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empirical evaluation of variant 
calling accuracy using ultra-deep 
whole-genome sequencing data
toshihiro Kishikawa1,2, Yukihide Momozawa3, Takeshi ozeki  4, Taisei Mushiroda4, 
Hidenori Inohara2, Yoichiro Kamatani5,6, Michiaki Kubo7 & Yukinori okada  1,5,8

In the design of whole-genome sequencing (WGS) studies, sequencing depth is a crucial parameter 
to define variant calling accuracy and study cost, with no standard recommendations having been 
established. We empirically evaluated the variant calling accuracy of the WGs pipeline using ultra-deep 
WGS data (approximately 410×). We randomly sampled sequence reads and constructed a series of 
simulation WGs datasets with a variety of gradual depths (n = 54; from 0.05× to 410×). Next, we 
evaluated the genotype concordances of the WGs data with those in the sNp microarray data or the 
WGS data using all the sequence reads. In addition, we assessed the accuracy of HLA allele genotyping 
using the WGS data with multiple software tools (PHLAT, HLA-VBseq, HLA-HD, and SNP2HLA). The 
WGS data with higher depths showed higher concordance rates, and >13.7× depth achieved as high 
as >99% of concordance. Comparisons with the WGS data using all the sequence reads showed that 
SNVs achieved >95% of concordance at 17.6× depth, whereas indels showed only 60% concordance. 
For the accuracy of HLA allele genotyping using the WGS data, 13.7× depth showed sufficient accuracy 
while performance heterogeneity among the software tools was observed (the highest concordance of 
96.9% was observed with HLA-HD). Improvement in HLA genotyping accuracy by further increasing the 
depths was limited. these results suggest a medium degree of the WGs depth setting (approximately 
15×) to achieve both accurate SNV calling and cost-effectiveness, whereas relatively higher depths are 
required for accurate indel calling.

The innovation of next-generation sequencing (NGS) technologies has brought lower costs, higher through-
put, and expansion in scales of human genome sequencing. The target regions of human genome sequencing 
have expanded from specific regions or whole exome into whole genome. Whole-genome sequencing (WGS) 
was developed as an approach capable of assessing all the nucleotide sequences of an individual’s genome1,2. 
Thus far, it has contributed to the identification of many disease-related mutations. Recently, the use of WGS 
has become widespread in medical facilities as well as research laboratories3. The clinical application of WGS is 
gaining importance toward the achievement of personalized medicine3,4.

In the study design of WGS, the setting of a sequencing depth is a crucial parameter in defining the variant 
calling accuracy and the study cost. Several studies have recommended the depth setting to optimize the balance 
between accuracy and cost. When NGS was initially applied for human genomes, relatively high read depths 
were recommended (approximately 33×–35× for SNVs and 60× for indels)5–7 by assessing the numbers of the 
called variants and the concordance rates with reference data such as SNP microarrays. Such deep sequencing 
approaches successfully identified causal variants in the studies of rare Mendelian disorders8,9. In addition, deep 
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WGS permitted new insights into the diversity of the human genome, its structure, and the genetic history of the 
populations worldwide10–13.

On the other hand, the analysis of common diseases requires relatively larger sample sizes to obtain sufficient 
statistical power to detect risk variants. Thus, the implementation of deep WGS for all the subjects enrolled in 
common disease studies is challenging because of the high sequencing costs and the requirement for abundant 
machine resources. The 1000 Genomes Project14 reported that even with a low depth, high accuracy could be 
achieved by utilizing multi-sample joint calling and genotype imputation. This project adopted the study design 
of sequencing a large proportion of samples at a relatively low depth (average, 3.7×). Recently, the UK10K pro-
ject15 performed WGS of 3,781 subjects at 7× depth. Furthermore, Pasaniuc et al. reported that a combination of 
extremely low-depth WGS (0.1×–0.5×) followed by whole-genome genotype imputation could reveal a sufficient 
amount of variants required for the implementation of GWAS16.

