
Equation of motion of canonical tensor model and Hamilton-Jacobi equation
of general relativity

Hua Chen,1,* Naoki Sasakura,1,† and Yuki Sato2,‡
1Yukawa Institute for Theoretical Physics, Kyoto University,

Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
2Department of Physics, Faculty of Science, Chulalongkorn University,

Thanon Phayathai, Pathumwan, Bangkok 10330, Thailand
(Received 3 October 2016; published 13 March 2017)

The canonical tensor model (CTM) is a rank-three tensor model formulated as a totally constrained
system in the canonical formalism. The constraint algebra of CTM has a similar structure as that of the
Arnowitt-Deser-Misner formalism of general relativity, and it is studied as a discretized model for quantum
gravity. In this paper, we analyze the classical equation of motion (EOM) of CTM in a formal continuum
limit through a derivative expansion of the tensor of CTM up to the fourth order, and we show that it is the
same as the EOM of a coupled system of gravity and a scalar field derived from the Hamilton-Jacobi
equation with an appropriate choice of an action. The action contains a scalar field potential of an
exponential form, and the system classically respects a dilatational symmetry. We find that the system has a
critical dimension, given by six, over which it becomes unstable due to the wrong sign of the scalar kinetic
term. In six dimensions, de Sitter spacetime becomes a solution to the EOM, signaling the emergence of a
conformal symmetry, while the time evolution of the scale factor is a power law in dimensions below six.
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I. INTRODUCTION

The tensor model was first introduced in [1–3] as an
analytical description of simplicial quantum gravity in
dimensions higher than two1 by generalizing the matrix
model, which successfully describes the two-dimensional
case. While the original tensor models are still remaining
merely as formal descriptions due to some difficulties, the
analyses of the more successful model, the colored tensor
model [7], have produced various interesting analytical
results concerning the simplicial quantum gravity in
dimensions higher than two [8]. Among them, it has been
shown that the dominant contributions of simplicial com-
plexes generated from the colored tensor model are
branched polymers [9,10]. Since the structure of branched
polymers is far from the classical spacetime picture of
our universe, it seems difficult to consider the tensor model
as a sensible model of quantum gravity, which should
produce wide and smooth spacetimes in certain classical
regimes.
On the other hand, while the models above basically

concern the Euclidean case, it has been shown that causal
dynamical triangulation, which is the simplicial quantum
gravity with a causal structure, successfully produces the
(3þ 1)-dimensional world similar to our universe [11],
while dynamical triangulation, which is the Euclidean

version, does not.2 The comparison between the two
versions suggests that a causal structure is essentially
important for the emergence of a classical spacetime in
quantum gravity. This motivated one of the present authors
to formulate a rank-three tensor model as a totally con-
strained system in the canonical formalism, which we call
the canonical tensor model (CTM) [14,15]. The constraints
of CTM are composed of kinematical symmetry generators
and those analogous to the Hamiltonian constraint in the
Arnowitt-Deser-Misner (ADM) formalism [16,17], and
they form a first-class constraint algebra with a nonlinear
structure. In fact, the algebraic structure of the constraints is
very similar to that of the ADM formalism of general
relativity (GR), and it can be shown [18] that, in a formal
continuum limit, the constraint algebra of CTM agrees with
that of the ADM formalism of GR.3 This is of physical
importance, since the algebraic closure of the ADM
constraints assures the spacetime covariance of locally
defined time evolutions, which is an essence of GR [20].
The main purpose of this paper is to pursue this corre-

spondence further. We will analyze the classical equation of
motion (EOM) of CTM in a formal continuum limit through
a derivative expansion of the tensor of CTM up to the fourth
order, andwewill show that it is the same as that of a coupled
system of gravity and a scalar field derived from the
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1See, however, [4–6] for a matrix-model-like approach to

three-dimensional quantum gravity.

2When coupling many U(1) fields, the authors in [12] found a
promise of a phase transition higher than first order, which,
however, is in conflict with the result in [13].

3As well, a certain minisuperspace model of GR can be derived
from CTM [19].
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Hamilton-Jacobi equation with an appropriate choice of an
action. The action has an exponential potential of the scalar
field, and the system is classically invariant under a dilata-
tional symmetry. Interestingly, the action is meaningful only
in spatial dimensions 2 ≤ d ≤ 6, and the system becomes
unstable in d > 6 due to the wrong sign of the scalar kinetic
term. In the critical dimension d ¼ 6, de Sitter spacetime
becomes a solution to the EOM, signaling the emergence of
a conformal symmetry.
The present work may also have some implications to

renormalization-group (RG) flow equations of field theo-
ries. It has been argued [21–23] that the Hamiltonian
constraints of CTM generate the RG flows of statistical
systems on random networks [24], which can equivalently
be described by randomly connected tensor networks. In
addition, it has been shown [25] that classical spaces
emerge on boundaries of randomly connected tensor net-
works by appropriately choosing the tensors. Therefore, it
can be expected that the Hamiltonian constraints would
generate RG flows of effective field theories on such
emergent spaces. If so, the present work would give a
hint to the connection between RG flows of field theories
and gravity, which is indeed the subject of the so-called
holographic RG. (See [26] for a review.)
We heavily used a Mathematica package XTENSOR [27]

to perform tensorial computations in this paper. The
Mathematica programs we used can be downloaded from
the homepage of one of the authors [28].
This paper is organized as follows. In Sec. II, we review

CTM. In Sec. III, we define the fields of CTM in a formal
continuum limit in terms of a derivative expansion of
the tensor of CTM up to the fourth order. There are four
fields, a rank-0,2,3,4 tensor field with the weight of
negative half-density. In Sec. IV, we study the kinematical
symmetry of CTM in the continuum limit. Up to the fourth
order, we find two gauge symmetries, the diffeomorphism,
and a spin-three symmetry. In Sec. V, by deleting the
rank-3 and rank-4 fields by the spin-three gauge symmetry
and the EOM, respectively, we write down the EOM of the
remaining fields, the rank-0 and rank-2 fields, in a static
background geometry. In Sec. VI, we discuss another gauge
symmetry which allows us to freely transform the back-
ground metric. Then, in Sec. VII, the background metric is
gauge fixed to a combination of the fields so as to remove
the odd situation that there exists a static spin-two field,
the background metric, other than the rank-2 field of CTM.
The EOM with the gauge-fixing condition is written down.
In Sec. VIII, we rewrite the EOM after deleting the weights
of the fields. In Sec. IX, we perform a reparametrization
of the fields so that there are no spatial derivative terms of
the lapse function in EOM. This is the final form of the
EOM of CTM, which is comparable with that of a
gravitational system in field theory. In Sec. X, we show
that the EOM of CTM coincides with that of a coupled
system of gravity and a scalar field derived from the

Hamilton-Jacobi equation by an appropriate choice of an
action. We find a critical spatial dimension of the gravi-
tational system, given by six, over which the system
becomes unstable due to the wrong sign of the kinetic
term of the scalar field. In Sec. XI, we discuss the time
evolution of the scale factor. At the critical dimension, de
Sitter spacetime is a solution to the EOM, signaling the
emergence of a conformal symmetry, while the time
evolution of the scale factor has a power-law behavior
below the critical dimension. Section XII is devoted to the
summary and future prospects.

II. REVIEW OF CTM

In this section we review the CTM [14,15], explaining its
current status.
We consider a Hamiltonian system such that the dynami-

cal variables are the real symmetric rank-three tensors,
Mabc and Pabc ða; b; c ¼ 1; 2;…;N Þ, which are canoni-
cally conjugate in the sense that they satisfy the following
Poisson bracket:

fMabc; Pdefg ¼
X
σ

δaσdδbσeδcσf ;

fMabc;Mdefg ¼ fPabc; Pdefg ¼ 0; ð1Þ

where the summation is over all the permutations of d, e,
and f, reflecting the real symmetric nature of the tensors.
Here, it would be natural to introduce the OðN Þ trans-
formation as a kinematical symmetry of the system,

Mabc → M0
abc ¼ Laa0Lbb0Lcc0Ma0b0c0 ;

Pabc → P0
abc ¼ Laa0Lbb0Lcc0Pa0b0c0 ; ð2Þ

where the repeated indices are summed over and L is an
OðN Þ matrix, since quantities constructed by the tensors
with all indices being contracted are invariant under the
OðN Þ transformation. The Hamiltonian of CTM is given as
follows:

HCTM ¼ naHa þ nabJ ab; ð3Þ

where na and nabð¼ −nbaÞ are nondynamical Lagrange’s
multipliers, and

Ha ¼
1

2
ðPabcPbdeMcde − λMabbÞ; ð4Þ

J ab ¼ −J ba ¼
1

4
ðPacdMbcd − PbcdMacdÞ; ð5Þ

in which λ is a constant. Imitating the nomenclatures in the
ADM formalism of general relativity, Ha and J ab are
dubbed as Hamiltonian constraint and momentum con-
straint, respectively, and they form the following first-class
constraint Poisson algebra:
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fHðξ1Þ;Hðξ2Þg ¼ J ð½~ξ1; ~ξ2� þ 2λξ1∧ξ2Þ;
fJ ðηÞ;HðξÞg ¼ HðηξÞ;

fJ ðη1Þ;J ðη2Þg ¼ J ð½η1; η2�Þ; ð6Þ

whereHðξÞ ≔ ξaHa,J ðηÞ ≔ ηabJ ab, and ~ξab ≔ Pabcξc. In
(6), the bracket ½; � denotes the matrix commutator, and
ðξ1∧ξ2Þab ≔ ξ1aξ

2
b − ξ2aξ

1
b. One notices that J serves as the

generators of SOðN Þ, infinitesimally representing the kin-
ematical symmetryof the system.The formof theHamiltonian
constraint has been uniquely fixed by the following five
assumptions: the Hamiltonian constraint (I) carries only one
index, (II) forms a closed Poisson algebra with J , (III)
preserves the time reversal symmetry, Mabc → Mabc and
Pabc → −Pabc, (IV) consists of terms cubic at most, and (V)
allows only “connected terms”; e.g.,PabcPbdeMcde is allowed
butMabbPcdePcde is not allowed [15].With the closedPoisson
algebra (6) of the constraints, CTM is a totally constrained
system governed by the Hamiltonian (3). The interest of this
paper is the classical EOMofPwith λ ¼ 0, which is given by

d
dt
Pabc ¼ fPabc; Hλ¼0

CTMg

¼ −
1

2

X
σ

ðndPdeσaPσbσce þ ndσaPσbσcdÞ: ð7Þ

The variable Mabc will play no roles in this paper.
Quite remarkably, CTM is closely related to general

relativity in arbitrary dimensions in the following sense.
First, for the N ¼ 1 case, the Hamiltonian (3) agrees with
that of a certain minisuperspace model of GR in arbitrary
dimensions, if we consider the modulus of the tensor,
jM111j, is proportional to the spatial volume in the
minisuperspace model [19]. Second, in a formal continuum
limit with N → ∞, the Poisson algebra (6) coincides with
the Dirac algebra in the ADM formalism [18]. In this paper
we take this argument one step further: we will analyze the
EOM (7) of CTM in a formal continuum limit through a
derivative expansion of P up to the fourth order, and wewill
show that it agrees with the EOM of a coupled system of
gravity and a scalar field derived from the Hamilton-Jacobi
equation with an appropriate choice of an action.

