TITLE:
Anterior Choroidal Artery Infarction Evaluated with 123I-Imp Single-Photon Emission Computed Tomography and 7 Tesla Magnetic Resonance Imaging

AUTHOR(S):
Wang, Te Hsiung; Jingami, Naoto; Okada, Tomohisa; Yunoki, Tomoyuki; Ohtsuru, Shigeru; Koike, Kaoru

CITATION:

ISSUE DATE:
2019-05

URL:
http://hdl.handle.net/2433/250152

RIGHT:
© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/; The full-text file will be made open to the public on 1 May 2020 in accordance with publisher’s ‘Terms and Conditions for Self-Archiving’; This is not the published version. Please cite only the published version; この論文は出版版ではありません。引用の際には出版版をご確認ご利用ください。
Anterior Choroidal Artery Infarction Evaluated with 123I-Imp Single-Photon Emission Computed Tomography and 7 Tesla Magnetic Resonance Imaging

Te-Hsiung Wang, MD,* Naoto Jingami, MD,* Tomohisa Okada, MD,† Tomoyuki Yunoki, MD,* Shigeru Ohtsuru, MD,* and Kaoru Koike, MD*

Anterior choroidal artery (AchA) infarction remains a challenging diagnosis although it was first described almost 100 years prior. N-isopropyl-p-123I-iodoamphetamine single-photon emission computed tomography (123I-IMP SPECT) and 7 Tesla magnetic resonance angiography (7T-MRA) are not routinely performed in cases of AchA infarction. Therefore, the application of 123I-IMP SPECT and 7T-MRA for AchA infarction has not been reported previously. A 67-year-old man presented with disturbed consciousness, gaze preference to the left, aphasia, right homonymous hemianopia, and right hemiparesis. Brain magnetic resonance imaging revealed infarction of the left posterior limb of the internal capsule. Left middle cerebral artery was clearly seen on MRA. However, 123I-IMP SPECT on day 13 showed cortical hypoperfusion which indicated thalamus involvement with neural deactivation. Additionally, 7T-MRA on day 15 revealed an intact left AchA suggesting reperfusion. The neurological deficits improved gradually after treatment and rehabilitation. This case demonstrates AchA infarction with cortical hypoperfusion associated with thalamus involvement, which was clarified by performing 123I-IMP SPECT and 7T-MRA. Perfusion analysis and evaluation of detailed vascular anatomy in stroke can be expected to elucidate pathological conditions.

Key Words: Anterior choroidal artery infarction—Monakow’s syndrome—thalamus—SPECT—7T-MRA

© 2019 Elsevier Inc. All rights reserved.

Introduction

Anterior choroidal artery (AchA) infarction, known as Monakow’s syndrome, presents with a classical triad—hemiplegia, hemianesthesia, and homonymous hemianopsia. Differentiation from lacunar infarction of the lenticulostriate arteries is difficult in small lesions. We describe a case of left AchA infarction evaluated with N-isopropyl-p-123I-iodoamphetamine single-photon emission computed tomography (123I-IMP SPECT) and 7 Tesla magnetic resonance angiography (7T-MRA).

Case Report

A 67-year-old man with a history of hypertension and lacuna infarctions presented to the emergency department with lethargy, disturbed consciousness, and right hemiparesis. High blood pressure (222/139 mmHg) with normal sinus rhythm was noticed. Right homonymous hemianopia was confirmed by visual threat assessment. Nonfluent aphasia and gaze preference toward the left side were noted. Diffusion-weighted magnetic resonance imaging (MRI) revealed high signal intensity limited to the left posterior limb of internal capsule suggesting acute infarction (Fig 1A). AchA
Infarction was suspected due to the clinical symptoms and posterior limb of internal capsule lesion. Aspirin, clopidogrel, argatroban, and edaravone were administered. 123I-IMP SPECT revealed hypoperfusion in the left frontal and parietal lobes (Fig 1D). 7T-MRA showed an intact left AchA (Fig 1F).

Discussion

The neurological manifestations, including right hemiparesis and right homonymous hemianopia, indicated left AchA infarction involving the pyramidal tract and lateral geniculate body. The lesion responsible for other symptoms such as disturbed consciousness, aphasia, and gaze preference was in the thalamus, according to the blood supply distribution and its corresponding functions. The frontal and parietal hypoperfusion in 123I-IMP SPECT indicated thalamus involvement with neural deactivation of known connections between the frontal and parietal lobes and the thalamus. Such cortical hypoperfusion revealed via 123I-IMP SPECT in AchA infarction can be a specific finding for AchA infarction.

7T-MRA has higher resolution which helps visualize the arterial inflow signal, and is therefore expected to be useful in the field of stroke. The mechanism of AchA infarction is known to be associated with small vessel disease or embolism, and visualization of small vessels is important. The enhanced left AchA on 7T-MRA indicated possible reperfusion. Therefore, we presumed that the embolized AchA was recanalized. This case demonstrated an unexpected pathological condition resulting from focal ischemia, which was revealed by 123I-IMP SPECT perfusion and 7T-MRA, thus indicating the usefulness of these methods for visualizing thinner vessels and identifying the mechanism of stroke.

References