Currently, discussions regarding an appropriate depth setting in WGS still remain controversial. To date, WGS 
studies have been reported at various depth settings, from low depths of approximately 1.0×–5.0× to depths as 
high as 30×10,17. In recent years, detailed evaluation of WGS accuracy has been conducted using gold standard 
datasets such as NIST Genome in a Bottle and Platinum Genomes18,19. These studies generated high-confidence, 
genome-wide variant sets, but the transition in accuracy according to the gradual variation of sequencing depths 
for identifying the appropriate depth has not been evaluated. Advances in sequencing technologies such as library 
preparation methods and WGS data analysis pipelines are additional areas where the refinement of standard WGS 
depth setting for current genome studies is required. Furthermore, highly accurate variant calling of an indi-
vidual’s genome sequences is required for the utilization of their genome information in clinical and diagnostic 
applications, such as personalized medicine20. Notably, several genetic loci with strong clinical manifestations 
have complex and diverse genome structures (e.g., human leukocyte antigen [HLA] genes in the major histocom-
patibility [MHC] region), which makes accurate WGS variant calling particularly challenging21.

In this study, we empirically evaluated an individual’s variant calling accuracy of the WGS pipeline by utiliz-
ing ultra-deep WGS data (approximately 400×). By randomly sampling the sequence reads from the ultra-deep 
WGS data, we constructed a series of simulation WGS datasets with a gradual variety of depths (from 0.05× to 
400×). WGS data of each depth were evaluated by calculating the genotype concordances of the called variants 
and those obtained from the SNP microarray or those of the WGS data with all the reads and by the accuracy of 
HLA genotyping.

Results
summary of the WGs data sets. We selected one Japanese sample from the BioBank Japan Project22,23. We 
conducted an ultra-deep WGS of the subjects using the Illumina HiSeq. 2500 platform (see details in Methods). 
Sequence reads were aligned to the reference human genome with the decoy sequence (GRCh37/hg19, hs37d5). 
By randomly sampling the mapped reads, we constructed a series of simulation WGS datasets with a wide range 
of gradual depths in 54 levels ranging from 0.05× to 410×. The WGS variant calling analysis pipeline was pri-
marily based on GATK (version 3.6) Best Practices24 (Fig. 1A). For the comparisons, we adopted the two major 
variant calling pipelines (UG and HaplotypeCaller [HC]) as well as the two variant filtration procedures (VQSR 
and HF).

In the process of the WGS variant calling, we assessed a total of six depth stages along with the conversion 
from the raw sequence data (FASTQ file format) to the final variant calling (VCF file format; Fig. 1A). In general, 
the WGS data demonstrated a reduction of the depths along with the variant calling process, with higher depths 

Figure 1. Process of whole-genome sequence variant calling. (A) Summary of the WGS variant calling pipeline. 
The pipeline was based on GATK (version 3.6) Best Practices. We adopted the two major variant callers and 
two variant filtration procedures. (B) Transition of the depths along with the WGS variant calling process. We 
assessed a total of six depth stages (RRD, RRDaT, MRD, URD, VD, and VDaF).
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demonstrating higher reduction rates (e.g., 31.4% reduction from 523× of the FASTQ format to 359× of the VCF 
format vs. 13.3% reduction from 10.5× to 9.1×; Fig. 1B). The reduction was most apparent at the duplicate read 
removal process (MRD to URD). Notably, the low-depth WGS data (approximately <5.0×) showed an increase 
in the depths in the last two stages of the variant calling pipeline because of exclusion of the variant sites with low 
quality, in which the depths were likely to be considerably lowered (e.g., 45.3-fold increment of the depth from 
0.052× of URD to 2.36× of variant depth after filtration [VDaF]).