III. REPRESENTATION OF THE TENSOR
IN A DERIVATIVE EXPANSION

In this paper, we consider CTM in a formal continuum
limit. We leave aside for future study the question of
dynamics why CTM can be studied in the continuum
manner: we simply assume that there exist some regimes
where the continuum description is valid. The basic strategy
to treat CTM in this limit is the same as that in the previous
papers [18,25]. We formally replace the discrete values of
the indices to the d-dimensional spatial coordinates,

a → x ∈ Rd: ð8Þ

Namely, the tensor Pxyz is a function of three d-dimensional
coordinates x, y, z, symmetric under arbitrary permutations.
We further assume a locality: Pxyz takes nonvanishing
values, only when x, y, z are in the neighborhood,
x ∼ y ∼ z. Mathematically, this can be formulated by
assuming that Pxyz is a distribution described by delta
functions and their derivatives4: Pxyz∼δdðx−yÞδdðy−zÞþ
derivativesofδdðx−yÞδdðy−zÞ. We also assume that we can
terminate the derivative expansion at a certain order. From
the physical point of view, this is an assumption that the scale
of the physical process of our interest is much larger than the
fuzziness of the locality of the space. In general, it is more
convenient to use test functions to describe distributions
rather than directly dealing with δ-functional expressions.
So, let us consider a contraction ofPwith a test function f up
to the fourth order of derivatives as follows:

Pf3 ≔
Z

ddxddyddzPxyzfðxÞfðyÞfðzÞ

¼
Z

ddxðβf3 þ βμνf2f;μν þ βμνρf2f;μνρ

þ βμν;ρσff;μνf;ρσ þOð∇5ÞÞ; ð9Þ
where, for brevity, the arguments x of β’s and f are
suppressed in the last line, and the greek indices represent
spatial directions, e.g., μ ¼ 1; 2;…; d. Here, the test
function f is assumed to have a compact support, and
the indices off represent the covariant derivatives associated
with a background metric gμν, i.e., f;μν ≔ ∇μ∇νf,
f;μνρ ≔ ∇μ∇ν∇ρf. As will be explained in more detail in
Sec. IV, the test function is not a scalar, butmust be treated as
a scalar half-density. Therefore, the covariant derivatives are
defined with a weight contribution: ∇μf ¼ ð∂μ − 1

2
ΓμÞf

with Γμ ≔ Γν
μν,∇μ∇νf ¼ ð∂μ − 1

2
ΓμÞ∇νf − Γρ

μν∇ρf, and so
on. The tensor fields, βμν and βμνρ, are symmetric, and the
field βμν;ρσ has the pairwise symmetries,

βμν;ρσ ¼ βνμ;ρσ ¼ βμν;σρ ¼ βρσ;μν: ð10Þ
Thus, up to the fourth order, the “components” of P are
represented by the four fields, βðxÞ, βμνðxÞ, βμνρðxÞ, and
βμν;ρσðxÞ. Because of the weight of f and the invariance of
Pf3, these fields are assumed to have the weight of negative
half-density (the details will be given in Sec. IV),

½f� ¼ 1

2
;

½β� ¼ ½βμν� ¼ ½βμνρ� ¼ ½βμν;ρσ� ¼ −
1

2
: ð11Þ

4In [18], the mathematical formulation is presented differently
as a moment expansion in coordinates. Though they are essen-
tially the same from the physical point of view, the present
formulation in terms of distributions is superior to the former one
in the sense that the covariance can easily be incorporated.
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Here, [X] denotes theweight of a quantityX, meaning thatX

has the same weight as g
½X�
2 (g ≔ Det½gμν�). These weights

cancel the weight of the integration measure ddx to secure
the invariance of Pf3.
Here, we will explain more details about the derivative

expansion (9). First, as proven in Appendix A, a totally
symmetric rank-three tensor can be fully characterized by
the values of the contraction with an arbitrary vector ϕ:
Pabcϕaϕbϕc for ∀ϕ. Thus, it is enough to know Pf3 for
arbitrary f as in (9) for the full characterization of P,
instead of considering three different functions for the three
indices. Second, throughout this paper, we will consider the
derivative expansion of P up to the fourth order of
derivatives, as in (9). The reason is that we are interested
in the EOM of the fields β; βμν, up to the second order of
derivatives: as will be discussed later, these fields describe a
coupled system of gravity and a scalar field, which is of
physical interest. To correctly describe the EOM of βμν

(and β) up to the second derivatives, it is necessary to
include the fourth order of derivatives in the expansion of P
as in (9). As one can prove, an independent set of fields
describing P up to the fourth order are exhausted by the set
shown in (9). More details are given in Appendixes B and
C. Last, we have introduced a background metric gμν,
which can be taken arbitrarily. As will be explained in detail
in Sec. VI, the introduction of the background metric does
not change the physical contents, but simply redefines the
fields with a linear recombination of them. In fact, we will
see that there exists a gauge symmetry that allows one to
freely change the background metric with a simultaneous
change of the fields, and will ultimately gauge fix the
background metric to a certain combination of the fields.
In the analysis of the EOM (7) of CTM, it is necessary to

have an expression corresponding to 3Pabcϕbϕc. In the
continuum limit, one can obtain this by the functional
derivative of Pf3 in (9),

P½f; f� ≔ δ

δfðxÞPf
3

¼ 3βf2 þ 2βμνff;μν þ ðβμνf2Þ;μν þ 2βμνρff;μνρ − ðβμνρf2Þ;μνρ þ βμν;ρσf;μνf;ρσ þ 2ðβμν;ρσff;μνÞ;ρσ þOð∇5Þ
¼ ð3β þ βμν;μν − βμνρ;μνρÞf2 þ ð4βμν;ν − 6βμνρ;νρ Þff;μ þ ð2βμν − 6βμνρ;ρ Þf;μf;ν
þ ð4βμν − 6βμνρ;ρ þ 2βμν;ρσ;ρσ Þff;μν þ ð−6βμνρ þ 4βμσ;νρ;σ Þf;μf;νρ
þ 4βμν;ρσ;σ ff;ρμν þ 3βμν;ρσf;μνf;ρσ þ 4βμν;ρσf;μf;νρσ þ 2βμν;ρσff;μνρσ þOð∇5Þ: ð12Þ

Similarly, one can define an expression corresponding to
3Pabcϕ

1
aϕ

2
b for two different vectors ϕ1;2. This is denoted

by P½f; g� and is defined by an obvious generalization:
putting f, g into two f’s of each term on the right-hand side
of (12), and symmetrizing them.

IV. KINEMATICAL SYMMETRY IN THE
CONTINUUM LIMIT

CTM has the kinematical symmetry generated by the
orthogonal group generators J ab. In the continuum limit,
since the indices represent coordinates, J xy will become
generators of local gauge transformations. In the deriva-
tive expansion, the gauge transformations are parame-
trized by tensor fields, as those in (9) for P. Up to the

fourth order, we will find two gauge transformations,
which are the diffeomorphism and a spin-three gauge
transformation.
The orthogonal group transformation of CTM can be

characterized by a linear transformation of fa which
preserves the norm square fafa. In the continuum limit,
this condition is translated to the invariance of

∥f∥2 ≡
Z

ddxfðxÞfðxÞ; ð13Þ

where fðxÞ is considered to be a scalar half-density and is
assumed to have a compact support. It is easy to show that
(13) is invariant under the following infinitesimal linear
transformations:

δ1fðxÞ ¼
1

2
½∇μðvμðxÞfðxÞÞ þ vμðxÞ∇μfðxÞ� ¼

1

2
vμ;μðxÞfðxÞ þ vμðxÞf;μðxÞ;

δ3fðxÞ ¼
1

2
½∇μ∇ν∇ρðvμνρðxÞfðxÞÞ þ vμνρðxÞ∇μ∇ν∇ρfðxÞ�

¼ 1

2
vμνρ;μνρðxÞfðxÞ þ 3

2
vμνρ;μν ðxÞf;ρðxÞ þ

3

2
vμνρ;μ ðxÞf;νρðxÞ þ vμνρðxÞf;μνρðxÞ; ð14Þ
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where vμ and vμνρ are a vector field and a symmetric rank-
three tensor field, respectively, and ∇μ is the covariant
derivative [∇μf ¼ ð∂μ − 1

2
ΓμÞf with Γμ ≡ Γν

μν, etc.]. Here
we use the same simplified notations as in Sec. III, such as
f;μν ¼ ∇μ∇νf. Indeed,

δ1∥f∥2 ¼ 2

Z
ddxfðxÞδ1fðxÞ

¼
Z

ddxfðxÞ½∇μðvμðxÞfðxÞÞ þ vμðxÞ∇μfðxÞ� ¼ 0;

ð15Þ

because the integrand is a total derivative.5 The invariance
under δ3 can also be shown similarly by using partial
integrations. As can be seen in (14), the transformation δ1
represents a diffeomorphism transformation, which trans-
forms fðxÞ as a scalar-half density, and δ3 represents a spin-
three transformation.
Some comments are in order. First, vμνρ must be assumed

to be symmetric to remove redundancies. The reason is

basically the same as that for the symmetry of β’s in (9),
which is explained in detail in Appendix B. The antisym-
metric part of f;μνρ in (14) can be rewritten in terms of the
first derivative of f by using the curvature tensor, and
therefore the antisymmetric components of vμνρ can be
absorbed into vμ. Another comment is that one may
consider a spin-two transformation with vμν in a similar
manner. However, this is also redundant. The invariance of
the norm (13) requires that the transformation should be in
the form, δ2f ¼ ∇μ∇νðvμνfÞ − vμν∇μ∇νf, with a minus
relative sign in this case. Then, the terms with the second
derivative of f cancel, and the transformation is equivalent
to a diffeomorphism transformation with vμ ¼ vμν;ν . Finally,
it is obvious that there exist an infinite tower of spin-odd
transformations that preserve (13). However, the trans-
formations higher than spin-three are irrelevant in our
treatment up to the fourth order of derivatives.
Let us define the transformations of β’s in (9) under δ1

and δ3, by transferring the transformations of f to β’s. As
for δ1, we obtain

δ1ðPf3Þ ¼
Z

ddx½3βf2δ1f þ βμνð2fðδ1fÞf;μν þ f2ðδ1fÞ;μνÞ

þ βμν;ρσððδ1fÞf;μνf;ρσ þ 2ff;μνðδ1fÞ;ρσÞ þOð∇5Þ�

¼
Z

ddx½ðδ1βÞf3 þ ðδ1βμνÞf2f;μν þ ðδ1βμνρÞf2f;μνρ þ ðδ1βμν;ρσÞff;μνf;ρσ þOð∇5Þ�; ð16Þ

where

δ1β ¼ −vμβ;μ þ
1

2
vμ;μβ þOð∇3Þ;

δ1β
μν ¼ −vρβμν;ρ þ 1

2
vρ;ρβμν þ vμ;ρβρν þ vν;ρβμρ þOð∇3Þ;

δ1β
μνρ ¼ Oð∇2Þ;

δ1β
μν;ρσ ¼ Oð∇Þ: ð17Þ

To derive the result, we have performed some partial
integrations to transform the first line of (16) into the form
of (9) in the second line. We have assumed βμνρ ¼ 0
initially, which will be discussed later as a gauge condition
for the spin-three gauge symmetry. The terms with Oð∇3Þ
in β and βμν can also be ignored, because our interest is up
to the second derivatives for these fields. δ1β

μνρ and
δ1β

μν;ρσ can be ignored, because they are of the fifth
order of derivatives in (16). The result (17) shows that β

transforms as a scalar of negative half-density, and βμν

as a two-tensor of negative half-density. Indeed, this
coincides with the weight assignments (11), which is
apparently expected from the invariance of (9) under the
diffeomorphism.
As for δ3, in a similar manner, we obtain

δ3ðPf3Þ ¼
Z

ddx½3βf2δ3f þOð∇5Þ�

¼
Z

ddx½ðδ3βÞf3 þ ðδ3βμνÞf2f;μν
þ ðδ3βμνρÞf2f;μνρ
þ ðδ3βμν;ρσÞff;μνf;ρσ þOð∇5Þ�; ð18Þ

where

δ3β ¼ Oð∇3Þ;

δ3β
μν ¼ 9

2
βvμνρ;ρ ;

δ3β
μνρ ¼ 3βvμνρ;

δ3β
μν;ρσ ¼ Oð∇Þ: ð19Þ

5Note that Γ’s cancel out as ∇μðvμf2Þ ¼ ð∂μ þ Γν
νμ − ΓμÞ×

ðvμf2Þ ¼ ∂μðvμf2Þ.
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The equation of motion (7) of CTM contains the
second term

P
σndσaPσbσcd, which represents the free-

dom to perform the infinitesimal kinematical transfor-
mation along time evolution by freely choosing nab
dependent on time. Within our approximation of the
continuum limit, the transformations which are relevant
are δ1 and δ3. Thus, we can write (7) in a schematic
manner as

d
dt

β ¼ ðnPPÞ þ δ1β;

d
dt

βμν ¼ ðnPPÞμν þ 9

2
βvμνρ;ρ þ δ1β

μν;

d
dt

βμνρ ¼ ðnPPÞμνρ þ 3βvμνρ;

d
dt

βμν;ρσ ¼ ðnPPÞμν;ρσ; ð20Þ

where we have used (17) and (19), and ðnPPÞ; ðnPPÞμν;
ðnPPÞμνρ; ðnPPÞμν;ρσ denote the spin-0,2,3,4 components
of

P
σndPσadePeσbσc , respectively. Since δ1 describes the

diffeomorphism, the terms with δ1 in (20) correspond to
the freedom to choose the shift vector in the time
evolution in the ADM formalism of general relativity.
As for the spin-3 transformation, by setting vμνρ ¼
−ðnPPÞμνρ=3β under the assumption β ≠ 0, we can
make a tuning d

dt β
μνρ ¼ 0. In this manner, one can keep

the gauge condition βμνρ ¼ 0, which gauges away the
spin-3 component. As seen in (20), by doing this gauge
fixing, the time evolution of the spin-2 component will
get a contribution by an amount,

−
3

2
β

�ðnPPÞμνρ
β

�
;ρ
; ð21Þ

from the infinitesimal spin-3 transformation. Note that,
even if P has no spin-3 component, i.e., βμνρ ¼ 0,
ðnPPÞμνρ does not vanish in general (this will be seen
explicitly later), and the spin-3 infinitesimal transforma-
tion must be carried out as above to keep βμνρ ¼ 0 along
time evolution. In later sections, this and similar
procedures will frequently be used to remove the
appearance of the spin-3 component. In fact, the
spin-3 component can appear not only from the right-
hand side of the equation of motion (7), but also from
the left-hand side d

dt P, when the background metric has
time dependence as will be discussed in Sec. VII. This
can also be removed by balancing it with the spin-3
transformation on the right-hand side in a similar
manner as above.

