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The power law is present ubiquitously in nature and in our societies. Therefore, it is important to investigate the
characteristics of power laws in the current era of big data. In this paper we prove that the superposition of non-identical
stochastic processes with power laws converges in density to a unique stable distribution. This property can be used to
explain the universality of stable laws that the sums of the logarithmic returns of non-identical stock price fluctuations
follow stable distributions.

Introduction— In this world, there are several types of data
that follow the power laws. Examples of recent studies include,
but are not limited to, the financial market,1–8) the distribution
of people’s assets,9) the distribution of waiting times between
earthquake occurrences,10) and the dependence of the number
of wars on its intensity.11) It is therefore important to
investigate the general characteristics of power laws.

In particular, as for the data in the financial market,
Mandelbrot1) firstly argued that the distribution of the price
fluctuations of cotton follows a stable law. Since the 1990s,
there has been a controversy as to whether the central limit
theorem or the generalized central limit theorem (GCLT),12)

as sums of power-law distributions can be applied to the data
of the logarithmic return of stock price fluctuations. In
particular, Mantegna, Stanley,2,3) and Yanagawa4) argued that
the logarithmic return follows a stable distribution with the
power-law index � < 2,2–4) and later Gopikrishnana et al.
denied their own argument by introducing the cubic laws
(� ¼ 3).5) Even recently, some researchers6–8) have argued
whether a distribution of logarithmic returns follows power-
laws with � > 2 or stable laws with � < 2. On the other
hand, it is necessary to prepare very large data sets to
elucidate the true tail behavior of distributions.13) In this
respect, recent study8) showed that the large and high-
frequency arrowhead data of the Tokyo stock exchange
(TSE) support stable laws with 1 < � < 2.
In this study, we show that the sums of logarithmic returns

of multiple stock price fluctuations that follow stable laws
can be described from a theoretical background. We will
extend the GCLT to the sums of independent non-identical
stochastic processes. We call this the Super Generalized
Central Limit Theorem (SGCLT).

Summary of stable distributions and the GCLT—A
probability density function Sðx;�; �; �; �Þ of random varia-
ble X, following a stable distribution,14) is defined with its
characteristic function �ðtÞ as:

Sðx;�; �; �; �Þ ¼ 1

2�

Z 1

�1
�ðtÞe�ixt dx;

where �ðt;�; �; �; �Þ is expressed as:
�ðtÞ ¼ expfi�t � ��jtj�ð1 � i� sgnðtÞwð�; tÞÞg;

wð�; tÞ ¼ tanð��=2Þ if � ≠ 1

�2=� log jtj if � ¼ 1

�
:

The parameters α, β, γ, and μ are real constants satisfying
0 < � � 2, �1 � � � 1, � > 0, and denote the indices for
power-law in stable distributions, the skewness, the scale
parameter, and the location, respectively. When � ¼ 2 and
� ¼ 0, the probability density function obeys a normal
distribution. Note that explicit forms of stable distributions
are not known for general parameters α and β, except for a
few cases such as the Cauchy distribution (� ¼ 1, � ¼ 0).

A stable random variable satisfies the following property
for the scale and location parameters. A random variable X
follows Sð�; �; �; �Þ, when

X¼d
�X0 þ � if � ≠ 1

�X0 þ � þ 2

�
�� ln � if � ¼ 1

8<
: ; ð1Þ

where X0 ¼ Sð�; �; 1; 0Þ. When the random variables Xj

satisfy Xj � Sðx;�; �j; �j; 0Þ, the superposition Zn ¼
ðX1 þ � � � þ XnÞ=n1

� of independent random variables
fXjgj¼1;...;n that have different parameters, except for α, is
also in the stable distribution family as:

Zn � Sð�; �̂; �̂; �̂Þ; ð2Þ
where the parameters �̂, �̂, and �̂ are expressed as:

�̂ ¼

Xn
j¼1

�j�
�
j

Xn
j¼1

��j

; �̂ ¼
Xn

j¼1�
�
j

n

( )1
�

and

�̂ ¼
0 if � ≠ 1

�2 ln n

n�

Xn
j¼1

�j�j if � ¼ 1

8><
>: :

We can prove this immediately by using the characteristic
function for the sums of random variables expressed as the
product of their characteristic functions:

�ðt;�; �̂; �̂; �̂Þ ¼
Yn
j¼1

�ðt=n1
� ;�; �j; �j; 0Þ:

Next, we focus on the GCLT. Let f of x be a probability
density function of a random variable X for 0 < � < 2:

fðxÞ ’ cþx�ð�þ1Þ for x ! 1
c�jxj�ð�þ1Þ for x ! �1

(
; ð3Þ
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with real constants cþ; c� > 0. We define D (domain of
attraction according to12)) as a set whose elements are
distribution functions satisfying (3), that is, f 2 Dcþ ;c� , ð3Þ.
Then, according to the GCLT,12) the superposition of
independent, identically distributed random variables
X1; . . . ; Xn converges in density to a unique stable distribu-
tion Sðx;�; �; �; 0Þ for n ! 1, that is,

Yn ¼

Xn
i¼1

Xi � An

n
1
�

�!d Sð�; �; �; 0Þ for n ! 1;

An ¼
0 if 0 < � < 1

n2= lnð’Xð1=nÞÞ if � ¼ 1

nE½X� if 1 < � < 2

8><
>: ;

ð4Þ

where ’X is a characteristic function of X as the expected
value of expðitXÞ, E½X� is the expectation value of X, = is an
imaginary part of the argument, and parameters β and γ are
expressed as:

� ¼ cþ � c�
cþ þ c�

; � ¼ �ðcþ þ c�Þ
2� sinð��=2Þ�ð�Þ

( )1
�

;

with Γ being the Gamma function. When � ¼ 2, we obtain
� ¼ R

xfðxÞ dx, �2 ¼ R
x2fðxÞ dx and the superposition Yn of

the independent, identically distributed random variables
converges in density to a normal distribution:

Yn ¼

Xn
i¼1

Xi � n�

ffiffiffi
n

p
�

�!d Nð0; 1Þ; for n ! 1:

Our generalization—We consider an extension of this
existing theorem for sums of non-identical random variables.
In what follows, we assume that the random variables
fXigi¼1;...;n satisfy the following two conditions.

Condition 1: The random variables Cþ > 0 and C� > 0

obey respectively the distributions PcþðcÞ and Pc�ðcÞ, and
satisfy E½Cþ� < 1 and E½C�� < 1.

Condition 2: The probability distribution function fiðxÞ of
the random variables Xi is satisfied when 0 < � < 2:

fiðxÞ ’
cþix�ð�þ1Þ for x ! 1
c�ijxj�ð�þ1Þ for x ! �1

(
;

where cþi and c�i are samples obtained by Cþ and C�,
respectively. The main claim of this paper is the following
generalization of GCLT: The following superposition Sn of
non-identical random variables with power laws converges in
density to a unique stable distribution Sðx;�; ��; ��; 0Þ for
n ! 1, where

Sn ¼

Xn
i¼1

Xi � An

n
1
�

�!d Sðx;�; ��; ��; 0Þ for n ! 1;

An ¼

0 if 0 < � < 1

n
Xn
i¼1

= lnð’ið1=nÞÞ if � ¼ 1

Xn
i¼1

E½Xi� if 1 < � < 2

8>>>>>><
>>>>>>:

;

ð5Þ

with ’i being a characteristic function of Xi as the expected
value of expðitXiÞ, and parameters ��, ��, �i, �i are expressed
as:

�� ¼ ECþ;C�½�i��i �
ECþ;C�½��i �

; �� ¼ fECþ;C�½��i �g
1
� ;

�i ¼ cþi � c�i
cþi þ c�i

; �i ¼ �ðcþi þ c�iÞ
2� sinð��=2Þ�ð�Þ

( )1
�

;

where ECþ;C�½X� denotes the expectation value of X with
respect to the random parameter distributions Pcþ and Pc� .