WGs variant calling results based on depths. For the empirical evaluation of the WGS variant calling 
accuracy, we adopted the BAM file depth after duplicate read removal (i.e., URD) as a standard depth metric. 
Expectedly, the number of called variants increased according to depths and became almost flat (approximately 
4.3 × 106) at depths of approximately ≥20× (Fig. 2A). We found that differences in the number of variants 
between variant callers (HC and UG) were more apparent than those between variant filtrations (VQSR and HF). 
In general, UG called a higher numbers of variants than HC at low depths (<5×). We note that the combination 
of UG and HF demonstrated a remarkable decrease in the number of called variants at high depths (>100×). 
Accordingly, we assessed an exclusion rate for each filtration item in the variant calling process of UG and HF 
(Fig. 2B). We found that the exclusion rates for the “HaplotypeScore” item increased particularly at high depths 
(>100×), attaining values above 15% at 410× depth (Fig. 2B). HaplotypeScore quantifies the estimated haplotype 
numbers of each region, which are originally defined as two (i.e., diploid). Increases in the HaplotypeScore may 
reflect overestimation of haplotypes resulting from an increase of the mapped reads with marginally different 
sequences due to error. Because the filtration could be excessive in the combination of UG and HF, the CRs of the 
called variants with the SNP microarray data decreased at high depths (Fig. S1A).

We then assessed the numbers of the called variants for SNVs and indels separately. The number of SNVs 
became flat at approximately 20× depth, whereas the number of indels showed gradual increases even at over 
100× depth (Fig. 2C). As for the transition / transversion (Ts / Tv) ratio, the difference between variant callers was 
more apparent than variant filtrations, too (Fig. 2D). While UG showed low Ts / Tv ratios (<2.0) at low depths 
(<5×), the Ts / Tv ratio in HC was relatively high even at low depths (>2.0 at 0.5×).

Genotype concordance comparison with sNp microarray. We obtained genome-wide SNP geno-
types of the same individual by using the high density SNP microarray (Illumina HumanOmniExpressExome-8 
v1.2)25,26. We checked the variant quality (see details in Methods) and selected 564,154 SNPs for evaluation. Using 

Figure 2. Variant calling results of the WGS data simulation according to the depths. (A) Number of 
called variants based on depths. The x-axis shows the depth of each WGS data in a logarithmic scale. Each 
line shows the data of the combination of variant callers and variant filtrations: HC, HaplotypeCaller; UG, 
UnifiedGenotyper; VQSR, Variant Quality Score Recalibration; HF, hard filter. (B) Exclusion rates for each 
filtration item of HF. The data were called by UG and filtered by HF. (C) Number of called SNPs and indels 
based on depths. The data were called by HC and filtered by VQSR. (D) Ts / Tv ratio based on depths.
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the SNP microarray data as “correct answers”, we empirically evaluated the accuracy of the SNV calling in the sim-
ulation WGS datasets. For each simulation WGS data, we calculated a 3 × 3 contingency table in which all combi-
nations of the three SNV genotypes between the WGS and SNP microarray were assigned (Fig. 3A). Subsequently, 
we estimated four indices to evaluate the genotype concordances: CR, FPR, FNR, and NTPR; Fig. 3B).

Expectedly, the WGS data with higher depths showed higher CRs. Empirically, >13.7× depth achieved as 
high as >99% of concordances (with the settings of HC and VQSR; Fig. 4A–C and Table 1). As for the SNP with 
heterozygous genotypes in the SNP microarray, >18.6× depth achieved as high as >99% concordance (Fig. S2 
and Table S1). On comparison of the CRs between variant filtrations, VQSR showed marginally higher CRs and 
lower FNRs than HF at 3×–50× depths (Fig. 4A). As for variant callers, HC showed higher FNRs and lower FPRs 
than UG data at low depths (Fig. S1A–C). As described above, the combination of UG and HF showed an increase 
in the FNRs and a decrease in the CRs at high depths (Fig. S1A). To evaluate the true positive rates, we then 
confined the genomic sites where variants were called in each of the WGS data, and observed that >9.8× depth 
achieved as high as >99% of NTPRs (Fig. 4D). These results empirically suggest that WGS data with a medium 
degree of depth setting (approximately 15×) could achieve SNV calling with high accuracy. We classified SNPs 
into five levels (≥0.5, 0.1–0.5, 0.05–0.1, 0.01–0.05, and <0.01) of alternate allele frequencies (AAF). We obtained 
allele frequencies data of WGS of the Japanese population from BBJ (n = 1,026; http://jenger.riken.jp/data)13. 
SNPs of low AAF showed high concordance rates at low depths because the true negative alleles were more than 
false negative alleles at low AAF (Fig. S3). On the other hand, SNPs of High AAF showed high Non-reference true 
positive rates at low depths because homo-alternate alleles were more than heterozygous at high AAF. At 14.7× 
depth, the differences between each AAF data were slight (Table S2).