V. EQUATION OF MOTION OF CTM IN
A STATIC BACKGROUND

In this section, we will study the continuum limit of the
EOM (7) of CTM in the case that the background metric gμν
is static. Let us take the contractions of both sides of (7)
with a test function f satisfying _f ¼ 0. The left-hand side,
d
dt ðPf3Þ, is simply given by (9) with β’s replaced by _β’s.
The right-hand side is given by

δPf3 ≔
Z

ddxnP½f; P½f; f��; ð22Þ

where we have left aside the SOðN Þ rotational part of (7)
for later discussions, we have performed a replacement
na → nðxÞ, and an overall numerical factor has been
absorbed into a constant rescaling of nðxÞ. By rewriting
(22) in the form of (9), namely,

δPf3 ¼
Z

ddx½ðδβÞf3 þ ðδβμνÞf2f;μν þ ðδβμνρÞf2f;μνρ
þ ðδβμν;ρσÞff;μνf;ρσ þOð∇5Þ�; ð23Þ

one can obtain the explicit expression of the right-hand
side of the EOM for the fields β’s. Here, note that a spin-
three component δβμνρ of δP may appear in general, even
though the gauge condition βμνρ ¼ 0 is initially assumed
on P.
The symmetric two-tensor field βμν is particularly

interesting from the viewpoint of gravity. The lowest
order set of fields containing it is given by β and βμν.
Therefore, we want to compute δβ and δβμν up to the
second order of derivatives, which would be the mini-
mum for physically interesting dynamics to be expected.
The wanted order about the latter field requires that our
computations must be correct up to the fourth order in
(23). This means that δβμνρ and δβμν;ρσ must be computed
up to the first and the zeroth orders of derivatives,
respectively.
It would seem that the fourth order terms6 in δβ must

also be included for the consistency of the fourth order
computations. However, the order of derivatives of the
terms relevant in δβμν, δβμνρ, δβμν;ρσ are less than four in
our computations up to the fourth order. This means that
the fourth derivative terms in δβ cannot affect δβμν, δβμνρ,
δβμν;ρσ even in our later computations, which more or less
mix δβ, δβμν, δβμνρ, δβμν;ρσ . Therefore, the fourth deriva-
tive terms in δβ can be ignored consistently, if one is not
interested in them: our interest is up to the second order of
derivatives in δβ.

6There exist no third order terms.
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Even with these upper bounds of our interest on the number of derivatives, the computation of (22) is very complicated,
and we used aMathematica package XTENSOR for the tensorial computations. The details of the procedure are explained in
Appendix D. We have obtained

δβμν;ρσ ¼ 11nββμν;ρσ þ 4nββμðρ;σÞν þ 4nβμνβρσ þ 3pnβðμνβρσÞ þOð∇2Þ;
δβμνρ ¼ −14nβðμν;ρÞσβ;σ − 4pnβðμνβρÞσ;σ þ 4ð1 − pÞnβðμν;σ βρÞσ − 2nββðμν;ρÞσ;σ

þ 4ð1 − pÞβðμνβρÞσn;σ − 8ββðμν;ρÞσn;σ þOð∇3Þ;
δβμν ¼ 15nββμν − 2ð1þ pÞnβμν;ρ βρσ;σ þ 2ð1 − pÞβμνβρσ;σ n;ρ − 2pnβμρ;σ βνσ;ρ

þ 4ð1 − pÞβρðμβνÞσ;ρ n;σ þ 4ð1 − pÞβρðμβνÞσ;σ n;ρ þ 2ð1 − pÞβρσβμν;ρ n;σ − 2pnβμρ;ρ βνσ;σ

− 10nβ;ρβ
μν;ρσ
;σ − 4ββμν;ρσ;ρ n;σ − 8nβ;ρβ

ρðμ;νÞσ
;σ − 8ββρðμ;νÞσ;ρ n;σ − 4β;ρβ

μν;ρσn;σ

− 8βρðμ;νÞσβ;ρn;σ − 2nβ;ρσβμν;ρσ − 4nβ;ρσβμρ;νσ þ ð1 − pÞnβμνβρσ;ρσ
þ 4ð1 − pÞnβρðμβνÞσ;ρσ þ ð2 − pÞnβρσβμν;ρσ þ nββμν;ρσ;ρσ − 4nββρðμ;νÞσ;ρσ

þ ð6 − pÞβμνβρσn;ρσ þ ð4 − 2pÞβμρβνρn;ρσ þ 7ββμν;ρσn;ρσ − 4ββμρ;νσn;ρσ

þ n

�
4

3
βρσβδðμ þ 2ββρσ;δðμ

�
RνÞ

ρσδ þOð∇4Þ;

δβ ¼ 9nβ2 − 4nβ;μβ
μν
;ν þ nβμνβ;μν þ nββμν;μν þ 5ββμνn;μν þOð∇4Þ; ð24Þ

where p ¼ 4
3
must be taken.7 The round brackets in the

indices represent symmetrization of the indices contained
in the pairs of the brackets. For example, βμðν;ρÞσ ¼
1
2
ðβμν;ρσ þ βμρ;νσÞ, and βðμνβρσÞ represents the total

symmetrization.
As seen in (24), δβ’s have complicated expressions with

the derivatives of both β’s and n. The existence of the
derivatives of n seems to pose a challenge in comparison
with general relativity, since the equation of motion of the
metric tensor field in the Hamilton-Jacobi formalism of
general relativity, written down in Sec. X, contains no
derivatives of the lapse function. This absence comes from
the fact that the Hamiltonian of the ADM formalism HADM
is expressed with no derivatives of the lapse function, and
the Poisson brackets with the fields do not produce them
either, where the conjugate momenta to the fields are
replaced by some functions of the fields in the Hamilton-
Jacobi formalism.
The fundamental reason why we encounter the above

difference between CTM and general relativity can intui-
tively be understood by the fact that, in CTM, a space is an
emergent object characterized by the tensor P. As explained
at the beginning of Sec. III, there exists intrinsic fuzziness
that disturbs the exactness of a position specified by the

coordinate x, where the ambiguity would be in the order of
∼

ffiffiffiffiffiffiffiffiffiffiffi
βμν=β

p
for a dimensional reason. This ambiguity of

positions would also make ambiguous the value of a field,
here the lapse function, as a function of x by an amount in
the order of δnðxÞ ∼ βμνn;μν=β. The real expressions in (24)
are much more involved, but this gives an intuitive under-
standing of the reason why the spatial derivatives of the
lapse function can appear, irrespective of their absence in
general relativity. Therefore, to make relations between
CTM and general relativity, it would be natural to perform
some redefinitions of the lapse function and the fields by
adding some corrections of the spatial derivatives. In fact,
we will do so in later sections.
Another interesting thing to notice in (24) is that there

appear terms with the background curvature in δβμν. For a
static background considered in this section, the back-
ground curvature appears just as the coefficients of the
quadratic terms of β’s and does not seem to play an
important role. On the other hand, as we will discuss in later
sections, when the background metric becomes dynamical
as a result of the gauge fixing to a combination of the fields,
the curvature terms play essential roles for the consistency
of the time evolution.
The result (24) shows that there appears a spin-three

component δβμνρ, even if we assume βμνρ ¼ 0 initially.
Therefore, as explained in Sec. IV, to maintain the gauge
condition βμνρ ¼ 0, the spin-three gauge transformation
δ3 in (19) has to be performed simultaneously. This is to
bring in the spin-three gauge transformation contained
in the SOðN Þ rotation part of EOM (7). By setting
δβμνρ þ 3βvμνρ ¼ 0, we obtain the EOM for the fields as

7The parameter p becomes a free parameter in the case that the
term δβμνρσf2f;μνρσ is also allowed in the expression of δPf3. As
explained in Appendix B, this term can be set to zero by using
(B6) for the unique representation. But, if we leave it,
δβμνρσ ¼ ð2 − 3p=2ÞnβðμνβρσÞ, and the others will be given by
(24) with free p.
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_β ¼ δβ;

_βμν ¼ δβμν −
3

2
β∇ρ

�
1

β
δβμνρ

�
;

_βμν;ρσ ¼ δβμν;ρσ; ð25Þ

where the last term in the second line comes from the
second line of (19), the consequence of maintaining the
gauge fixing condition βμνρ ¼ 0.
A physically important consistency check of the EOM

(25) is to compute the commutation of two successive
infinitesimal time evolutions. This corresponds to the
commutation of the Hamiltonian constraints in CTM,
and, from the first-class nature of the constraint algebra,
this should be described by the kinematical transformation
J ab. In the present context of the continuum limit, the
commutation of the time evolutions should be expressed by
the gauge transformations discussed in the preceding
section. Since the spin-three transformation δ3 has already
been used for the gauge fixing, one would expect that the
commutation should be described by the diffeomorphism
transformation δ1. Note that the lapse function nðxÞ is a
field locally depending on x, and the situation is the same as
the time evolution in terms of the Hamiltonian constraint in
general relativity: the commutation of the Hamiltonian
constraint being equal to the diffeomorphism is nothing but
the assurance of the spacetime covariance of the locally
generated time evolution. This is directly connected to the
central principle in general relativity, and it is highly
interesting to check this in the present context.
Now, let us explicitly describe the commutation of two

successive infinitesimal time evolutions. Suppose we start
with a configuration, β, βμν, βμν;ρσ. After an infinitesimal
time Δt with lapse n1, the fields evolve to

βi1 ¼ βi þ Δt _βiðn1; β; βμν; βμν;ρσÞ; ð26Þ

where βi represents β, βμν, or βμν;ρσ. Here, we have written
explicitly the dependence of _β’s on n and β’s. Then, after
the second step with lapse n2, we obtain

βi12 ¼ βi1 þ Δt _βiðn2; β1; βμν1 ; βμν;ρσ1 Þ: ð27Þ

By inserting (26) into (27), expanding in the infinitesimal
parameter Δt, and subtracting the case that n1 and n2 are
interchanged, one obtains

ðδn1δn2 − δn2δn1Þβi ¼ βi12 − βi21

¼ ðΔtÞ2
Z

ddx_βjðx; n1; β;…Þ

×
δ

δβjðxÞ
_βiðn2; β;…Þ − ðn1 ↔ n2Þ;

ð28Þ

where j is summed over, and we have taken the lowest
nontrivial order in Δt.
We have used XTENSOR to obtain the following explicit

result of (28):

