 6)(1 - )6 //IR s

o | 18l=2
xaP(Y + (1= 0)8(Z - Y))b(Y +6(Z - Y))(Z - Y)*PSySzdYdZ
by means of (2.5) and Cotlar’s lemma we get as in (2.19) of [L2]

(2.8) N3l cp2@nyy < C Z 11| oo |6 | Loo.
e}, |8]=2

As to the term J, we use the Taylor formula for (a(®5(®)) (Y +6(Z —Y)) with |a| =2 and |3] =1
at Y. Then

| _

fdt/‘éz ” (a(ﬂ)b(a))(v)(y)) (Y +t8(Z-Y))6(Z - Y)ﬁ+a+’YEY2ZdeZ}
!‘1I 1 7' xR

- 4 52,
By the same way as in (2.6) we have

= T o / (@b (X +Y) i(ﬁéZ_)qzﬁw P gy
2 - 2n ' q! ’

Bolfl
ol=api=1 52 8 =0

Z=8y+HY/i

Note that the term between the last parentheses is the sum of differential operators with order 1
or 3. Use one derivative for the integration by parts. Then, by the same method as in (3.19) of
[L2] we have

n
(2.9) 1wy <c 3 1(a@6@) 7 iz .
frl=1]a|=2,|8|=1 :

For J; {2 we have the same estimate by the same way as in (2.19) of [L2]. Now we estimate J; by
using the Taylor formula for ab©@(Y + 6(Z — Y)) at Y again. We have

= Y / / a(Y)b a)(Y)(—Z—a—}lzyz dydz

2 2
laj=2 ¥ RYXRE?

+ Z / / (ab(a))(v)(y).z_i_gygzd)/dz
loj=2,yj=1 7 VR <R

2 ¥ / / (1 - 6)62(1 — t)dbdt

|e|=2,|v|=2

(@)1 (i__l___
x //R sy O 02 - YY) I —SrEadydz
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The operator norm of both last two terms on the right hand side are estimated by
(@9)
(2.10) > (a6 @) iz
|a|=2,]v}=2

with a constant factor. Writing the first term 3 Q,, we use the formula (2.6) with || = 2. Then ‘
we have

Wick
@11) > =5 Y ((8x + %’i)“(ab<“))) + 5 (0b)Wiek,
a}=2 |aj=2

where the right hand side is ordered according to ¢ = 0,1 in (2.6). In view of (2.7) we can see that
R, satisfies the desired estimate (1.4). O

In the rest of this section we shall precise the comments for (1.1) stated in Introduction. We
recall that the formula (2.3) and Taylor’s formula

aX+Y)= Y dDX)Y*/al+a(X,Y)
laf<é-1

1
a@(X,Y)=¢Y / (1 -6)t1a (X + 0Y)doY* /ot
: laf=¢"?

yield the following (see the proof of Corollary 2.4 of [AM]);

Proposition 2.1. (cf. [S]) Let £ > 0 be an even integer and let a(X) satisfy a@(X) € L® for

|| < £+ 2N. Then we have
£/2—-1 e \Y
; 1 [Ax
aw‘*z(z F(_4 ) a) +'r‘f3”,

k=0

where ||r¢’||c(z2@mny) < Ce Z 1a{®|| Lo for a constant Cp > 0 depending only on £.
£<|a|<t+2N

. —4A .
Making £ tend to oo we get a"¥ik = (e%x a)¥ and moreover a¥ = (eTXa)W“" formally, though
both are true for polynomial a(X) (cf., [S]). Admitting those formula we obtain

oWickpWick (eé‘z‘-‘ia)w(eéfL by
= (e HHx 02 (o o(X)eEb(2)) | 2=x)"
= (5 (o HHxO (Fa(X)e FD(2)|z-x )V,
where the second equality follows from the product formula of Weyl calculus in p.155 of [H]. Noting

that
: CAG(X)9(0) = —(Bx + 265 -7 + AR F(X)e(D)lzx

we formally get (1.1) because

o~ 3(Bx+20x 87+ 07)~ kHx dz+ 2K +5F _ o~}(0x-02+5%-07)
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3 Proof of Theorem 1.2
Take the Littlewood-Paley decomposition
(3.1) X(O2+Y 0l O) =1, ;) = w(277l€)),
J=1
where x(£) € C§° and ¢ € C§°([1,2]). Choose ¢(x),%(z) € C5°([1/3,3]) such that ¢ CC ¢ CC 9,
where ¢ CC 1 means that 1 = 1 on supp ¢. Define ¢; and 9; by the same as ;. Set a;(x,§) =

a(z,&)¢;(¢) and set d;(x,&) = aj(Tj'l:v, T;€) with T; = 23(p+8)/2_ Then for the proof of Theorem
1.2 it suffices to show