Comparison of genotype concordance with the WGS data using all the sequence reads. Because 
the SNPs on the SNP microarray are empirically known to be sequenced with relatively higher accuracy13, we 
then assessed CR of whole-genome SNVs and indels separately. To this end, we adopted the ultra-deep WGS 
dataset using all the sequence reads (410×) as “correct answers” and empirically evaluated the CR, FPR, FNR, 
and NTPR of each of the simulation WGS datasets as indicated in Figs 5A and S4. Each dataset was in the process 
of the same variant calling and the same variant filtration as the 410× dataset. Considering that the WGS variant 
calling using all the reads may still have uncertainty, such as stochastic processes in the variant calling pipeline 
(e.g., VQSR), we adopted the less stringent threshold of 95% of CR for assessment.

As a result, SNVs achieved >95% of CR with 17.6× depth (with HF and VQSR; Fig. 5B). Conversely, indels 
showed only 60% of CR at this depth, and much higher depths (>339×) were required to achieve 95% concord-
ances. These results emphasize that the WGS data with a medium degree of depth setting (approximately 15×) 
can be considered as one of the recommendation for SNV calling, whereas much higher depths are required to 
achieve accurate indel calling.

Accuracy of HLA allele genotyping using WGS data. Variations of HLA genes have strong genetic 
risks on a wide range of human complex traits27, and accurate genotyping of HLA alleles using WGS data is con-
sidered an essential step for the implementation of personalized medicine. However, because the genetic archi-
tecture of the MHC region is complex and highly polymorphic, its variant calling is relatively challenging when 
compared to that of other genetic loci28. To date, a variety of software tools have been developed to genotype HLA 
alleles using WGS data; however, the empirical evaluation of their performances in terms of genotyping accuracy 

Figure 3. Definition of the genotype concordance measurement. (A) Genotype concordance matrix. All 
combinations of the three SNV genotypes (reference / reference [Ref/Ref], reference / alterative [Ref/Alt], 
alternative / alternative [Alt/Alt]) between the WGS and SNP microarray were assigned. The positions were 
classified as false positive when alternate alleles were discordant between the sequence and the microarray 
data. We assessed genotypes as homo-reference that were not included in the VCF files of the WGS data. 
(B) Genotype concordance metrics. We adopted all the genotypes on the microarray as a parameter during 
assessment of CR, FPR, and FNR, whereas variants called in each of the WGS data were used to assess NTPR.
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requires further assessments. Recently, the in silico imputation of HLA alleles from the surrounding SNP geno-
type data has emerged as a cost-effective approach to obtain information on HLA alleles29.

In this study, we adopted four major software tools that genotype HLA alleles using sequence reads obtained 
from WGS: PHLAT30, HLA-VBseq.31, HLA-HD32, and HISAT-genotype33 and estimated 4-digit classical alleles of 
the class I and II HLA genes (n = 8) for each of the simulation WGS datasets. We also adopted an HLA imputation 
software tool of SNP2HLA29 and an imputation reference panel of the Japanese population34,35. We note that the 
concept of HLA imputation is different from that of HLA calling. To identify the HLA genotype, HLA imputation 
software utilizes the SNV genotypes of the WGS datasets for imputation of the HLA alleles, while HLA calling 
software directly utilizes the sequencing reads of the WGS datasets for each software’s original alignment. As 
“correct answers,” we obtained 4-digit alleles of the HLA genes using the SSO or SBT methods and assessed the 
concordance.