ðδn1δn2 − δn2δn1Þβi ¼ δ1β
i þOð∇4Þ; ð29Þ

where we have dropped the infinitesimal parameter Δt,
βi ¼ β or βμν, and δ1 is the diffeomorphism transformation
(17) with

vμ ¼ 12ββμνðn1n2;ν − n2n1;νÞ: ð30Þ

The case with βi ¼ βμν;ρσ is not considered, because this
requires a higher order computation than the fourth. If we
make the identification

gμνffiffiffi
g

p ¼ ββμν; ð31Þ

the commutation algebra (29) with (30) agrees with that of
the ADM formalism of general relativity except for a
weight factor 1=

ffiffiffi
g

p
. The weight factor is necessary for the

consistency with the weights of β and βμν shown in (11).
The identification (31) was first discussed in [18] with a
different argument directly taking the formal continuum
limit of the constraint algebra, and the extra weight factor
has been interpreted consistently. In Sec. VII, we will use
this relation (31) to gauge fix the background metric, and
the issue of weights will be treated in Sec. VIII.
It is worth mentioning that there exists a scale invariance

in the EOM (25) with (24). The transformation is given by

t → Lt; xμ → Lxμ; β →
β

L
; βμν → Lβμν;

βμνρ → L2βμνρ; βμν;ρσ → L3βμν;ρσ; ð32Þ

where L is a real free parameter. The lapse function n and
the inverse metric gμν do not transform. The transformation
is consistent with the identification (31). This scale invari-
ance will be respected throughout this paper in the other
forms of EOM which will appear in due course.
Last, we will present a solution to the EOM for the

highest component βμν;ρσ. Let us assume the following form
of a solution:

βμν;ρσ ¼ a
β
βμνβρσ þ b

β
βðμνβρσÞ; ð33Þ

where a, b are real numbers. Note that the form is
consistent with the scale transformation (32). To check
whether this satisfies the EOM, it is enough to compute the
time derivative of the right-hand side of (33) up to
nonderivative terms, since we consider βμν;ρσ up to the
zeroth order. Since, from (25),
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_β ¼ 9nβ2 þ derivative terms;

_βμν ¼ 15nββμν þ derivative terms; ð34Þ

one obtains

_βμν;ρσ ¼21nðaβμνβρσþbβðμνβρσÞÞþderivativeterms ð35Þ

from the assumption (33). On the other hand, by inserting
(33) into the EOM (25), one obtains

_βμν;ρσ ¼ ð9aþ 4Þnβμνβρσ þ ð6aþ 15bþ 4ÞnβðμνβρσÞ
þ derivative terms: ð36Þ

By equating the two expressions for _βμν;ρσ, one obtains

a ¼ 1

3
; b ¼ 1: ð37Þ

The existence of the consistent solution implies that one
can ignore the field βμν;ρσ assuming that it is given by (33)
with (37). This truncation for simplicity will be assumed in
further analysis in later sections.

VI. GAUGE SYMMETRY OF THE
BACKGROUND METRIC

In the former sections, we considered a static back-
ground metric, and this is certainly a consistent treatment.
However, there exist two distinct rank-two symmetric
tensors, gμν and βμν, and this would be physically
awkward from the viewpoint of general relativity, which
has a unique symmetric rank-two tensor called the metric.
In fact, as will be explained below, the background metric
can be chosen arbitrarily without changing the physical
contents of CTM: there exists a gauge symmetry that
allows one to freely change the background metric with
compensation by the fields. In other words, as illustrated
in Fig. 1, a constant surface of P forms a submanifold in
the configuration space of gμν and β’s, and it is extending
in the directions that allow arbitrary infinitesimal changes
of the background metric. Since the motion of P is
determined by P itself as in (7) (up to the kinematical
gauge symmetry), the motion is actually a time-dependent
transition from a constant P submanifold to another. Such
transitions can be described by various manners of one’s
own choice, as illustrated for two examples in Fig. 1.
Taking a representative point on each constant P sub-
manifold determines a trajectory of time evolution in the
configuration space of gμν and β’s. This is a gauge choice,
and, in the former section, we take the gauge that the
background metric is static, and the motion is solely
described by β’s. This is illustrated as the dotted arrow in
the figure. On the other hand, we may take another choice
that gμν and β’s are correlated. This is what we will take

for the comparison with general relativity, in which the
actual gauge fixing condition will be taken as (31). This is
illustrated as a dashed arrow in the figure. Note that the
two descriptions are physically equivalent: they are con-
nected by a transformation of gμν and β’s along a constant
P submanifold, while gμν and β’s take different values.
Let us describe the submanifold of constant P by

considering the infinitesimal changes of gμν and β’s which
keep P. This condition is given by δðPf3Þ ¼ 0 with the test
function unchanged δf ¼ 0, while gμν and β’s are allowed
to be changed. By taking the infinitesimal of (9), it is
straightforward to derive

δðPf3Þ ¼
Z

ddx

��
δβ−

1

2
βμνδΓμ;ν þ

1

3
ðβμνδ ~Γρ

μνÞ;ρ
�
f3

þ ðδβμν − βμν;ρσδΓρ;σ þ ðβμν;ρσδ ~Γδ
ρσÞ;δÞf2f;μν

þ ðδβδρσ þ βμν;ρσδ ~Γδ
μνÞf2f;δρσ þ δβμν;ρσff;μνf;ρσ

�

þOð∇5Þ; ð38Þ

where

~Γρ
μν ≔ Γρ

μν þ δρðμΓνÞ; ð39Þ

and

δΓρ
μν ¼ 1

2
gρσð∇μδgνσ þ∇νδgμσ −∇σδgμνÞ: ð40Þ

Here, we have assumed the gauge condition βμνρ ¼ 0 as an
initial input. To derive the result, we have considered the

FIG. 1. A schematic illustration of the time evolution in CTM.
The horizontal and vertical axes represent the configurations of
the fields and the background metric, respectively. The solid
curves represent the submanifolds of constant P. A time
evolution is a transition from a constant P submanifold to another
in the configuration space. The dotted arrow represents a time
evolution in the gauge of a static background metric, while the
dashed arrow represents an evolution that describes time evolu-
tion in general relativity by the gauge choice (31).
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change of the covariant derivatives under the change of gμν,
namely,

δf;μν ¼ −δΓρ
μνf;ρ −

1

2
δΓμf;ν þ∇μ

�
−
1

2
δΓνf

�
; ð41Þ

and have performed some partial integrations to obtain
(38). To further transform it to the form (9), we have to
symmetrize the third derivative of f by using the following
equation with the Riemann tensor:

βμν;ρσδ ~Γδ
μνf2f;ðδρσÞ

¼ 1

3
βμν;ρσδ ~Γδ

μνf2ðf;δρσ þ f;ρδσ þ f;ρσδÞ

¼ 1

3
βμν;ρσδ ~Γδ

μνf2ð3f;δρσ þ 2Rρδσ
κf;κÞ: ð42Þ

The last term in the last line can be transformed to the
nonderivative terms of f by a partial integration, because
f2f;κ ¼ 1

3
ðf3Þ;κ. Then, the condition δðPf3Þ ¼ 0 implies

δβ ¼ 1

2
βμνδΓμ;ν −

1

3
ðβμνδ ~Γρ

μνÞ;ρ −
2

9
ðβμν;ρσδ ~Γδ

μνRρδσ
κÞκ;

δβμν ¼ βμν;ρσδΓρ;σ − ðβμν;ρσδ ~Γδ
ρσÞ;δ;

δβμνρ ¼ −βσδ;ðμνδ ~ΓρÞ
σδ;

δβμν;ρσ ¼ 0: ð43Þ

We have shown that an arbitrary infinitesimal deformation
of the background metric can be absorbed by the infini-
tesimal change of β’s shown in (43). The last term in the
first line is actually irrelevant, because it is higher order
than our range of interest. Note that there appear spin-3
components, which must be absorbed in the way discussed
in Sec. IV to maintain the gauge condition βμνρ ¼ 0.

VII. IDENTIFYING THE BACKGROUND
GEOMETRY WITH THE FIELDS

The background geometry introduced in the preceding
sections is arbitrary. In fact, as discussed in Sec. VI, an
arbitrary change of the background geometry can be
absorbed into the change of the fields β’s without changing
P. This means that there exists a gauge symmetry which
changes the background geometry without changing the
dynamical contents of the system. The most reasonable
choice of the background geometry is (31), which deter-
mines the background geometry in terms of β and βμν, and
makes it a dynamical entity.
If we impose the identification (31), the diffeomorphism

transformation (17) derived previously for a static back-
ground will also be changed. This is because we have to
take into account the simultaneous transformation of gμν

keeping the relation (31). It is easy to see that the
corrections are given by the minus of (43). Therefore,
since (17) is in the first order of derivatives, the corrections

are higher than the second order of derivatives. This is out
of our range of interest, and the diffeomorphism trans-
formation remains in the form (17). This is consistent with
the naive expectation that β and βμν should still behave as a
scalar and a two tensor with the weight of negative half-
density, even after the identification of the background
metric with the fields.
It is important to see whether the transformation (17) and

the identification (31) reproduce the standard diffeomor-
phism transformation of gμν. Let us define

~gμν ≡ ββμν ¼ gμνffiffiffi
g

p ; ð44Þ

where we wrote (31) as well. From (17), one obtains

δ1 ~gμν ¼ ðδ1βÞβμν þ βðδ1βμνÞ
¼ −vρ ~gμν;ρ þ vρ;ρ ~gμν þ vμ;ρ ~gρν þ vν;ρ ~gμρ þOð∇3Þ: ð45Þ

Then, by using the second relation in (44), one obtains

δ1gμν ¼
ffiffiffi
g

p �
δ1 ~gμν −

gμν

dþ 2
gρσδ1 ~gρσ

�

¼ ∇μvν þ∇νvμ þOð∇3Þ; ð46Þ
where we have put (45). This indeed agrees with the
transformation of the metric under the diffeomorphism in
general relativity.
One consequence of the identification (31) is that the

expression of δβ’s in (24) is considerably simplified. This
comes from ∇μðββνρÞ ¼ 0, which is because the covariant
derivative satisfies ∇μgνρ ¼ 0. By substituting (24) with
(31), (33), and (37), we obtain

~δβ ¼ 9nβ2 þ 6n
β2

~gμνβ;μβ;ν þ 5~gμνn;μν þOð∇4Þ;

~δβμν ¼ 15n~gμν −
20n
β4

~gμρ ~gνσβ;ρβ;σ −
8

β3
~gρðμ ~gνÞσβ;ρn;σ

þ 10n
β3

~gρμ ~gνσβ;ρσ þ
14

β2
~gμρ ~gνσn;ρσ

þ ~gμν
�
8n
β4

~gρσβ;ρβ;σ −
4

β3
~gρσβ;ρn;σ þ

n
β3

~gρσβ;ρσ

þ 14

β2
~gρσn;ρσ

�
−
2n
β2

~gμρ ~gνσRρσ þOð∇4Þ: ð47Þ

Here, note that ~δβμνρ and ~δβμν;ρσ are not considered any-
more: ~δβμνρ has been gauged away to be included in ~δβμν by
the spin-three gauge transformation to keep the gauge
condition βμνρ ¼ 0, and βμν;ρσ is assumed to be the solution
(33) with (37).
As can be seen in (47), while the right-hand sides of the

EOM have been considerably simplified in comparison with
(24), the left-hand side, d

dt ðPf3Þ, must be modified with
some additional terms that come from the evolution of the
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background metric to keep the relation (31): the left-hand
side cannot simply be expressed by the time derivatives of
the fields _β, _βμν, but must also contain some additional terms
coming from the time derivative of gμν contained in the
covariant derivatives in (9). The derivation of the explicit
expression of the left-hand side is basically the same as that
of (43) through (38), and the additional terms are just the
minus sign of the right-hand sides of (43) with the
replacement δΓ → _Γ. In addition, to keep the gauge con-
dition βμνρ ¼ 0, we have to perform the spin-three gauge
transformation to transfer δβμνρ in (43) to _βμν. Then, we
obtain the EOM as

_β −
1

2
βμν _Γμ;ν þ

1

3
∇σðβμν _~Γ

σ
μνÞ ¼ ~δβ;

_βμν − βμν;ρσ _Γρ;σ þ∇δðβμν;ρσ _~Γ
δ
ρσÞ −

3

2
β∇ρ

�
1

β
βσδ;ðμν _~Γ

ρÞ
σδ

�

¼ ~δβμν; ð48Þ

where (31), (33), and (37) are supposed, and the last term on
the left-hand side of the last line comes from the spin-three
transformation. It would be worthwhile to remind the reader
that the time derivative of the Christoffel symbol can be
written covariantly as