Note that when we have an explicit value hAni from
the given random variables, this result corresponds to the
result derived by substituting hcþi and hc�i into cþ and c�
in the GCLT β and γ, where hcþi ¼ EPCþ ½c� and hc�i ¼
EPC� ½c�.

Outline of the proof—Although the following is not
mathematically rigorous, we give the following intuitive
proof.

The probability distribution function of the random
variables fXjgj¼1;...;N satisfying the Conditions 1–2 are
expressed as:

fjðxÞ ’
cþjx�ð�þ1Þ for x ! þ1
c�jjxj�ð�þ1Þ for x ! �1

(
;

where cþj > 0 and c�j > 0 satisfy E½Cþ� > 0 and
E½C�� > 0. The superposition SN is then defined as:

SN ¼

XN
j¼1

Xj � AN

N
1
�

;

AN ¼

0 if 0 < � < 1

N
XN
j¼1

= lnð’jð1=NÞÞ if � ¼ 1

XN
j¼1

E½Xj� if 1 < � < 2

8>>>>>>><
>>>>>>>:

;

where ’j is a characteristic function of Xj. Let N0 be M � N
with a positive integer M and fXijgi¼1;...;M;j¼1;...;N be copies of
the stochastic variables Xj in the sense that the characteristic
parameters α, cþ, and c� of the probability density functions
of Xij are the same as that of Xj. Then, we define the
superposition SN0 as follows:

SN0 ¼

XM
i¼1

XN
j¼1

Xij � AN0

N01�
;

AN0 ¼

0 if 0 < � < 1

M2N
XN
j¼1

ð= lnð’jð1=ðMNÞÞÞÞ if � ¼ 1

M
XN
j¼1

E½Xj� if 1 < � < 2

8>>>>>>><
>>>>>>>:

:

Here, we do not consider the convergence of SN in density
for N ! 1, but consider the superposition SN0 for N0 ! 1,
since the superposition SN converges to the same limiting
distribution of SN0 if SN converges in density.

We focus on the convergence in density of SN0 forM ! 1
and N ! 1 as follows. With regard to the previous AN0 in
SN0 , we express it as AN0 ¼ PN

j¼1 AMj
with the following AMj

( j ¼ 1; . . . ; N),
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AMj
¼

0 if 0 < � < 1

M2N= lnð’jð1=MNÞÞ if � ¼ 1

ME½Xj� if 1 < � < 2

8><
>: :

Here, the superposition SN0 is described as:

SN0 ¼

XM
i¼1

XN
j¼1

Xij � AN0

N01�

¼

XM
i¼1

Xi1 � AM1

M
1
�

þ � � � þ

XM
i¼1

XiN � AMN

M
1
�

N
1
�

:

When � ≠ 1, let YMj
be the superposition ðPM

i¼1 Xij � AMj
Þ=

M
1
� . Then, YMj

converges in density to Sð�; �j; �j; 0Þ for
M ! 1 according to the GCLT (4), that is,

YMj
¼

XM
i¼1

Xij � AMj

M
1
�

�!d Sð�; �j; �j; 0Þ for M ! 1;

where �j and �j are

�j ¼ cþj � c�j
cþj þ c�j

; �j ¼ �ðcþj þ c�jÞ
2� sinð��=2Þ�ð�Þ

( )1
�

:

Thus, with the stable property (2), we obtain the convergence
of the superposition SN0 as follows:

SN0 ¼

XN
j¼1

YMj

N
1
�

�!d
XN
j¼1

Yj

N
1
�

for M ! 1; ðYj � Sð�; �j; �j; 0ÞÞ

�!d Sðx;�; ��; ��; 0Þ for N ! 1;

where �� and �� are:

�� ¼ lim
N!1

XN
j¼1

�j�
�
j

XN
j¼1

��j

¼ ECþ;C�½�j��j �
ECþ;C�½��j �

;

�� ¼ lim
N!1

XN

j¼1�
�
j

N

( )1
�

¼ fECþ;C�½��j �g
1
� :

This proves that the superposition SN0 converges in density
to Sð�; ��; ��; 0Þ. Figure 1 illustrates the concept of this
proof.