Similar to the findings of the SNV and indel variant calling, the WGS datasets with higher depths showed 
higher accuracy in HLA allele genotyping in the four software tools (Fig. 6 and Table 2). PHLAT and HLA-VBseq 
showed heterogeneity of typing accuracy among the HLA genes, and only around 75% of concordances at 
>13.7× depth, with the genome-wide SNV calling of WGS achieving >99% accuracy. In turn, HLA-HD and 
HISAT-genotype achieved a relatively more accurate performance (an average CR of 96.9% and 92.9% at 13.7× 

Figure 4. Comparison of genotype concordances with SNP microarray. The x-axis shows the depth of each 
WGS data in a logarithmic scale. The y-axis corresponds to each metric of Fig. 3B. (A) CR based on depths. 
With the settings of HC and VQSR (blue line), >13.7× depth achieved as high as >99% of concordances (ocher 
broken line), whereas HC and HF (the red line), >21.9× depth achieved. (B) FPR based on depths. (C) FNR 
based on depths. (D) NTPR based on depths. With both filtration procedures of HF and VQSR, >9.8× depth 
achieved as high as >99% of NTPR (ocher line).

HaplotypeCaller UnifiedGenotyper

VQSR Hard Filter VQSR Hard Filter

Comparison with SNP microarray data
Concordance rate > 99% 13.7× 21.9× 13.7× 21.9×

True positive rate > 99% 9.8× 9.8× 9.8× 9.8×

Comparison with WGS all reads data
SNV concordance rate > 95% 17.6× 16.6× 34.0× 13.7v

Indel concordance rate > 95% 339× 339× 264× 264×

Table 1. Summary of WGS data’s comparison.
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depth). As for the HLA imputation software of SNP2HLA, the genotyping accuracy of the HLA-DRB1 allele 
(DRB1*09:01 / DRB1*14:54 heterozygote) was particularly low (45.8% at 13.7× depth) when compared to 
other HLA genes (70.4% on average). This was attributed to the HLA-DRB1*14:54 allele having been wrongly 
genotyped in the imputation reference panel as HLA-DRB1*14:01 owing to the technical limitation of the SSO 
method as previously reported36. For all software tools, improvement of the genotyping accuracy was limited 
above 20× depth, and even in the ultra-deep WGS datasets with over 100× depth, only HLA-HD could achieve 
100% of accuracy.

Discussion
In this study, we empirically evaluated the accuracy of the WGS variant calling using ultra-deep WGS data 
(410×). Although long-read sequencing has become widespread, we adopted the general short-read sequencing 
approach on the Illumina platform in consideration of its potential application to personalized medicine. We 
found that relatively higher amount of depth loss (>30%) was observed in the process of variant calling for such 
high-depth WGS data. As for SNV calling, the number of the called variants became flat at approximately 20× 
depth. In comparison with the genotypes obtained from the SNP microarray, >13.7× depth achieved as high 
as >99% of concordances. In comparison with the WGS data using all the sequence reads, CRs above 95% were 
achieved with >17.6× depth. Our results suggest the medium degree of the depth (approximately 15×) as an 
appropriate depth setting in WGS to achieve accurate SNV genotyping. This depth recommendation is relatively 
lower than those previously reported (approximately ≥30×)5,6, which would occur because of sequencing accu-
racy improvements through updates in the WGS platforms and variant calling pipeline of the WGS data24. The 
threshold setting of CR with SNP microarray data is debatable. We set 99% as the threshold following previous 
reports, but some cases require higher accuracy at present.

