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Abstract

Chloroplast (cp) DNA is compacted into cpDNA-protein complexes, called cp nucleoids. An abundant and extensively studied com-

ponent of cp nucleoids is the bifunctional protein sulfite reductase (SiR). The preconceived role of SiR as the core cp nucleoid protein,

however, is becoming less likelybecauseof the recentfindings that SiRs donotassociatewith cpnucleoids in someplant species, such

as Zea mays and Arabidopsis thaliana. To address this discrepancy, we have performed a detailed phylogenetic analysis of SiRs, which

shows that cp nucleoid-type SiRs share conserved C-terminally encoded peptides (CEPs). The CEPs are likely to form a bacterial

ribbon–helix–helix DNA-binding motif, implying a potential role in attaching SiRs onto cp nucleoids. A proof-of-concept experiment

was conducted by fusing the nonnucleoid-type SiR from A. thaliana (AtSiR) with the CEP from the cp nucleoid-type SiR of Phaseolus

vulgaris. The addition of the CEP drastically altered the intra-cp localization ofAtSiR to cp nucleoids. Our analysis supports the possible

functions of CEPs in determining the localization of SiRs to cp nucleoids and illuminates a possible evolutionary scenario for SiR as a cp

nucleoid protein.
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Introduction

Plants originated from a eukaryotic ancestor that integrated a

once free-living photosynthetic prokaryote closely related to

present-day cyanobacteria, which led to the emergence of

chloroplasts (cps; plastids) (Gray 1992; Timmis et al. 2004;

Bowman et al. 2007; Bogorad 2008; Keeling 2010). Over

time, a drastic transfer of genetic materials from the endo-

symbiont cyanobacteria (ancestral cps) to the eukaryotic

host genome occurred. Consequently, only approximately

120–200 genes are encoded in cps (<10% of full-fledged

cyanobacteria) (Timmis et al. 2004), although cpDNA and

cp-encoded genes remain critical for photosynthesis, gene ex-

pression, and cp biogenesis (Allen 2003; Timmis et al. 2004;

Stern et al. 2010).

cpDNA is packaged into cpDNA-protein complexes, called

cp nucleoids (Kuroiwa 1991; Sakai et al. 2004; Pfalz and

Pfannschmidt 2013, 2015; Powikrowska et al. 2014). Cp

nucleoids can be visualized as dot-like structures in cps

by staining with DNA-specific fluorochromes such as 40,6-

diamidino-2-phenylindole (DAPI) or SYBR Green I, and are

ubiquitously observed in diverse taxa of plants and algae. Cp

nucleoids are thought to be the functional unit of cpDNA

replication, inheritance, and transcription (Kuroiwa 1991;

Sakai et al. 2004; Pfalz and Pfannschmidt 2013, 2015;

Powikrowska et al. 2014).

Several biochemical and proteomic analyses have revealed

the composition of core cp nucleoid proteins (Yagi and Shiina

2012; Pfalz and Pfannschmidt 2013; Powikrowska et al.

2014). Thus far, bacterial histone-like proteins (Kobayashi

et al. 2002; Karcher et al. 2009) and cp nucleoid SAP

domain proteins (Kobayashi et al. 2016) have been reported

as abundant components in cp nucleoids in unicellular algae.

In land plants, various core cp nucleoid proteins have been

reported, including sulfite reductase (SiR) (Sato et al. 2001;

Chi-Ham et al. 2002), Whirly (Krupinska et al. 2014), SAP

domain protein (Pfalz et al. 2006; Majeran et al. 2012) and

Switch/sucrose nonfermentable complex B-4 (Melonek et al.

2012), whereas the histone-like protein gene has not been

identified in any of the sequenced genomes. The different

compositions of the cp nucleoid proteins could be attributed

to cp nucleoid alterations during plant evolution, when the

original prokaryotic components were lost or replaced by eu-

karyotic proteins (Kobayashi et al. 2016).