(3.2) (@3 (z, D)u,u) 2 ~C||u||? for u€ S,
where @ (z, D) denotes the pseudodifferential operator of Weyl calculus defined by
(@, Dyu = 2m)" [ [ G52, 0 u(y)dyde

In fact, it follows from (3.1) ( with ¢o = x) that

Re (a{z, D)u,u) = iRe (a(z, D)y, ;(D)*u)
3=0

Z {Re (‘Pjaj(x’ D)wju? ‘pju) + Re (‘Pja(za D)(l - 1/’.1')“7 ‘Pju)}
j=0

Write @;(D)a(z, D)(1 — ¢;) = 2791-9&;(D)a(z, D)(1 — %;(D)) and note &;(€) € Sig’. The
symbol of pseudodifferential operator r;(z, D) := ®;(D)a(z, D)(1 — 1;(D)) is given by

1 v_ 2 .
33 [ G2 (oe- [f IO ;)€ + In)(D0) o + 1. )1~ V3 (E) k) .

|a|=3

Here Og denotes the oscillatory integral ( see [K]). In view of (1.5) and (1.6) we see that D2a(z,§) €

S(z:j_'f) /2,(0+8)/2 and (9g®;)(£) € Sy, 0“‘5. It follows from the integration by parts (see Theorem 3.1

of [K]) that r;(z,£) belongs to a bounded set of S(Z,Ei;)l /)2’( p+5)/2 uniformly with respect to j. By
Calderén-Vaillancourt theorem we have

oo
< Cllul] Y 27 jpjul| < C'lful®.
=0

ZR@ (‘P.‘ia’(xa D)(l - 1/15)% (PJ'U-)
j=0

If N is the smallest integer satisfying N > n/2 then the L? boundedness of r;(z, D) follows from
the boundedness of derivatives of rj(z, &) up to Nth order. To this end, we need only (1.5) for e, 8
with
(N+4)(1+(p+9)/2)

- (p+oD

( see the proof of Theorem 3.1 of [K]). If we write 4;(X) = @;(z,§) = aj(fl’j‘l:):,Tj&-) with T =
2i(p+8)/2 then it follows from (1.5) and (1.6) that

(3.3) | laf, 18] <

(3.4) ‘ |0%8;(X)| < Cq for 4 < |af



(3.5) 18%3;)| < CaT P for o] <3
If 3;(£) = ¢;(T;€) then we have
(3.6) |026;(€)] < C’ai"j_(z/(”"'é)_l){“'.
If we set (Tu)(z) = u(Tz) for u € S, then we have
(3.7) aj(z, D)u = Tja;(z, D)Tj’lu.
Noting this formula we shall consider

Re (¢;d;(z, D)dyu, $su)

instead of those removed tilders. If one write a;(z, D) = 5}”(:1:,D) then it follows from Theo-
rem18.5.10 of [H]

bi(z,6) = aj(x,§)+%Zazja€jaj(x,g)
j=1

1
-n a-9 ( _ [ ewn(p2o2a)(z + 6 dyd )de
+ |04Z=2/0 2241 Os //e (D30¢d;)(z + 0y, & + n)dydn
= a;(z,€) +i&(z, §) + 75(, ).

Note that 7;(z,£) belongs to a bounded set of Sg’o uniformly with respect to j, and moreover
@3(D)& (z, D) is equal to a selfadjoint operator (& @3)“(z, D) modulo L2 bounded operator whose
norm is independent of j . Hence there exists a constant C > 0 independent of j such that

Re (@582, D), $u) — Re (8;8% (x, D)dsu, @50)| < CUIullllsull + 195ull?)-

Since the sum of the right hand side with respect to j is estimated above by |lu||> with a constant
factor, we consider

Re (ijd;"(IE, D)"/;J'uv (P]’LL) = (&}U(wa D)(ﬁjua ¢Ju’) + Re ([‘ﬁj’ d;?(it, D)]'!ﬁ]'u, ¢Ju)
It follows from Theorem 18.5.4 of [H] that the symbol of [@;,dY (x, D)] is equal to
1. . 3 1(1-6)2 —i(y-C—2m)
18nas}+ 2—33_33[, G (0= [f[[ o=

d
X(8207)(€ + On) (D2a) (2 + 2,6 +0) + (ag¢j>(s+<)(Dzaj)<x+oy,£+en>%;§%ﬁ) .