As shown above, the superposition SN0 of non-identical
stochastic processes converges in density to a unique stable
distribution. Since the limiting distribution of SN0 is the same
as that of SN, SN also converges to Sðx; �; ��; ��; 0Þ. When
� ¼ 1, this statement does not hold because of dependence
between M and N in AMj

; however, we find that the limit
distribution of the superposition SN generally converges
in density to Sðx;�; ��; ��; 0Þ in the following numerical
examples.

Numerical confirmation—As below, we confirm the claim
of SGCLT (5) by some numerical experiments.

To verify the main claim numerically, we use two kinds of
tests: two-samples Kolmogorov–Smirnov (KS) test15) and
two-samples Anderson–Darling (AD) test16) with 5% signifi-
cance level. We generate two sets of data by using different
methods, and find out the P-values of both the tests. Then,
unless the null hypothesis is rejected, we judge that both the
data follow the same distribution. For the first data, we
generate non-identical stochastic processes satisfying Con-
ditions 1–2, and prepare the superposition obtained in the
same way as (5). For the second data, we generate random
numbers that follow the stable distribution, where the first data
converges to the stable distribution according to (5).

For the first data, let us consider the chaotic dynamical
system xnþ1 ¼ gðxnÞ, where gðxÞ is defined to be17) as follows
for 0 < � < 2:

gðxÞ ¼

1

	21jxj
j	1xj2� � 1

2

� �1=�

for x >
1

	1

� 1

	1	2jxj
1 � j	1xj2�

2

� �1=�

for 0 < x <
1

	1

1

	1	2jxj
1 � j	2xj2�

2

� �1=�

for � 1

	2
< x < 0

� 1

	22jxj
j	2xj2� � 1

2

� �1=�

for x < � 1

	2

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

:

This mapping has a mixing property and an ergodic invariant
density for almost all initial points x0. One of the authors
(KU) obtained the following explicit asymmetric power-law
distribution as an invariant density:17)


�;	1;	2ðxÞ ¼

�	�1x
��1

�ð1 þ 	2�1 x2�Þ if x 	 0

�	�2 jxj��1
�ð1 þ 	2�2 jxj2�Þ if x < 0

8>>><
>>>:

:

This asymmetric distribution behaves as follows for x ! 
1:


�;	1;	2 ðxÞ ’

�

�	�1
x�ð�þ1Þ for x ! þ1

�

�	�2
jxj�ð�þ1Þ for x ! �1

8>><
>>: :

Fig. 1. Concept of the convergence (when � ≠ 1).
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This is exactly the same expression with the condition of
GCLT (3) for random variables in X. Then, by marking
the variables 	1 and 	2 distributed, we can obtain various
different distributions with the same power laws. We regard
the parameters 	1i and 	2i as random samples obtained from
�1 � P	1ð	Þ and �2 � P	2 ð	Þ, respectively, where E½�1� <
1 and E½�2� < 1 are satisfied. Then, the parameters cþi
and c�i are given as cþi ¼ �

�	�
1i
and c�i ¼ �

�	�
2i
, and E½Cþ� <

1 and E½C�� < 1 are also satisfied. As shown above, we
can get some stochastic processes satisfying Conditions 1–2.

For the second data, the random numbers generated with
the following procedure follow a stable distribution.18) Let Θ
and Ω be independent random numbers: Θ is uniformly
distributed in ð��

2
; �
2
Þ, while Ω is exponentially distributed

with mean 1. In addition, let R be as follows:

R ¼

sinð�ð�0 þ �ÞÞ
ðcosð��0Þ cos�Þ1=�

cosðð� � 1Þ�Þ
�

� �ð1��Þ=�
(� ≠ 1)

2

�

�

2
þ ��

� 	
tan� � � log

�

2
� cos�

�

2
þ ��

0
B@

1
CA

2
64

3
75 (� ¼ 1)

8>>>>>><
>>>>>>:

;

for 0 < � � 2, where �0 ¼ arctanð� tanð��=2ÞÞ. Then, it
follows that R � Sðx;�; �; 1; 0Þ. We get arbitrary stable
distributions by using the property (1) about the scale
parameter and location.