_Γρ
μν ¼

1

2
gρσð∇μ _gνσ þ∇ν _gμσ −∇σ _gμνÞ; ð49Þ

and therefore (48) is a covariant expression.
Let us simplify (48) further. In the zeroth order of

derivatives, the EOM derived from (48) is still given by
(34), since all the corrections in (48) are in the second order.
Therefore, by using (31), the EOMof gμν in the zeroth order is
given by

_gμν ¼ 48nβ
dþ 2

gμν þOð∇2Þ: ð50Þ

Here, the dimensional dependence appears due to the
determinant in (31), while the EOM so far has been
independent of it. Then, by putting (50) into (49), one obtains

_Γρ
μν ¼ −

48

dþ 2

�
δρðμ∇νÞðnβÞ −

1

2
gμν∇ρðnβÞ

�
þOð∇3Þ:

ð51Þ

The overallminus sign is from the fact that _gμν ¼ −gμρgνσ _gρσ.
This order of _Γ is enough for our second order computation of
the correction terms on the left-hand side of (48). By putting
(51) into (48), we finally obtain

_β ¼ 9nβ2 þ ~gμν

dþ 2

�
2ð3d − 2Þn

β2
β;μβ;ν −

8ð3d − 2Þ
β

β;μn;ν −
4ð3d − 4Þn

β
β;μν − ð7d − 26Þn;μν

�

þOð∇4Þ;
_βμν ¼ 15n~gμν −

2n~gμρ ~gνσ

β2
Rρσ

þ ~gρðμ ~gνÞσ

ðdþ 2Þβ2
�
−
4ðd − 14Þn

β2
β;ρβ;σ −

24ðd − 2Þ
β

β;ρn;σ −
2ð3d − 2Þn

β
β;ρσ − 2ðd − 6Þn;ρσ

�

þ ~gμν ~gρσ

ðdþ 2Þβ2
�
8ð5dþ 8Þn

β2
β;ρβ;σ −

4ð5d − 6Þ
β

β;ρn;σ −
ð23dþ 6Þn

β
β;ρσ − 10ðd − 2Þn;ρσ

�

þOð∇4Þ; ð52Þ

where (31) is supposed. This is the version of EOM with a
dynamical background metric determined by (31).
A physically meaningful consistency check of EOM

(52) is given by computing the commutation of two
successive infinitesimal time evolutions, as the algebraic
structure (29) with (30) has been obtained for the static
background case. The existence of the gauge symmetry
discussed in Sec. VI, which allows us to freely change the
background metric, assures the covariance of the time
evolution for the evolving background case, too.
Therefore, we should obtain the same algebraic structure
as the static background case. However, the actual
computation for the consistency check is much more
complicated and nontrivial than the fixed background

case. In the second step of the successive infinitesimal
time evolutions, one has to compute the time derivative of
the right-hand side of (52).8 In the computation, the main
difference from the static background case is that we have
to take into account the time derivative of the metric as
well, which affects not only the metric itself but also the
covariant derivatives and the curvature tensor. Therefore,
while the number of terms in (52) has been substantially
reduced from (24) by the identification (31), there appears
a number of new terms in the second step, which in some
way set back the reduction. One can compute these extra

8Equation (28) corresponds to the acting time derivative on _β’s.
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contributions in a similar manner as was done in Sec. VI.
For instance, as for β,

d
dt

β;μ ¼ _β;μ þ
1

2
_Γμβ;

d
dt

β;μν ¼ _β;μν − _Γρ
μνβ;ρ þ

1

2
_Γμβ;ν þ

1

2
∇μð _ΓνβÞ; ð53Þ

where the terms with _Γμ are due to the weight of β’s in
(11). Here, _Γρ

μν is explicitly given by (51). As for the
curvature tensor, since the curvature is in the second order
by itself, it is enough to consider the nonderivative part
(50) of _gμν, and we obtain9

_Rμν ¼
24

dþ 2
ððd − 2Þ∇μ∇νðnβÞ þ gμν∇2ðnβÞÞ þOð∇4Þ:

ð54Þ
By using these expressions, one can compute the com-
mutation of infinitesimal time evolutions and obtain

ðδn1δn2 − δn2δn1Þβ

¼ −~gμνvμβ;ν þ
1

2
~gμνvμ;νβ þOð∇4Þ;

ðδn1δn2 − δn2δn1Þβμν

¼ 1

β2

�
2~gρðμ ~gνÞσvρ;σβ þ ~gμν ~gρσ

�
1

2
vρ;σβ þ vρβ;σ

��

þOð∇4Þ; ð55Þ
where

vμ ¼ 12ðn1n2;μ − n2n1;μÞ: ð56Þ
One can easily check that the right-hand sides are the same
as (29) with (30), when (31) is taken into account. Thus,
the right-hand sides of (55) represent the diffeomorphism
transformations, and the consistency of the time evolution
in the case of the evolving background with (31) has also
been established.

VIII. DELETION OF THE WEIGHTS

So far, the field β and the lapse function n have the
weights of negative and positive half-densities, respec-
tively. While these are the natural weights in the framework
of CTM, scalars with such weights are not standard in
general relativity. Therefore, we want to transform them
into simple scalars with no weights. At first glance, this
seems to be a trivial task by doing the replacement,
β → g−

1
4β and n → g

1
4n, in the EOM (52). However, while

the former is obvious, there is a subtle issue in the latter
replacement.

When we have shown the algebraic relation between the
commutation of two infinitesimal time evolutions and the
diffeomorphism in the preceding sections, it is implicitly
assumed that n2 does not change after the first infinitesimal
time evolution with n1, and vice versa. Namely, the
algebraic relation has been shown in the situation that
the lapse functions with the weight of half-density do not
change after the infinitesimal time evolutions. On the other
hand, if we do the replacement n → g

1
4n, and assume that

the new lapse functions with no weights do not change after
a first infinitesimal time evolution, the situation becomes,
in fact, different by the evolution of the weight g

1
4 from the

original one. This means that the commutation of two
infinitesimal time evolutions is a sum of a diffeomorphism
and an infinitesimal time evolution with the following lapse
function:

n12 ¼ −
1

4
gμν _gμνðn1Þn2 þ

1

4
gμν _gμνðn2Þn1: ð57Þ

Here, we have explicitly written the lapse function depend-
ence of _gμν, while it depends also on β and gμν. Of course,
the appearance of an additional time evolution is not a
breakdown of the framework, because the algebraic closure
of the diffeomorphism and the infinitesimal time evolution
holds anyway. But, this deformed algebraic structure is
inconvenient, if we want to compare CTM with the ADM
formalism of general relativity.
To fix this issue, let us consider the following repar-

ametrization of the lapse function,

n → ~n ¼ nþ hðβ; gμν; nÞ; ð58Þ
where h is a scalar function linear in n and is assumed to be
in the order of second derivatives.10 The reason for h to be
taken in the second order is that we want to keep the result
in the main order, namely, the part expressed by the
diffeomorphism. Then, the condition to compensate (57)
is given by

Z
dx

�
_βðx; n1Þ

δ

δβðxÞ þ _gμνðx; n1Þ
δ

δgμνðxÞ
�
hðβ; gμν; n2Þ

−
1

4
gμν _gμνðn1Þn2 − ðn1 ↔ n2Þ

¼ Oð∇4Þ: ð59Þ
Before discussing the solution for h to (59), let us first

discuss the explicit expressions of the EOM in the case with
no weights. So, let us leave aside the replacement n → ~n for
the moment. After the rescaling by the weight factors, i.e.,
β → g−

1
4β and n → g

1
4n, the EOM has the form

9The computation is simplified by noticing that the nonde-
rivative part of (50) is just a conformal transformation.

10A direct way to compensate, such as n → g−
1
4n, cannot be

taken, because n is supposed to be a scalar with no weights, and
its weight should not be changed.
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g
1
4
d
dt

ðg−1
4βÞ ¼ Kðβ; gμν; nÞ;

g
1
4
d
dt

ðg−1
4βμνÞ ¼ Kμνðβ; gμν; nÞ; ð60Þ

where K and Kμν are given by the right-hand sides of (52)
with the formal replacement ~gμν → gμν. The left-hand sides
of (60) can be written in the following way:

�
1 1

4
βgρσ

− 1
β2
gμν 1

β I
μν
ρσ þ 1

4β g
μνgρσ

��
_β

_gρσ

�
; ð61Þ

where Iμνρσ ¼ δðμρ δ
νÞ
σ , and (31) has been used. It is easy to find

the inverse of the matrix in (61), and we obtain

�
_β

_gμν

�
¼
� c1 c2β2gρσ

c3
β g

μν βIμνρσþc4βgμνgρσ

��
Kðβ;gμν;nÞ
Kρσðβ;gμν;nÞ

�
;

ð62Þ

where

c1 ¼
dþ 4

2ðdþ 2Þ ; c2 ¼ −
1

2ðdþ 2Þ ;

c3 ¼
2

dþ 2
; c4 ¼ −

1

dþ 2
: ð63Þ

Now let us discuss the replacement n → ~n. To solve the
condition (59) for h, let us assume the following form:

hðβ; gμν; nÞ

¼ gμν

β2

�
z1

nβ;μβ;ν
β2

þ z2
β;μn;ν
β

þ z3
nβ;μν
β

þ z4n;μν

�
;

ð64Þ

where zi are parameters. This form is chosen so that the
reparametrization (58) preserves the original form of the
EOM. By substituting _gμν in (59) with (62), we find that
(59) can be solved by

ðd − 6Þz3 þ 2ð2þ dÞz4
¼ −12 − 44dþ 17d2

6ðdþ 2Þ ;

2ðd − 6Þz1 þ ð10þ dÞz2 þ 4ð3d − 10Þz3 þ 8ð2 − dÞz4
¼ 2ð−12 − 4dþ 11d2Þ

3ðdþ 2Þ : ð65Þ

The solutions form a two-parameter family, and any of
them can be used for the purpose.
The final form of the EOM with no weights of the field

and the lapse function is obtained by doing the replacement
n → ~n in (62). Because our concern is up to the second
order, the replacement is effective only in the zeroth order
terms in (62). By explicitly computing (62), we obtain

_β ¼ −
3ðd − 6Þ
dþ 2

β2ðnþ hðβ; gμν; nÞÞ þ 1

dþ 2
nR −

17d2 þ 20dþ 36

ðdþ 2Þ2β2 nβ;μβ;μ

−
2ðd2 þ 20d − 4Þ

ðdþ 2Þ2β β;μn;μ þ
11d2 − 20dþ 60

2ðdþ 2Þ2β nβ;μ;μ þ 3d2 − 20dþ 92

2ðdþ 2Þ2 n;μ;μ þOð∇4Þ;

_gμν ¼ 48β

dþ 2
gμνðnþ hðβ; gρσ; nÞÞ − 2

β
nRμν þ 2

ðdþ 2Þβ nRg
μν

−
4ðd − 14Þ
ðdþ 2Þβ3 nβ

;μβ;ν −
24ðd − 2Þ
ðdþ 2Þβ2 n

;ðμβ;νÞ −
2ð3d − 2Þ
ðdþ 2Þβ2 nβ

;μν −
2ðd − 6Þ
ðdþ 2Þβ n

;μν

þ gμν
�
32ð3dþ 2Þ
ðdþ 2Þ2β3 nβ;ρβ

;ρ −
32ð2d − 1Þ
ðdþ 2Þ2β2 n;ρβ

;ρ −
16ð4d − 1Þ
ðdþ 2Þ2β2 nβ

;ρ
;ρ −

16ð2d − 5Þ
ðdþ 2Þ2β n;ρ;ρ

�
þOð∇4Þ: ð66Þ

For a consistency check of this result, one can compute
the commutation of two infinitesimal time evolutions, as
was done before. The basic strategy is the same. In the
second step of the infinitesimal time evolution, one has to
take the time derivative of the right-hand sides of (66).
Not only the metric itself but also we take into account
the time derivative of the second covariant derivatives11

and the curvature. Since our concern is up to the
second order, the time derivative of the Christoffel
symbol and the curvature can be evaluated by the zeroth
order of _gμν, as given in (51) and (54), respectively. Then,
we obtain

ðδn1δn2 − δn2δn1Þβ ¼ −vμβ;μ þOð∇4Þ;
ðδn1δn2 − δn2δn1Þgμν ¼ 2vðμ;νÞ þOð∇4Þ; ð67Þ

where

11The difference from the previous case (53) is the absence of
weights; namely, _Γμ is absent. Because of this, the first covariant
derivatives have no time dependencies.
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vμ ¼ 12ðn1n;μ2 − n2n
;μ
1 Þ: ð68Þ

The right-hand sides certainly agree with the standard
diffeomorphism in general relativity for a scalar and a
metric. It should be stressed that this result can be obtained
only when the correction hðβ; gμν; nÞ with the parameters
satisfying (65) is included in the equation of motion as
in (66).
Now, let us briefly discuss the inclusion of the terms

corresponding to those parametrized by a shift vector in
the Hamiltonian of the ADM formalism of general
relativity. The last term of the EOM of CTM in (7)
represents an arbitrary infinitesimal SOðN Þ transforma-
tion. As discussed in Sec. IV, it contains the diffeo-
morphism and the spin-three gauge transformation in the
present context. However, since the latter is used to
maintain the gauge-fixing condition βμνρ ¼ 0, only the
diffeomorphism can be set arbitrarily. The diffeomor-
phism transformation (17) and the identification (31)
imply that β and gμν are transformed in the standard
way of general relativity. Thus, implementing the follow-
ing replacement in (66),

_β → _β þ nμβ;μ; _gμν → _gμν − 2nðμ;νÞ; ð69Þ

where nμ is a newly introduced shift vector, one obtains
the EOM with the shift vector.