Among the cp nucleoid proteins, SiR was the first identified

and has been extensively analyzed. SiR was identified as a
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major component of the isolated cp nucleoids in soybean

(Glycine max) (Cannon et al. 1999; Chi-Ham et al. 2002)

and pea (Pisum sativum) (Sato et al. 1997, 2001), and it has

the ability to compact DNA, and suppress DNA replication and

transcription in vitro (Cannon et al. 1999; Sato et al. 2001;

Sekine et al. 2007). SiR is a key enzyme for sulfur assimilation,

catalyzing the reduction of sulfite to hydrogen sulfide and

water using electrons via ferredoxins. In addition, recent stud-

ies indicated that SiR protects leaves against the toxicity of

sulfite accumulation and prevents premature senescence

caused by a greater sulfite accumulation (Yarmolinsky et al.

2013, 2014).

BLAST-based ortholog searches indicated that the amino

acid sequence of SiR is highly conserved among virtually all

plant species. Indeed, SiR was also identified in the cp nucle-

oids of a moss (Physcomitrella patens) (Wiedemann et al.

2010) and tobacco (Nicotiana tabacum) (Jeong et al. 2003).

However, a growing number of reports have indicated that

the SiR localization patterns are different among plant species.

SiR was not identified in the cp nucleoids of Zea mays (Sekine

et al. 2007; Majeran et al. 2012) or in the transcriptionally

active chromosomes purified from Arabidopsis thaliana and

mustard (Pfalz et al. 2006). Based on these reports, the previ-

ous assumption that SiR was a universal core cp nucleoid pro-

tein in land plants was an oversimplification.

To address this discrepancy, we phylogenetically analyzed

SiR. A multiple sequence alignment analysis revealed that cat-

alytic domains of SiRs are highly conserved, except for the

C-terminal region. We found that nucleoid-type SiRs have

conserved C-terminally encoded peptides (CEPs). The CEP in

SiR was predicted to form a bacterial Ribbon–Helix–Helix DNA-

binding motif and was not detected in the nonnucleoid-type

SiRs in land plants, implying that it has an important role in the

localization to cp nucleoids. We conducted an experiment to

test our hypothesis by engineering A. thaliana SiR (AtSiR),

which has been reported to localize in the stroma, free from

cp nucleoids (Pfalz et al. 2006). Our analysis indicated the

importance of the CEP in determining the localization of SiR

to cp nucleoids and shed light on a possible evolutionary sce-

nario for SiR as a cp nucleoid protein.

Materials and Methods

Multiple Sequence and Phylogenetic Analyses

SiR homologs were collected from searches using the BLAST

algorithm against public databases. The sequences were

aligned using ClustalW in MEGA 5.0 (Tamura et al. 2011).

The full lengths of the SiR homologs were used for the phy-

logenetic analyses. Maximum parsimony- and maximum like-

lihood-based phylogenetic trees were constructed by MEGA

5.0 (Tamura et al. 2011). A Bayesian inference was performed

using MrBayes version 3.2 (Ronquist et al. 2012). One million

generations were completed, and trees were collected every

1,000 generations, after discarding trees corresponding to the

first 25% (burn-in), to generate a consensus phylogenetic

tree. Bayesian posterior probabilities were estimated as the

proportion of trees sampled after burn-in.

Homology Modeling

A homology model of the P. sativum SiR’s CEP was con-

structed using Swiss Model using an Escherichia coli Transcrip-

tional Repressor COPG/DNA complex homolog (Protein Data

Bank: 1B01) as the template. All homology model images

were produced using UCSF Chimera 1.5.3r.

Vector Construction

Polymerase chain reaction (PCR) was performed using the

proof-reading enzyme KOD-FX Neo (Toyobo Life Science,

Osaka, Japan). The PCR products were separated using

1.2% agarose gel electrophoresis, and were gel-purified.