With the two sets of data obtained accordingly, we see
whether the superposition SN ¼ ðPN

i¼1 Xi � ANÞ=N1=� nu-
merically converges in density to a stable distribution
Sðx;�; ��; ��; 0Þ or not. Tables I and II show the P-values of
the KS test and AD test for each α,�1, and�2. The constant L
is the length of the sequence, and N is the number of
sequences used for the superposition. Uða; bÞ indicates the
uniform distribution in ða; bÞ. Figure 2 illustrates an example
of correspondence when � ¼ 1. “Crandð0; 1Þ” represents the
random numbers that follow the standard Cauchy distribution.

As can be seen from Tables I and II, we cannot reject the
null hypothesis in any case for α. In other words, the
distribution of superposition SN and the stable distribution
Sðx;�; ��; ��; 0Þ are close enough in density according to our

SGCLT. In Fig. 3, we can see that the superposition of non-
identical distributed random variables converges.

Remarks–As mentioned at the end of the section Our
generalization, when we have an explicit value hAni from
given random variables, the result of SGCLT corresponds to
the result derived by substituting hcþi and hc�i for cþ and c�
in the GCLT parameters β and γ. We have the following
interpretation of our outline of proof.

First, let three random variables ðcþ; c�; xÞ have a joint
probability distribution Pðc0þ; c0�; x0Þ ¼ PCþðc0þÞPC�ðc0�Þ �
fðc0þ; c0�; x0Þ, where PCþðc0þÞ and PC�ðc0�Þ satisfy Condition 1,
and fðc0þ; c0�; x0Þ, which satisfies Condition 2 of our SGCLT,
is a conditional probability distribution. A conditional prob-
ability distribution function satisfies fðc0þ; c0�; x0Þ 2 Dc0þ;c0� .

Here, we assume that a unique probability distribution
Pðc0þ; c0�; x0Þ exists, and consider random variable sequences
fðcþi; c�i; xÞgi that obey Pðc0þ; c0�; x0Þ. Then, the number
sequence fxigi derived from fðcþi; c�i; xÞgi and the relation

Table I. P-values of two tests.

α P	1 ð	Þ P	2 ð	Þ N L
P-value
(KS test)

P-value
(AD test)

1(const) 1(const) 10000 50000 0.122 0.074
0.5 Uð1; 2Þ Uð1; 2Þ 1000 100000 0.561 0.413

Uð0:5; 1Þ Uð1; 2Þ 1000 100000 0.865 0.546

1 1 1000 100000 0.226 0.308
1 Uð1; 2Þ Uð1; 2Þ 1000 100000 0.741 0.497

Uð0:5; 1Þ Uð1; 2Þ 1000 100000 0.659 0.301

1 1 1000 100000 0.916 0.529
1.5 Uð1; 1:2Þ Uð1; 1:2Þ 10000 20000 0.768 0.548

Uð0:5; 1Þ Uð1:5; 2Þ 10000 30000 0.108 0.099

Table II. P-values of two tests.

α P	1 ð	Þ P	2 ð	Þ Random variables N L
P-value
(KS test)

P-value
(AD test)

0.5
3 1 Xi � i=N 2000 10000 0.136 0.110
3 1 Xi � Crandð0; 1Þ 1000 10000 0.289 0.190

1
3 1 Xi � i=N 1000 10000 0.305 0.081
3 1 Xi � Crandð0; 1Þ 2000 10000 0.145 0.093

1.5 3 1 Xi � Crandð0; 1Þ 1000 10000 0.371 0.286

Fig. 2. (Color online) Comparison of two probability densities: the
superposition [N ¼ 103 and L ¼ 105 for � ¼ 1, �1 � Uð0:5; 1Þ, �2 �
Uð1; 2Þ] and a stable distribution (L ¼ 105 for � ¼ 1, �� ¼ 1=3, �� ¼ 1).