On the other hand, we found that the accurate indel calling may require higher depths than those necessary 
for SNVs. The number of called indels for one single individual increased even over as high as >100 depth. Indels 
included in a genome of one individual have been estimated in a wide range14,37,38. While the Illumina Platinum 
Genome project19 reported 693,623 indels as the high confidence set, another study using the classical Sanger 
sequencing method on a large scale reported 851,575 indels per individual39. In our WGS data, at least 48× depth 
was required for calling this amount of indels. In comparison with the WGS data using all the sequence reads, a 
depth above 300× was required to achieve 95% of accuracy.

One characteristic of our study is the evaluation of HLA genotyping accuracy using WGS data. While het-
erogeneity in performance was observed among the software tools, we found that a medium degree of WGS 
depth setting (approximately 15×) could achieve high CR, whereas improvement in accuracy was limited when 
further depths were included in the WGS design. Our study also noted that WGS-based HLA typing could com-
plement the technical limitations observed in the classical HLA genotyping methods (e.g., inaccurate calling of 
HLA-DRB1*14:54 as HLA-DRB1*14:01 in the SSO method).

To date, discussions on comparisons of variant caller options in the WGS analysis pipeline, such as HC/UG 
and VQSR/HF options in the GATK pipeline, have been controversial. For the variant caller, our study shows that 
HC called the variants with high quality in terms of FPR and Ts/Tv ratio at low depths (<5×). At high depths, 
UG was likely to remove more variants than HC, which could reduce efficiency in detecting the variants. These 
findings recommend HC as the primary choice in WGS analysis. As for the variant filtration, VQSR was superior 
to HF in the comparison with the SNP microarray, whereas HF showed higher CR than VQSR in the comparison 
with the WGS data using all the sequence reads. These results suggest that the recommendations on HC or VQSR 

Figure 5. Comparison of genotype concordance with WGS data of all the reads. (A) Definition of concordance 
rates in comparison with the WGS data of all the reads. We adopted variants called in the WGS data of all the 
reads as a parameter. (B) Concordance rates based on depths. With the HC and VQSR settings (blue line), SNVs 
of >17.6× depth achieved as high as >95% of concordances (broken line), whereas HC and HF (the red line) 
>16.6× depth. On the other hand, indels required >339× depth.
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depend on the situations, with the combination of HC and VQSR currently resulting in more appropriate variant 
calling.

We note that this study was conducted on only one subject. Although our study design to generally eval-
uate the WGS variant calling pipeline would be robust to the bias specific to the individual, our study did not 
assess the analytic protocol that requires the enrollment of WGS data from multiple individuals (e.g., a joint 

Figure 6. Accuracy of HLA genotyping using WGS data. The black line indicates the average accuracy of 
each HLA gene allele. HLA-HD, HISAT-genotype, and SNP2HLA genotyped the alleles of the all the classical 
HLA genes, while HLA-DPA1 and HLA-DPB1 were not available at PHLAT and HLA-VBseq. The red arrow 
indicates the decrease of the accuracy at 48× depth. This is because the accuracy under 45× depth was average 
of 10 datasets of different random seeds, while the accuracy over 45× depth was from one data. The blue arrow 
indicates the decrease of the accuracy of SNP2HLA at around five depth. This reflects high false positive rates of 
SNV calls at those depths (Fig. 4B), because SNP2HLA utilizes VCF files and is affected by the accuracy of SNV 
calls in HLA genes.
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calling method). Also, the evaluation of the accuracy of HLA genotyping could be desirable in multiple individ-
uals because the accuracy depends on individual type. Further studies to assess multiple individuals would be 
warranted.

In conclusion, our ultra-deep WGS analysis suggested a relatively medium degree of the depths as a recom-
mendation of the WGS study design, which should be a useful indication for the future genomic studies.

Material and Methods
Variant calling pipeline of the WGS data. We adopted a Japanese sample from the BioBank Japan 
Project, a nation-wide hospital-based cohort of the Japanese population22,23. A WGS library was constructed 
using the TruSeq Nano DNA Library Preparation Kit (Illumina) and paired-end 160-bp reads on Hiseq. 2500 
with rapid output run mode (2 lanes of 15 flow cells; Fig. 1A) were generated. The sequence reads were converted 
to the FASTQ format using bcl2fastq (version 1.8.4) and trimmed to clip Illumina adapters using Trimmomatic 
(version 0.33). The reads were aligned to the reference human genome with the decoy sequence (GRCh37/hg19, 
hs37d5) using BWA-MEM (version 0.7.15, default parameters).