IX. DELETION OF THE
DERIVATIVES OF THE

LAPSE FUNCTION

The EOM (66) contains some terms with the deriva-
tives of n. As discussed below (24), this is an obstacle for
a general relativistic interpretation of the EOM of CTM.
In this section, we will show that, by redefining the fields
β; gμν with some derivative corrections, one can actually
delete all the terms with the derivatives of n from
the EOM.
The reparametrization of the fields we consider is given

by adding some correction terms with the second order of
derivatives,

β → β þ x1
β;μβ

;μ

β3
þ x2

β;μ;μ
β2

þ x7
R
β
;

gμν → gμν þ x3
β;μβ;ν

β4
þ x4

β;μν

β3
þ x5

gμνβ;ρβ;ρ
β4

þ x6
gμνβ;ρ;ρ
β3

þ x8
Rμν

β2
þ x9

gμνR
β2

; ð70Þ

where xi’s are parameters. Note that, since the repar-
ametrization is covariant, the algebraic consistency
between the commutation of time evolutions and the
diffeomorphism obtained so far should be unaltered.12

There exist two kinds of effects from this reparamet-
rization. The first one is on the right-hand side of (66).
Since the corrections are in the second order of
derivatives, the reparametrization is effective only on
the zeroth order term and causes some shifts of the
coefficients of the nonderivative terms of n. On the
other hand, the reparametrization affects the left-hand
side more importantly for our purpose. _β will be
replaced by

_β → _β þ x1

�
−
3_ββ;μβ

;μ

β4
þ 2_β;μβ

;μ þ _gμνβ;μβ;ν
β3

�

þ x2

�
−
2_ββ;μ;μ
β3

þ
_β;μ;μ þ _gμνβ;μν − gμν _Γρ

μνβ;ρ
β2

�

þ x7

�
−
R_β

β2
þ _gμνRμν þ gμν _Rμν

β

�
: ð71Þ

To evaluate the correction terms in (71) up to the second
order of derivatives, we can put the zeroth order
expressions of the time derivative of the fields, i.e.,
the first equations of (34), (50), (51), and (54), into
them. The things are similar for the correction terms in
the replacement of gμν in (70). Then, because the zeroth
order expressions contain n, there emerge a number of
terms that contain the derivatives of n. In fact, we can
delete all the derivative terms of n in the EOM by
appropriately choosing the xi’s. The condition for the
deletion is expressed by six equations, which are
explicitly given in Appendix E. Solving the equations
for x1;…; x6, and putting the solutions into the EOM,
we obtain

1

n
_β¼−

3ð−6þdÞβ2
2þd

þð1þð6−9dÞx7ÞR
2þd

−
16ð−1þdÞð−1þð−6þ9dÞx7Þβ;μ;μ

ð−6þdÞð2þdÞβ

þ2ð−8ð11þ84x7Þþd3ð−1þ360x7Þþ4dð43þ480x7Þ−2d2ð19þ804x7ÞÞβ;μβ;μ
ð−6þdÞ2ð2þdÞβ2

þOð∇4Þ;

12To be sure, we have checked it through explicit computations.
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1

n
_gμν ¼ 48βgμν

2þ d
þ 2ð1þ 24x7 − 3ð2þ dÞx9ÞgμνR

ð2þ dÞβ −
2ð1þ 3x8ÞRμν

β

þ A1gμνβ;ρβ;ρ

ð−6þ dÞ2ð2þ dÞβ3 þ
16ð48þ 84x8 þ 3d2x8 − 8dð1þ 6x8ÞÞβ;μβ;ν

ð−6þ dÞ2β3

−
16ð4þ 48x7 þ 6x8 − 12x9 þ 6d2x9 þ dð−1 − 48x7 þ 3x8 þ 6x9ÞÞgμνβ;ρ;ρ

ð−6þ dÞð2þ dÞβ2 −
8ð−6þ d − 12x8 þ 6dx8Þβ;μν

ð−6þ dÞβ2
þOð∇4Þ; ð72Þ

where

A1 ¼ 16ð2dð13þ 456x7 − 6x8 − 72x9Þ
− 4ð20þ 168x7 þ 33x8 − 42x9Þ
þ 30d3x9 − 3d2ð1þ 80x7 − 9x8 þ 18x9ÞÞ: ð73Þ

Interestingly, the EOM does not depend on the two-
dimensional ambiguity of the solutions of zi ’s to (65)
and is parametrized solely by x7;8;9. In the following
section, we will identify (72) with the EOM of general
relativity coupled with a scalar field based on the Hamilton-
Jacobi approach.
In the EOM (72), one can see that the scale trans-

formation (32) is realized as

t → Lt; xμ → Lxμ; β →
β

L
; ð74Þ

while n; gμν are invariant.

X. HAMILTON-JACOBI EQUATION
OF GENERAL RELATIVITY COUPLED

WITH A SCALAR FIELD

In this section, starting with an action of general
relativity coupled with a scalar field, and employing the
Hamilton-Jacobi approach, we identify the EOM of this
gravitational system with the EOM (72) of CTM.
It is an easy task to guess a possible form of the action for

the purpose,

S ¼
Z
M

ddþ1x
ffiffiffiffiffiffiffi
−G

p �
2Rðdþ1Þ −

A
2
Gij∂iϕ∂iϕ − Λe2Bϕ

�
;

ð75Þ

where Gij denotes the (dþ 1)-dimensional metric with i,
j ¼ 0; 1; 2;…; d; Rðdþ1Þ is the (dþ 1)-dimensional Ricci
scalar; ϕ is a real scalar field; and A, B, Λ are real
parameters. The scalar field ϕ is assumed to be related
to the CTM field β through β ¼ eBϕ. This action would be
considered to be an effective action valid up to the second
order of derivatives. The classical EOM derived from (75)
respects the dilatational symmetry (74), because S is

transformed homogeneously by the transformation
as S → Ld−1S.
Considering that the (dþ 1)-dimensional Lorentzian

manifold M is globally hyperbolic, we use the following
diffeomorphism,

φ∶Σ ×R → M; ð76Þ

where Σ is a d-dimensional spatial hypersurface, to obtain
the ADM metric as a pullback, φ�G,

ds2 ¼ −N2dt2 þ gμνðdxμ þ NμdtÞðdxν þ NνdtÞ; ð77Þ

whereN,Nμ, and gμν are the lapse function, the shift vector,
and the d-dimensional metric on Σ with μ, ν ¼ 1; 2;…; d.
Hereafter we will turn off the shift vector, i.e., Nμ ¼ 0 for
simplicity. The terms associated with the nonzero shift
vector can be recovered considering the time-dependent
spatial diffeomorphism.
By the diffeomorphism (76), the action (75) becomes

S ¼
Z

dtðK − VÞ; ð78Þ

where K is the kinetic term,

K ¼
Z
Σt

ddx

�
1

2
Gμν;ρσ _gμν _gρσ þ

1

2
Gϕ;ϕ _ϕ _ϕ

�
ð79Þ

with

Gμν;ρσ ¼
ffiffiffi
g

p
N

�
1

2
ðgμρgνσ þ gμσgνρÞ − gμνgρσ

�
;

Gϕ;ϕ ¼ A
ffiffiffi
g

p
N

; ð80Þ

and V is the potential term,

V ¼
Z
Σt

ddxN
ffiffiffi
g

p ðΛe2Bϕ − 2Rþ A
2
ð∇ϕÞ2Þ; ð81Þ

in which ð∇ϕÞ2 ≔ gμν∇μϕ∇νϕ with∇μ being the covariant
derivative associated with the metric gμν.
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To employ the Hamilton-Jacobi formalism, let us
consider the following Hamilton’s principal functional:

W ¼
Z
Σt

ddx
ffiffiffi
g

p ðλeBϕ − e−Bϕðc1Rþ c2ð∇ϕÞ2ÞÞ þOð∇4Þ;

ð82Þ

where c1, c2, λ are real parameters. W is considered to be
expressed as perturbative expansions in spatial derivatives
up to the second order. The potential in (81) and W in
(82) must be related by the following Hamilton-Jacobi
equation:

V þ
Z
Σt

ddx
1

2

�
Gμν;ρσ

δW
δgμν

δW
δgρσ

þ Gϕ;ϕ
δW
δϕ

δW
δϕ

�

þOð∇4Þ ¼ 0; ð83Þ
where

Gμν;ρσ ¼
Nffiffiffi
g

p
�
1

2
ðgμρgνσ þ gμσgνρÞ −

1

d − 1
gμνgρσ

�
;

Gϕ;ϕ ¼ N
A

ffiffiffi
g

p ; ð84Þ

being the inverse to (80). Inserting (82) into (83), we
obtain

V ¼
Z
Σt

ddx
ffiffiffi
g

p
N
1

2

�
1

d − 1

�
λ2de2Bϕ

4
þ λH

�

þ 1

A
ð2BλF − B2λ2e2BϕÞ

�
þOð∇4Þ; ð85Þ

where

H ¼ 2 − d
2

ðc1Rþ c2ð∇ϕÞ2Þ
þ ðd − 1Þc1ðB∇2ϕþ B2ð∇ϕÞ2Þ;

F ¼ −Bðc1R − c2ð∇ϕÞ2Þ − 2c2∇2ϕ: ð86Þ
Comparing (85) with (81), we obtain some conditions for
the parameters of W as

Λ¼λ2ð−4B2ð−1þdÞþAdÞ
8Að−1þdÞ ;

−2¼−
c1λðAð−2þdÞþ4B2ð−1þdÞÞ

4Að−1þdÞÞ ;

A
2
¼λðAð−c2ð−2þdÞþ2B2c1ð−1þdÞÞþ4B2c2ð−1þdÞÞ

4Að−1þdÞ ;

0¼BλðAc1þ4c2Þ: ð87Þ

Here, the first equation comes from the comparison of
the potential term, the second the curvature, and the third

the scalar kinetic term. The last equation comes from the
absence of the ∇2ϕ term in the potential.
The flow equations derived from W are given by13

1

N
_ϕ ¼ Gϕ;ϕ

δW
δϕ

¼ 1

A
ðBλeBϕ − e−BϕFÞ þOð∇4Þ;

1

N
_gμν ¼ Gμν;ρσ

δW
δgρσ

¼ λeBϕ

2ð1 − dÞ gμν

þ e−Bϕ
�
Hμν þ

1

1 − d
gμνH

�
þOð∇4Þ; ð88Þ

where

Hμν ¼ c1

�
Rμν −

1

2
gμνRþ Bð∇μ∇νϕ − gμν∇2ϕÞ

− B2ð∇μϕ∇νϕ − gμνð∇ϕÞ2Þ
�

þ c2ð∇μϕ∇νϕ −
1

2
gμνð∇ϕÞ2Þ: ð89Þ

There is a relation, H ¼ gμνHμν.
To compare (88) with the EOM (72) from CTM, let us

perform a change of the variable, β ¼ exp½Bϕ�. Taking into
account that _gμν ¼ −gμμ0gνν0 _gμ0ν0 , the EOM (88) can be
rewritten as