AtSiR cDNA was amplified by primers 50-CACCATGTCATCG

ACGTTTCGAGCTCCG-30 and 50-TTGAGAAACTCCTTTGTA

TGTA-30. To generate AtSiR-PvCEP, overlapping PCR was per-

formed. Briefly, PvCEP was amplified using primers 50-TACAT

ACAAAGGAGTTTCTCAACCATCACGCCACAATCTCAAGC-30

and 50-TTCACCTTTTCCATTTTGGTTG-30. The PCR products of

AtSiR and PvCEP were mixed and amplified using primers 50-C

ACCATGTCATCGACGTTTCGAGCTCCG-30 and 50-TTCACCTT

TTCCATTTTGGTTG-30. The resulting products were cloned

into the pENTR/D-TOPO vector (Thermo Fisher Scientific Inc.,

Waltham, MA) and transferred into the pGWB41 vector

(Nakagawa et al. 2007) using LR clonase (Thermo Fisher

Scientific Inc.).

Growth Conditions and Nuclear Transformations

Arabidopsis thaliana (Columbia) was grown in soil in a growth

chamber (50mmol of photons m�2 s�1, 16-h photoperiod,

23 �C). Nuclear transformation was performed using the

Agrobacterium-mediated transformation method.

Microscopic Observations

Confocal laser scanning microscopy of A. thaliana leaves was

performed using a Leica TCS SP5 (Leica Microsystems,

Wetzlar, Germany). To isolate cps, leaves were disrupted in

0.3 M mannitol medium using a surgical scalpel. Isolated cps

were stained with 1mg/ml DAPI and observed with an epi-

fluorescence/differential interference microscope (BX51;

Olympus, Tokyo, Japan) connected to a charge-coupled

device camera (DP72; Olympus).

Results and Discussions

Nucleoid-Type SIRs Have Conserved Peptides
in Their Termini

To reveal the molecular basis underlying the different localiza-

tions of SiRs in cps, their primary structures were compared
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FIG. 1.—Multiple sequence alignment of SiRs in land plants. GmSiR, Glycine max SiR; PsSiR, Pisum sativum SiR; PvSiR, Phaseolus vulgaris SiR; NtSiR,

Nicotiana tabacum SiR; AtSiR, Arabidopsis thaliana SiR; ZmSiR, Zea mays SiR.

FIG. 2.—Homology model of the CEP in PsSiR. (A) C-terminal region of PsSiR. The blue arrow and green bar indicate the regions predicted to form

Ribbon and Helix structures, respectively. (B) The homology model of the CEP in PsSiR was constructed using Swiss Model with an E. coli Transcriptional

Repressor COPG homolog (Protein Data Bank: 1B01) as the template. CEP was predicted to form a bacterial Ribbon–Helix–Helix DNA-binding motif. The

arrow indicates the N-terminus of the CEP. (C) Homology model of the CEP in PsSiR. The template was the E. coli Transcriptional Repressor COPG-

homodimer/DNA complex (PDB: 1B01). Green indicates the PsCEP. The arrow indicates the N-terminus of the CEP. Red indicates basic amino acids.

C-Terminal Region of Sulfite Reductase GBE
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using a multiple alignment analysis. Plant-type SiRs have two

nitrite/SiR ferredoxin-like half domains (Pfam: 03460), and

two nitrite and SiR 4Fe-4S domains (Pfam: 01077). Our se-

quence analysis showed that the catalytic domains are highly

conserved in all plants, regardless of the localization patterns

(fig. 1). However, a conserved short peptide (~50 amino acids)

in the C-terminal region was found specifically in the amino

acid sequences of cp nucleoid-type SiRs and not in the

FIG. 3.—Localization of AtSiR and AtSiR-CEP. (A) Confocal microscopy of guard cells of A. thaliana expressing AtSiR-YFP or AtSiR-PvCEP-YFP under the

control of the 35S promoter. Differential interference contrast microscopy shows the guard cells. Dot-lines trace the outline of the guard cells. Chl indicates

the autofluorescence emitted by the chlorophyll. (B) Epifluorescence microscopy of cps isolated from A. thaliana expressing AtSiR-YFP or AtSiR-PvCEP-YFP

under the control of the 35S promoter. Cps were stained with the DNA-specific fluorochrome DAPI. Arrows indicate a cp nucleoid.
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nonnucleoid-type SiRs, such as Z. mays’ SiR and AtSiR. The