By randomly sampling the mapped reads, we constructed a series of simulation WGS datasets with gradual 
depths in 54 levels from 0.05× to 410× using SAMtools (version 1.3.1, parameters: view –h –b –s). We set depths 
of the simulation WGS data at a combination of equal intervals in both linear and logarithmic scales. Considering 
that the stochastic bias could potentially affect the results in the WGS datasets with lower depth settings, we con-
structed 10 different datasets for each of the low-depth settings (<45×) by changing random seeds, and adopted 
average values in the analysis results to conduct the analysis in a robust manner.

The WGS variant calling analysis pipeline was based on GATK (version 3.6) Best Practices24. The dupli-
cate reads were removed using Picard (version 2.5.0, default parameters). Indel realignment using GATK was 
performed only in situations where UnifiedGenotyper (UG) was adopted as a variant caller. Base quality score 
recalibration using GATK (default reference: 1000G_phase1.indels.b37.vcf, dbsnp_138.b37.vcf, and Mills_
and_1000G_gold_standard.indels.b37.vcf) was performed in all situations. For comparisons, we adopted two 
variant callers (UG and HaplotypeCaller [HC]). While HC was conducted with default parameters, UG was 
conducted with “-dkv 100000” in addition to default parameter for avoidance of down sampling. Additionally, 
we used two variant filtration procedures: Variant Quality Score Recalibration (VQSR) and Variant Filtration as 
hard filter (HF).

Definition of the depths along with the WGS variant calling processes. In the process of the WGS 
variant calling, we assessed a total of six depth stages (Fig. 1): raw read depth (RRD), raw read depth after trim-
ming (RRDaT), mapped read depth (MRD), unique read depth (URD), variant depth (VD), and variant depth 
after filtration (VDaF). When examining the depths of the FASTQ files (i.e., RRD and RRDaT), we calculated the 
sums of each file’s base numbers and divided them by the number of bases in the reference sequence (GRCh37) 
without unknown bases. We used DepthOfCoverage of GATK to calculate the depths of BAM files, and VCFtools 
(versions0.1.13) for VCF files.

Variant Filtration in the WGS variant calling pipeline. VQSR and HF were separately performed for 
the WGS variant calling (both SNPs and indels), in which we followed the GATK recommendations for the 
parameter setting. VQSR parameters were defined as follows: HapMap 3.3, Omni 2.5 SNP BeadChip, and 1000 
Genomes phase I data were used for SNPs in training sets, whereas Mills-Devine and 1000 Genomes phase I 
data were employed for indels. Regarding variant annotations, we adopted DP, QD, FS, SOR, MQ, MQRankSum, 
and ReadPosRankSum for SNPs, and DP, QD, FS, SOR, MQRankSum, and ReadPosRankSum for indels. To 
determine the truth sensitivity threshold of VQSR, we compared the concordance rates of the SNP microar-
ray data and the WGS data at three threshold levels (90.0%, 99.0%, and 99.9%), and ultimately selected 99.9% 
because of its highest concordance rate (Fig. S5). For HF, we used the following criteria: QD < 2.0, FS > 60.0, 
MQ < 40.0, MQRankSum < −12.5, ReadPosRankSum < −8.0, HaplotypeScore > 13.0, and SOR > 3.0 for SNPs, 
and QD < 2.0, FS > 200.0, ReadPosRankSum < −20.0, and SOR > 10.0 for indels.