Fig. 3. (Color online) Image of the convergence process: The figure on the
left shows some samples of non-identical random variables Xi � Crandð0; 1Þ,
where � ¼ 1, 	1 ¼ 3, and 	2 ¼ 1. Their integration does not have an explicit
expression because of the indefinite mean of the Cauchy distribution.
However, the sum (the right figure) converges to Sð1;�0:5; 2=3; 0Þ.
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that Pðc0þ; c0�; x0Þ ¼ PCþðc0þÞPC�ðc0�Þfðc0þ; c0�; x0Þ is satisfied.
Since the distribution of the probability vector Fðcþ; c�; xÞ is
calculated as

PðF0Þ ¼
ZZZ

	ðFðc0þ; c0�; x0Þ � F0ÞPðc0þ; c0�; x0Þ dc0þ dc0� dx0;

for the case Fðcþ; c�; xÞ ¼ x, we have Pðx0Þ ¼RR
fðc0þ; c0�; x0ÞPCþðc0þÞPC�ðc0�Þ dc0þ dc0�. If we establish

Pðx0Þ 2 Dhcþi;hc�i, then we can get the result of SGCLT by
applying GCLT to Pðx0Þ. This is another interpretation of our
outline of proof. The relation Pðx0Þ 2 Dhcþi;hc�i is derived as
follows:
The following limits do not depend on c0�ðc0þÞ for x !
1ðx ! �1Þ as:

lim
x!1

x01þ�
ZZ

fðc0þ; c0�; x0ÞPCþðc0þÞPC�ðc0�Þ dc0þ dc0�

¼
Z

c0þP
0
Cþðc0þÞ dc0þ

Z
P0
C�ðc0�Þ dc0�

¼
Z

c0þP
0
Cþðc0þÞ dc0þ ¼ hcþi;

lim
x!�1 jx0j1þ�

ZZ
fðc0þ; c0�; x0ÞPCþðc0þÞPC�ðc0�Þ dc0þ dc0�

¼
Z

c0�P
0
C�ðc0�Þ dc0�

Z
P0
Cþðc0þÞ dc0þ

¼
Z

c0�P
0
C�ðc0�Þ dc0� ¼ hc�i:

These equations imply

Pðx0Þ ¼
ZZ

fðc0þ; c0�; x0ÞPCþðc0þÞPC�ðc0�Þ dc0þ dc0�

’ hcþix0�ð�þ1Þ for x0 ! 1
hc�ijx0j�ð�þ1Þ for x0 ! �1.

(

Thus, we get the relation Pðx0Þ 2 Dhcþi;hc�i.
Note that we do not assume that fðc0þ; c0�; x0Þ is uniquely

dependent on c0þ and c0�. In other words, the imperative
condition that SGCLT can be applied is an asymptotic tail
behavior of some fiðcþi; c�i; xÞ in the limit x ! 
1 such as
that fi 2 Dcþi;c�i . Note that each characteristic of fiðcþi; c�i; xÞ

can be different (non-identical) as illustrated in Fig. 3, where
fiðcþi; c�i; xÞ have different (non-identical) hAni, which
corresponds to non-identical distributions of random varia-
bles for the superposition in SGCLT.

Conclusions—We further generalize the GCLT for the
sums of independent non-identical stochastic processes
with the same power-law index α. Our main claim of
SGCLT can have more general applications, since various
type of different power laws exist in nature. Thus, our
SGCLT can support the argument on the ubiquitous nature
of stable laws that the logarithmic return of multiple stock
price fluctuations would follow a stable distribution with
1 < � < 2 by regarding them as the sums of non-identical
random variables with power laws.
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