CEP was predicted to form a ribbon–helix–helix structure, a

bacterial DNA-binding motif, using the SWISS homology

modeling program (Biasini et al. 2014), suggesting that it

has a role in attaching SiR onto cp nucleoids (fig. 2).

AtSiR was not identified in the transcriptionally active chro-

mosomes purified from Arabidopsis and mustard chloroplasts,

suggesting that AtSiR may not be specifically localized to cp

nucleoids (Pfalz et al. 2006). To confirm the actual subcellular

localization, a chimeric SiR protein fused with yellow fluores-

cent protein was expressed under the control of the 35S pro-

moter (35Sp::AtSiR-YFP). Although the expression was driven

by the constitutive promoter, the AtSiR-YFP fluorescence

signal was mainly observed in the guard cells of independent

stable lines (fig. 3A). This accumulation pattern is partly con-

sistent with the transcriptome data, which indicated a rela-

tively higher SiR expression level in guard cells than in

mesophyll cells (Winter et al. 2007; Yang et al. 2008), implying

a posttranscriptional regulation of SiR expression. A similar

accumulation pattern was reported for the gene encoding

ATP sulfurylase, the enzyme that catalyzes the entry step of

the sulfate assimilation pathway (Bohrer et al. 2015). Confocal

microscopy showed that AtSiR was localized uniformly in

the chloroplast (fig. 3A). The DAPI staining of isolated cps

FIG. 4.—Phylogenetic points at which CEP was lost. A phylogenetic tree of SiRs based on Bayesian inference, maximum likelihood and maximum

parsimony methods. Posterior probabilities for Bayesian inference (�0.90) and Bootstrap values (�50%) for the maximum likelihood and maximum

parsimony, respectively, are indicated at the appropriate nodes. Blue indicates SiRs containing CEPs. Green indicates SiRs not containing CEPs.
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showed that AtSiR-YFP is not preferentially colocalized with cp

nucleoids, indicating that AtSiR is mainly localized to the

stroma (fig. 3B).

We next tested whether the localization of AtSiR can be

changed by the addition of CEP in cps. Chimeric AtSiR was

fused with the CEP of the SiR from bean (Phaseolus vulgaris)

and expressed under the control of the 35S promoter

(35Spro::AtSiR-PvSEP-YFP). This chimeric protein was also

mainly detected in the guard cells (fig. 3A). However, we

found that the AtSiR-PvCEP-YFP fluorescence signals were

observed as dot-like structures in cps (fig. 3A). DAPI staining

of isolated cps showed that the AtSiR-PvCEP-YFP signal was

FIG. 5.—Schematic model representing the evolutionary history of the nucleoid-type SiR. Branch lengths do not represent phylogenetic distances.
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precisely co-localized with the cp nucleoids (fig. 3B). These

results support our hypothesis that the CEP is a critical factor

for SiR’s binding to cp nucleoids.