HLA gene
Direct 
genotyping

Average accuracy of 13.7× data (%) Average accuracy of 3-digit depth data (%)

PHLAT
HLA- 
VBseq

HLA-
HD

HISAT- 
genotype SNP2HLA PHLAT

HLA- 
VBseq

HLA-
HD

HISAT- 
genotype SNP2HLA

A 24:02 / 24:02 100 99.2 95.0 90.1 98.6 100 98.6 100 100 98.9

C 01:02 / 03:04 60.0 90.4 90.0 100 100 100 85.2 100 100 100

B 40:02 / 40:02 40.0 98.0 100 89.8 84.8 72.2 98.9 100 100 97.3

DRB1 09:01 / 14:54 40.0 71.1 100 78.6 45.8 100 70.3 100 82.7 50.0

DQA1 01:04 / 03:02 100 73.4 100 85.3 91.7 100 72.5 100 94.6 100

DQB1 03:03 / 05:03 100 20.4 90.0 99.4 100 94.4 20.6 100 98.9 100

DPA1 01:03 / 01:03 — — 100 100 100 — — 100 100 100

DPB1 02:01 / 02:01 — — 100 100 98.2 — — 100 100 99.0

Average 73.3 75.4 96.9 92.9 89.9 94.4 74.3 100 97.0 93.2

Table 2. Accuracy of HLA genotyping using WGS data.
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Concordance comparisons with SNP microarray data or the WGS data with all the reads. We 
obtained genome-wide SNP genotypes of the same individual by using SNP microarray (Illumina 
HumanOmniExpressExome-8 v1.2) as described previously25,26. We excluded the following variants: call 
rate < 0.99, HWE < 1.0 × 10−6, MAF < 0.01, and multi-allelic variants in 1000 Genomes Project phase 3. Using 
the SNP microarray data as “correct answers,” we empirically evaluated the accuracy of the SNV calling in the 
simulation WGS datasets. For each simulation WGS data, we calculated a 3 × 3 contingency table in which all 
combinations of the three SNV genotypes of the WGS and the SNP microarray were assigned (reference / refer-
ence [Ref/Ref], reference / alterative [Ref/Alt], alternative / alternative [Alt/Alt]; Fig. 3A). Next, we estimated four 
indices to evaluate genotype concordances: concordance rate (CR), false positive rate (FPR), false negative rate 
(FNR), and non-reference true positive rate (NTPR; Fig. 3B). We adopted all the genotypes on the microarray as 
a parameter during assessment of CR, FPR, and FNR, whereas we confined the genomic sites where variants were 
called in each of the WGS data during assessment of NTPR. We classified the positions into false positive when 
alternate alleles were discordant between the sequence and microarray data.

Regarding concordance with the WGS data with all the reads, we assessed concordance rates (CR) between 
the ultra-deep WGS data using all the sequence reads (410×) and the simulation WGS data of each depth. We 
adopted the former as “correct answers,” and evaluated concordances separately for SNVs and indels. As for 
SNVs, we conformed the definition of “concordance” of Fig. 3. On the other hand, we defined as “concordance” of 
indels when both the positions and the base sequences were concordant.

HLA allele genotyping from the WGS data. We adopted four major software tools that genotype HLA 
alleles by using sequence reads obtained from WGS: PHLAT (version 1.0)30, HLA-VBseq.31, HLA-HD (version 
1.0.0)32, and HISAT-genotype33 and estimated 4-digit classical alleles of the three class I (HLA-A, HLA-B, and 
HLA-C) and five class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, and HLA-DPB1) for 
each of the simulation WGS datasets. We also adopted an HLA imputation software tool of SNP2HLA29 and the 
population-specific imputation reference panel of Japanese34,35 and imputed the HLA alleles based on the SNV 
genotypes of the MHC region called separately for the WGS datasets. While HLA-HD, HISAT-genotype, and 
SNP2HLA genotyped the alleles of all classical HLA genes, genotyping of the HLA-DPA1 and HLA-DPB1 alleles 
was not available at PHLAT and HLA-VBseq. As “correct answers”, we obtained 4-digit alleles of the HLA genes 
using the sequence-specific oligonucleotide hybridization (SSO) or sequencing-based typing (SBT) methods and 
assessed the concordance.
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