It follows from (3.4)-(3.6) that the second term belongs to a bounded set of 83 uniformly with
respect to j. Since ({¢;,a;})*(x, D) is selfadjoint, there exists a constant C independent of j such
that ,

(3:8) Re ([¢;, 8} (, D)lyu, %’ﬁ) < C(llbsullli@sull + lldgull®).

Since the sum of the right hand side is estimated by ||u||? with a constant factor, in view of (3.7)
we see that (3.2) is enough for the proof of Theorem 1.2.

$Both facts and (3.8) below follow only from estimates (1.5) with o, 8 satisfying (3.3) at most.
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For the proof of (3.2) we shall write simply a(X) instead of G;(X). In what follows we need
only the fact that a(X) > 0 and it satisfies

(3.9) |0%a(X)| <1 for 4< |a| <4+ 2N (cf., (3.3)),

because of a suitable normalization by a constant factor. It follows from Proposition 3.1 (see also
Corollary 2.4 of [AM] ) that we have for a constant C > 0

(3.10) Il (a - —4—(1) - a"’||£(Lz(Rn)) <C.

because of the Calderén-Vaillancourt theorem and (3.9). Therefore it suffices to show

‘ Wick
(3.11) ((a - il%—a) u, u) > —C'||ul|?.

By using Lemma 1.3 we shall show
Ax Wick M Ax Wick Ax Wick
(a, - Ta) = 2 bj - —4—bj) (bj - -4—bj
=1

modulo L? bounded operator. This formula clearly yields (3.11). Since bga) € L® (laf = 2) it
follows that

) Wi ‘ . . )
b — f‘.’ib. ek bi — ﬁb. et = pWickpWick _ _A_X_b. sk pWick _ pWick ﬁ‘_b‘ Wik
3 2 ¢ 4 d =Y ) 4 7 7 J 47

We use Proposition 1.1 with (1.3), but a little modified form as follows:
. . . 1 . Wick
gWickpWick _ (ab)Wtck +'§|;1 3 (—61/ + Hy/l)a(ab(a)) + Ry,
which is obvious by (2.7). We have
Ax . \ Wik Ay, \Wick |

() we=(Fn) +m

where the operator norm R; is estimated by
Ax (@) Ax

S (EE) =+ 315w 157 e
[el={Bl=1 lvl=2

with a constant factor, whose two terms are bounded by means of (1.7). We have the similar
. Wick
formula for b¥ick (éf-bj) " Hence

Wick ' Wick Wick
_ (%}_{bj) b;'Viclc - b}gwck (%bj) = -2 (bj%x'bj) .

Now we consider b} *b}¥* by using the estimate (1.4) and its proof. It follows that

. ) . 1 o .
b;Vzckb;(Vzck = (b?)Wtck _ 5(1); . b;.)chk + Rg



The remainder term Rg is composed of terms estimated in (2.8)-(2.11), by setting a = b = b;. Those
coming from (2.8) and (2.9) are bounded from the condition (1.7). We must estimate remainder

terms coming from (2.9) and the first term of the right hand side of (2.11) as the sum of R{, with
respect to j. Note that for a = a3 + ap with |a;| = 1 we have

M M

(cn)p(az) _ (@)

a(® '22153' Do =23 b
i= =1

The left hand side is continuous and its second derivatives in the distribution sense belong to L™
by means of (1.7). Therefore

M ®)
S0 | € L® for 6 with o] =|6]=2.

i=1

If the integration by parts in the arguments preceding (2.10) and (2.11) is done after summing up
R), with respect to j, we see that

Mo ) M ) 1 )
Z b;ﬂ/zckb;{/tck = Z(b]g)chk _ —2-(b; . bg)ka'

J i=1

Finally we have

M Wick Wick
Ax Ax
> (w-5n) (v )

Jj=1

1]
N
Mk
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