Evolution of SiRs as cp Nucleoid Protein

Bacterial SiR is a large enzyme with an a8b4 quaternary struc-

ture. The a-subunits contain both flavin adenine dinucleotide

and flavin mononucleotide, whereas the b-subunits contain

an iron-sulfur cluster coupled to a siroheme. The a-subunits

have diaphorase activity that catalyzes the electron flow from

NADPH to sulfite via flavin adenine dinucleotide, flavin mono-

nucleotide and siroheme (Siegel and Davis 1974; Zeghouf

et al. 2000). Plant- and cyanobacteria-type SiRs are homolo-

gous to the b-subunits and catalyze the reduction of sulfite

using electrons donated from photosystem I via ferredoxin

(Krueger and Siegel 1982). A previous biochemical analysis

indicated that cyanobacterial SiR, which is thought to be the

ancestor of chloroplast SiRs, is not localized to cp nucleoids

(Sato et al. 2004)

To deduce the evolution of SiR as a cp nucleoid protein, a

phylogenetic analysis was performed. One critical feature

missing in nonnucleoid-type SiRs was CEP. CEP is conserved

among plant SiRs, except for those in grasses and brassicas

that do not colocalize with cp nucleoids (fig. 4), which implies

that nonnucleoid-type SiRs in land plants could have been

derived from cp nucleoid-type SiRs by the spontaneous loss

of CEP. CEP is also detected in cyanobacterial SiRs and red

algal SiRs. While the amino acid identities of cyanobacterial

and red algal CEPs are relatively low when compared with

those of land plants (e.g., the amino identity acid between

Cyanidioschyzon merolae SiR [CmSiR] and PpCEP is <30%),

these CEPs are also likely to form the RHH motif, suggesting

that CEP originated from the endosymbiont’s SiR (fig. 4, sup-

plementary figs. S1 and S2, Supplementary Material online).

We also found that CmSiR is closely related to cyanobacterial

SiRs and distant from the cp nucleoid-type SiRs (fig. 4), which

is consistent with CmSiR not localizing to cp nucleoids (Sato

et al. 2004). Furthermore, SiRs in flowering plants showed

close phylogenetic relationships regardless of the localization

patterns (fig. 4). Thus, we propose that the evolution of nu-

cleoid-type SiRs can be divided into three steps: First, ancient

plant cells acquired the SiR gene from the endosymbiont cy-

anobacterium; Second, the SiR accumulated amino acid se-

quence changes, resulting in a conformational change that

allowed the interaction with cp nucleoids prior to the birth

of land plants; and finally, some land plants independently lost

CEP, which is not essential for catalytic reactions, causing the

conformational change that impaired their DNA-binding abil-

ity (fig. 5).

The physiological advantages of having SiR as a component

of the cp nucleoids remain unclear. Plant SiR, which is re-

garded as the “bottleneck” in the reductive sulfate metabolic

pathway (Khan et al. 2010), plays an important role in

protecting leaves against the toxicity of sulfite accumulation.

The protective function appears to be especially important in

cps, because severe chlorophyll degradation, the reduction of

D1 and psbO proteins, and the deterioration of photosynthesis

were observed in SiR-impaired plants (Yarmolinsky et al. 2013,

2014). One possible physiological advantage of the associa-

tion of SiR with cp nucleoids would be that SiR protects

cpDNA from mutagenic bisulfite ion-based modifications

(Sato et al. 2001) because cytosine can be converted to

uracil by deamination when reacting with bisulfite (Clark

et al. 1994). Another possibility is that the nucleoid-localized

SiR acts as a sensor for the redox state within cps to modulate

cp gene expression through the regulation of the cp nucleoid

structure in response to various environmental conditions and

developmental stages (Sekine et al. 2007).

We have not found any visible phenotypic effects caused

by the overexpression of the cp nucleoid-type AtSiR-CEP in A.

thaliana under normal growth conditions. However, the pos-

sibility remains that the association of SiR with cp nucleoids

may be advantageous or disadvantageous under some condi-

tions. Further analyses, including physiological and biochemi-

cal experiments, are necessary to reveal the functions of

nucleoid-localized SiRs and why some land plants abandoned

cp nucleoid-type SiRs during evolution.

Supplementary Material

Supplementary figures S1 and S2 are available at Genome

Biology and Evolution online (http://www.gbe.oxfordjour

nals.org/).
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