1

c3n
_β ¼ B2λβ2

A
þ B2c1R

A
þ 2c2β

;μ
;μ

Aβ
−
3c2β;μβ;μ

Aβ2
þOð∇4Þ;

1

c3n
_gμν ¼ λβgμν

2ð−1þ dÞ −
c1Rμν

β
−
c1β;μν

β2

þ ð2B2c1 − c2Þβ;μβ;ν
B2β3

þ gμν
�

c1R
2ð−1þ dÞβ þ

c2β;ρβ;ρ

2B2ð−1þ dÞβ3
�

þOð∇4Þ; ð90Þ

where we have introduced the possible difference of
normalizations between the lapse functions of CTM and
general relativity as N ¼ c3n with a constant c3. We want
to find the values of the parameters which make (90)
coincident with (72). The number of parameters is smaller
than that of the equations to be satisfied (i.e., an over-
determined set of equations), but we can solve the coinci-
dence condition by the following values:

13The flow equations for ϕ and gμν were originated with
Hamilton’s equations for ϕ and gμν with the replacement of
conjugate momenta by δW

δϕ and δW
δgμν

, respectively.
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λc3 ¼
96ð−1þ dÞ

2þ d
;

B2 ¼ Að6 − dÞ
32ðd − 1Þ ;

c1c3 ¼
8ð2þ dÞ
−10þ 7d

;

c2c3 ¼ −
2Að2þ dÞ
−10þ 7d

;

x7 ¼
16 − 88dþ 26d2 þ d3

12ð−20þ 64d − 65d2 þ 21d3Þ ;

x8 ¼
6 − d

−10þ 7d
;

x9 ¼
14 − 67dþ 17d2

−60þ 192d − 195d2 þ 63d3
: ð91Þ

The details of the derivation of the solution are given in
Appendix F. The parameter c3 can be determined by the
second (or equivalently the third) equation of (87) by
putting (91) as

c23 ¼ 12: ð92Þ

This rather strange value actually normalizes the overall
factor in the algebraic relation (68) of the CTM to the
natural value in GR. It can be checked that the third and
fourth equations of (87) are also satisfied by (91) and (92).
From the first equation of (87), (91), and (92), we obtain

Λ ¼ 36ðd − 1Þð3d − 2Þ
ðdþ 2Þ2 : ð93Þ

The above solution is unique except for the rather obvious
ambiguities of the signs of B and c3. These signs are
physically irrelevant, because the sign of B can be absorbed
by that of ϕ, and that of c3 just determines the overall sign
of W (or can be absorbed in n).
If we require the positivity of the potential energy from

the spatial derivative term of ϕ, A > 0 is required. Then, the
second equation of (91) implies that the dimension must be
in the range 2 ≤ d ≤ 6. (The d ¼ 1 case is excluded from
the beginning in the Hamilton formalism, as can be seen at
the beginning of this section.) In this range, (93) is positive,
and one can normalize the value of Λ by rescaling the
space-time coordinates as ðt; xμÞ → Lðt; xμÞ with L ¼
1=

ffiffiffiffi
Λ

p
and dropping an overall factor of the action. We

can also rescale the scalar field as ϕ → signðBÞϕ= ffiffiffiffi
A

p
.

Then, the action describing CTM is uniquely determined,
for a globally hyperbolic M, to be

SCTM ¼
Z
M

ddþ1x
ffiffiffiffiffiffiffi
−G

p �
2R −

1

2
Gij∂iϕ∂jϕ − e

ffiffiffiffiffiffiffiffi
6−d

8ðd−1Þ
p

ϕ
�
;

ð94Þ

which is valid in 2 ≤ d ≤ 6. Thus, the system has a critical
dimension d ¼ 6, over which it becomes unstable due to
the wrong sign of the scalar kinetic term. At the critical
dimension, the scalar is a massless field with no nonde-
rivative couplings.

XI. TIME EVOLUTION OF THE SCALE FACTOR

The coupled system of gravity and a scalar field
described by the action (94) has been discussed in the
context of models of dark energy. (See [29] for a compre-
hensive review.) The exponential potential in (94) of the
scalar field is known to lead to a power-law behavior (or an
exponential behavior in the critical case) of the scale factor.
Let us see this in our case, analyzing (72).
Discarding the spatial derivative terms of (72) and

putting n ¼ 1, the equation of motion is given by

_β ¼ d1β2; ð95Þ

_gμν ¼ d2βgμν; ð96Þ

where

d1 ¼
3ð6 − dÞ
dþ 2

; d2 ¼
48

dþ 2
: ð97Þ

Substituting (96) with an ansatz gμν ¼ aðtÞ−2δμν with a
scale factor aðtÞ, we obtain

2_a
a

¼ −d2β: ð98Þ

Then, for d1 ≠ 0, (i.e., d ≠ 6), the solutions to (95) and (98)
are obtained as

β ¼ 1

d1ðt0 − tÞ ;

a ¼ a0ðt0 − tÞ
d2
2d1 ; ð99Þ

where t0 and a0 are integration constants.
When d ¼ 6, d1 vanishes. In this case, β is given by a

constant, say β0. Then, (98) gives

a ¼ a0 exp

�
−
d2β0
2

t

�
: ð100Þ

Thus, we see that, in the critical case d ¼ 6, the solution is
given by de Sitter spacetime.
As is well known, de Sitter spacetime has the

invariance of a conformal symmetry SOðdþ 1; 1Þ. In
statistical physics, the appearance of a conformal sym-
metry is the sign that a system is on a critical point. This
suggests that CTM at d ¼ 6 is on a critical point in some
sense. In fact, as shown in Sec. X, for the reality of B,
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the sign of the kinetic term of the scalar field must
change its sign at d ¼ 6. In d > 6, it gets the wrong sign,
and the scalar field becomes unstable in the direction of
larger spatial fluctuations. This means that d ¼ 6 can be
thought of as a phase transition point between a stable
phase at d < 6 and another phase at d > 6. Considering
the instability in the direction of larger spatial fluctuations,
the latter phase probably contradicts our assumption of a
continuous space. The understanding of the phase tran-
sition should be pursued further.

XII. SUMMARY AND FUTURE PROSPECTS

In this paper, we have analyzed the EOM of the CTM
in a formal continuum limit by employing a derivative
expansion of its tensor up to the fourth order. We have
shown that, up to the order, the EOM of CTM in the
continuum limit agrees with that of a coupled system of
gravity and a scalar field obtained in the framework of
the Hamilton-Jacobi methodology. The action of the
gravitational system is composed of the curvature term,
the scalar field kinetic term, and an exponential potential
of the scalar field. The system is classically invariant
under a dilatational transformation. The action is physi-
cally valid in the range of the spatial dimensions,
2 ≤ d ≤ 6, and, in d > 6, the system is unstable due
to the wrong sign of the kinetic term of the scalar field.
At the critical case d ¼ 6, de Sitter spacetime is a
solution to the EOM, while, in 2 ≤ d < 6, the time
evolution of the scale factor of a flat space has a
power-law behavior.
The most significant achievement of this paper is to

have concretely shown that CTM indeed derives a
general relativistic system in a formal continuum limit.
This was conjectured in our previous paper [18] from the
observation that the constraint algebra of CTM in the
continuum limit agrees with that of the ADM formalism,
but no concrete correspondences were given. On the
other hand, in this paper, we have obtained the one-to-
one correspondence of the fields between CTM in the
continuum limit up to the fourth order and the gravita-
tional system so that the two systems have a common
EOM. The action of the corresponding gravitational
system has also been obtained.
An interesting question arising from our result is

what is the meaning of the criticality at d ¼ 6. The
existence of the de Sitter spacetime solution implies that
the system has a conformal symmetry on this background
in the dimension. On the other hand, in our previous papers
[21–23], it was shown that the Hamiltonian vector flows of
CTM can be regarded as RG flows of statistical systems on
random networks. These two aspects of CTM suggest that a
statistical system at criticality described by a six-
dimensional conformal field theory is associated with
CTM [30,31]. It would be interesting to identify the
conformal field theory in a concrete manner.

Another interesting direction of study would be to
extend the derivative expansion to higher orders, which
includes higher spin fields than two with higher spin
gauge symmetries. There are general interests in pursuing
higher spin gauge theories. (See [32] for a recent review.)
Since our approach has a significant difference from the
other ones in the sense that we take a formal continuum
limit of a consistent discretized theory in the canonical
formalism, we would expect that our model may shed
some new lights on the subject. For that purpose, it
would be necessary to set up a new efficient methodol-
ogy for the analysis instead of relying on machine powers
as in this paper.
The EOM of CTM is a set of first-order differential

equations in time and has been related to a gravitational
system through the Hamilton-Jacobi equation. While the
gravitational system contains the phenomena of second-
order differential equations like wave propagations, it is not
clear how to realize such phenomena in the framework of
CTM. It would be interesting to improve the canonical
formalism of the tensor model in that direction.
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APPENDIX A: CHARACTERIZATION OF A
SYMMETRIC RANK-THREE TENSOR

A totally symmetric rank-three tensor Pabc can be fully
characterized by the values of Pabcϕaϕbϕc for arbitrary
vector ϕ. To prove this, let us show that Pabcϕ

1
aϕ

2
bϕ

3
c for

arbitrary three vectors ϕ1;2;3 can be computed from
Pabcϕaϕbϕc with some ϕ’s.
Let us define

~ϕ0 ≔ ϕ1 þ ϕ2 þ ϕ3;

~ϕ1 ≔ −ϕ1 þ ϕ2 þ ϕ3;

~ϕ2 ≔ ϕ1 − ϕ2 þ ϕ3;

~ϕ3 ≔ ϕ1 þ ϕ2 − ϕ3: ðA1Þ

Then, one finds
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24Pabcϕ
1
aϕ

2
bϕ

3
c

¼ Pabc
~ϕ0
a
~ϕ0
b
~ϕ0
c − Pabc

~ϕ1
a
~ϕ1
b
~ϕ1
c − Pabc

~ϕ2
a
~ϕ2
b
~ϕ2
c

− Pabc
~ϕ3
a
~ϕ3
b
~ϕ3
c: ðA2Þ

APPENDIX B: INDEPENDENT FIELDS
UP TO THE FOURTH ORDER

In this section, we will explain the reason why we can
take the independent fields as in (9) up to the fourth order.
Let us first discuss the necessity of the symmetrization of

the covariant derivatives of f. As an example, let us
consider the third covariant derivative of f,

∇μ∇ν∇ρf: ðB1Þ

From the definition of the covariant derivative,∇μ∇ν∇ρf is
symmetric between ν and ρ, but generally not between μ
and ν. The antisymmetric part between μ and ν is given by

∇μ∇ν∇ρf −∇ν∇μ∇ρf ¼ Rμνρ
σ∇σf: ðB2Þ

Therefore, the antisymmetric part can be absorbed into the
first derivative term. Similar things occur also in the other
derivative terms. Thus, to secure the uniqueness of the
representation of P in terms of the fields, it is necessary to
symmetrize the covariant derivatives of f. Corres-
pondingly, we have to assume the index symmetries of
the β’s explained below (9) for the unique characterization.
Next, let us discuss the absence of some fields in the

expansion (9). Generally, Pf3 may contain a term,

Z
ddxβμf2f;μ: ðB3Þ

However, by performing partial integrations, we obtain

Z
ddxβμf2f;μ ¼

1

3

Z
ddxβμðf3Þ;μ ¼ −

1

3

Z
ddxβμ;μf3;

ðB4Þ

where the test function f is assumed to have a compact
support. Therefore, βμ is not independent and can be
absorbed into β. The same argument can be extended to
the other possible terms. The most nontrivial term would be

Z
ddxβμνρσf2f;μνρσ; ðB5Þ

where βμνρσ is assumed to be symmetric as explained
above. By partial integrations, we obtain

Z
ddx

�
1

9
βμνρσ;μνρσf3 − 2βμνρσ;μν f2f;ρσ −

8

3
βμνρσ;μ f2f;νρσ

þ 2βμνρσff;μνf;ρσ − βμνρσf2f;μνρσ

�
¼ 0: ðB6Þ

Therefore, βμνρσ can be absorbed into the fields existing
in (9).

APPENDIX C: DERIVATIVE EXPANSION
AND ASSOCIATIVITY

In this paper, we consider a formal continuum limit and
express P in terms of the derivative expansion (9) with a
termination at a certain order. This approximation with a
cutoff in the number of derivatives can be physically
validated by assuming that the scale of our physical interest
is much larger than that of the fundamental fuzziness of the
space. However, from theoretical viewpoints, this approxi-
mation must be checked with much care because any
approximations generally contain the potential risk of
destroying the essential part of the framework of CTM,
namely, the algebraic closure of the constraints. This is
directly related to the covariance of the spacetime inter-
pretation of CTM in the continuum limit, and therefore, its
slightest violations would lead to pathological behaviors of
dynamics ruining a consistent picture. The procedure we
take in the approximation is that, for each term in
the derivative expansion, we sum up the numbers of the
derivatives of the fields, the background metric, and the test
functions, and we neglect the term if the sum exceeds a
certain number, which is four in this paper. In this section,
we will explain the algebraic consistency of our procedure.
In the equation of motion (7) of CTM, the closure of the

algebraic structure of the constraints appears in the com-
mutation of two successive infinitesimal time evolutions:
the commutation is given by an infinitesimal SOðN Þ
transformation. More precisely, for the infinitesimal time
evolutions represented by n1 and n2 [the second term in (7)
is ignored for brevity], respectively, one can show that

ðδn1δn2 − δn2δn1ÞPabc ∝
X
σ

½ ~n1; ~n2�σadPdσbσc ; ðC1Þ

where ~nab ≔ ncPcab. The right-hand side is indeed an
infinitesimal SOðN Þ transformation of P with a gauge
parameter ½ ~n1; ~n2�.
In the derivation of (C1), an implicit assumption is the

following simple property of the index contraction:

PabcPcdePefg ¼ ðPabcPcdeÞPefg ¼ PabcðPcdePefgÞ; ðC2Þ

where the parentheses of the last two expressions represent
which of the two indices, c or e, is first summed over. This
associativity of the tensor manipulation is trivial for a finite
N , but it would not be generally true in an infinite case as in
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a continuum limit especially with a cutoff. We need to
check if our procedure of the approximation mentioned
above is consistent with the associativity.
By contracting all the other irrelevant indices than c or e

in (C2) with some vectors, the associativity is reduced to
the question whether ðAaBabÞCb ¼ AaðBabCbÞ. In our
case, an index contraction of tensors is represented by
the covariant derivatives and the integrations as in (9).
Thus, let us consider

A½f� ≔
Z

dx
X

0≤pþq≤m
αpq∂qf;

B½f; g� ≔
Z

dx
X

0≤pþqþr≤m
βpqrð∂qfÞð∂rgÞ;

C½f� ≔
Z

dx
X

0≤pþq≤m
γpq∂qf; ðC3Þ

where f, g are test functions. Here, for simplicity, we take
the notation of the one-dimensional case with partial
derivatives, but the discussions should be extendible to
higher dimensions with covariant derivatives. The upper
indices of α, β, γ represent the numbers of derivatives
intrinsically contained in α, β, γ, respectively, and m
represents the cutoff on the order of derivatives we
consider. Let us remind the reader that, in our procedure,
the number of derivatives is counted by summing the
numbers of the derivatives of all the components, namely,
the fields, the background metric, and the test functions.
The associativity to be shown is that B½A;C� does not

depend on whether we first compute B½A; ·� or B½·; C�. In the
former case, we obtain (contracted with a test function g)

B½A; g� ¼ B

�
δ

δf
A½f�; g

�

¼
Z

dx
X

0≤pþqþrþp0þq0≤m

βpqrð∂qþq0 ð−Þq0αp0
q0 Þð∂rgÞ;

ðC4Þ

where we have defined the component Aa from A½f� with a
functional derivative in the same way as (12). Then, by
inserting g ¼ δ

δf C½f�, we obtain

B½A;C� ¼
Z

dx
X

0≤pþqþrþp0þq0þp00þq00≤m

× βpqrð∂qþq0 ð−Þq0αp0
q0 Þð∂rþq00 ð−Þq00γp00

q00 Þ: ðC5Þ

The expression obviously does not change, even if we first
compute B½·; C�. The associativity is proven.
A comment is in order. Instead of computing in the way

of (C4), one can take a different manner as

B½A; g� ¼ A

�
δ

δf
B½f; g�

�

¼
Z

dx
X

0≤p0þq0þpþqþr≤m

αp
0

q0 ∂q0 ðð−Þqð∂qðβpqr∂rgÞÞÞ

ðC6Þ

for the same quantity. In fact, by partial integrations,14 this
is equivalent to (C4), and the computation is unique.

APPENDIX D: COMPUTATIONS OF EOM

We used a Mathematica package XTENSOR to perform
the tensorial computations in this paper. To obtain
EOM (24), instead of computing δPf3 in (22), we have
computed δP½f; f� ¼ P½n; P½f; f�� þ 2P½f; P½n; f��, and
have extracted δβ’s through (12). This is because (12)
can be used to straightforwardly get δβ’s from the coef-
ficients of the derivative expansions of f in δP½f; f�, while
the expression of δPf3 contains an integration, which
requires the nontrivial task of appropriate arrangement of
partial integrations to obtain an expression in the form (23).
Of course, the two ways give the same result.
In the actual computation using XTENSOR, we consid-

ered partial derivatives rather than covariant derivatives.
This substantially reduced the number of terms which
appeared in the raw result, because of the commutative
character of partial derivatives, namely, ∂μ∂ν ¼ ∂ν∂μ,
while ∇μ∇ν ≠ ∇ν∇μ in general.15 Then, after getting the
final form, we promoted the partial derivatives to the
covariant derivatives. The possible differences between
before and after the promotion are the appearances of
curvature tensors originating from the noncommutativity of
covariant derivatives. Within our approximation ignoring
certain higher orders of derivatives, it is not difficult to
realize that relevant terms with Riemann tensors can only
emerge from the term f2f;μνρσ. Then, it is not difficult to
explicitly compute the precise expression of this specific
term by using covariant derivatives. Our result is

δPf3 ⊃
�
4

3
βμνβρσ þ 2βμν;ρσ

�
f2ðf;μνρσ − f;μρνσÞ: ðD1Þ

The content of the latter bracket can be computed as

f;μνρσ − f;μρνσ ¼ ∇μðRνρσ
δf;δÞ

¼ ð∇μRνρσ
δÞf;δ þ Rνρσ

δf;μδ: ðD2Þ

14The test functions are assumed to have compact supports.
15It was not easy for us to make a program to take care of this

duplication automatically in the case of using covariant deriva-
tives. Researchers with better programming skills may directly
use covariant derivatives in the computation. But the final result
should agree with ours.
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After the transformation to the form (23), the first term
contributes to δβ in the order ofOð∇4Þ, and can be ignored.
On the other hand, the second term contributes to δβμν as
appearing in (24).
Another similar possibility would exist for the term

f2f;μνρ. This term may produce a curvature term of the
form Rμνρ

σf2f;σ. However, after the transformation to the
form (23), this merely generates a Oð∇4Þ term in δβ and is
ignorable. There are some other possibilities from
the covariant derivatives applied to β’s, but one can

easily find that they vanish due to the symmetric properties
of the fields or are ignorable up to the order of our
consideration.

APPENDIX E: DELETING THE DERIVATIVES
OF THE LAPSE FUNCTION

By performing the computation explained in the text, we
obtain the following six equations for the absence of the
derivatives of n in the equation of motion:

n;μ;μ in _β∶ 92 − 72x2 þ 192x7 þ d2ð3þ 6x2 − 96x7 − 6z4Þ
− 4dð5þ 6x2 þ 24x7 − 6z4Þ þ 72z4 ¼ 0;

β;μn;μ in _β∶ 4ð−2þ 18x1 þ 60x2 − 48x7 − 9z2Þ þ 4dð10þ 6x1 þ 12x2 þ 24x7 − 3z2Þ
þ d2ð2 − 6x1 − 36x2 þ 96x7 þ 3z2Þ ¼ 0;

gμνn;ρ;ρ in _gμν∶ − 36x6 þ 3d2ðx6 − 16x9Þ − 4dð8þ 3x6 þ 6x8 þ 12x9 − 12z4Þ
þ 16ð5 − 3x8 þ 6x9 þ 6z4Þ ¼ 0;

gμνβ;ρn;ρ in _gμν∶ 3d2ðx5 þ 6x6 − 16x9Þ þ 4dð−8þ 3x4 − 3x5 − 6x6 − 6x8 − 12x9 þ 6z2Þ
þ 4ð4þ 6x4 − 9x5 − 30x6 − 12x8 þ 24x9 þ 12z2Þ ¼ 0;

n;μν in _gμν∶ dð−2þ 3x4 − 24x8Þ þ 6ð2 − 3x4 þ 8x8Þ ¼ 0;

n;μβ;ν in _gμν∶ 8 − 6x3 − 20x4 þ dð−4þ x3 þ 2x4 − 8x8Þ þ 16x8 ¼ 0: ðE1Þ

APPENDIX F: DERIVATION OF (91) AND (92)

In this appendix, we will show some details of the derivation of (91) and (92).
The condition for (90) to be equal to (72) is given by the following set of equations:

B2c3λ
A

¼ −
3ð−6þ dÞ
2þ d

; ðF1Þ

B2c1c3
A

¼ 1þ ð6 − 9dÞx7
2þ d

; ðF2Þ

2c2c3
A

¼ −
16ð−1þ dÞð−1þ ð−6þ 9dÞx7Þ

ð−6þ dÞð2þ dÞ ; ðF3Þ

−
3c2c3
A

¼ 2ð−8ð11þ 84x7Þ þ d3ð−1þ 360x7Þ þ 4dð43þ 480x7Þ − 2d2ð19þ 804x7ÞÞ
ð−6þ dÞ2ð2þ dÞ ; ðF4Þ

c3λ
2ð−1þ dÞ ¼

48

2þ d
; ðF5Þ

−c1c3 ¼ −2ð1þ 3x8Þ; ðF6Þ

−c1c3 ¼ −
8ð−6þ d − 12x8 þ 6dx8Þ

−6þ d
; ðF7Þ
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ð2B2c1 − c2Þc3
B2

¼ 16ð48þ 84x8 þ 3d2x8 − 8dð1þ 6x8ÞÞ
ð−6þ dÞ2 ; ðF8Þ

c1c3
2ð−1þ dÞ ¼

2ð1þ 24x7 − 3ð2þ dÞx9Þ
2þ d

; ðF9Þ

c2c3
2B2ð−1þ dÞ ¼

A1

ð−6þ dÞ2ð2þ dÞ ; ðF10Þ

0 ¼ −
16ð4þ 48x7 þ 6x8 − 12x9 þ 6d2x9 þ dð−1 − 48x7 þ 3x8 þ 6x9ÞÞ

ð−6þ dÞð2þ dÞ ; ðF11Þ

where A1 is given by (73). The equations have been
obtained by equating the corresponding coefficients be-
tween (90) and (72), and have been ordered in the same
order as appearing in (90), except for the last one, which is
missing in (90) but exists as the coefficient of the gμνβ;ρ;ρ
term in the equation for _gμν in (72).
The equations can uniquely be solved in the following

manner (up to the obvious sign ambiguity of B and c3,
which is physically irrelevant). Up to the obvious overall
factor of c3, λ can be determined from (F5). c1 and x8 can
be determined from the set of equations (F6) and (F7). c2
and x7 can be determined from the set of (F3) and (F4).

Then, by putting λ into (F1), B2 can be determined. By
putting c1 and x7 into (F9), x9 can be determined. These are
the solution written in (91). Then, it can be checked that all
the remaining equations are satisfied by the solution.
There is the other set of equations (87), which comes

from the Hamilton-Jacobi equation. By putting the above
solution into the second and the third equations of (87), one
obtains the same equation c23 ¼ 12, namely, (92). The
fourth equation is satisfied by the above solution. The first
equation gives the value of the cosmological constant (in a
broad sense) (93).
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