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We study the axial Uð1Þ symmetry at a finite temperature in two-flavor lattice QCD. Employing the
Möbius domain-wall fermions, we generate gauge configurations slightly above the critical temperature Tc

with different lattice sizes L ¼ 2–4 fm. Our action allows frequent topology tunneling while keeping good
chiral symmetry close enough to that of overlap fermions. This allows us to recover full chiral symmetry by
an overlap/domain-wall reweighting. Above the phase transition, a strong suppression of the low-lying
modes is observed in both overlap and domain-wall Dirac spectra. We, however, find a sizable violation of
the Ginsparg-Wilson relation in the Möbius domain-wall Dirac eigenmodes, which dominates the signals of
the axialUð1Þ symmetry breaking near the chiral limit. We also find that the use of the overlap fermion only
in the valence sector is dangerous since it suffers from the artifacts due to partial quenching. Reweighting the
Möbius domain-wall fermion determinant to that of the overlap fermion, we observe the axial U(1) breaking
to vanish in the chiral limit, which is stable against the changes of the lattice volume and lattice spacing.
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I. INTRODUCTION

The action of quantum chromodynamics (QCD) with
two massless quark flavors has a global SUð2ÞL ×
SUð2ÞR ×Uð1ÞV ×Uð1ÞA symmetry. The flavor (or iso-
spin) nonsinglet part SUð2ÞL × SUð2ÞR is spontaneously
broken to the vectorlike subgroup SUð2ÞV below the
critical temperature Tc by the presence of the chiral
condensate hψ̄ψi ≠ 0. The axial Uð1ÞA symmetry is, on
the other hand, violated by anomaly. Namely, the flavor-
singlet axial current is not conserved due to the topological
charge density operator appearing in the axial Ward-
Takahashi identity. Since this anomalous Ward-Takahashi
identity is valid in any environment, theUð1ÞA symmetry is
supposed to be violated at any temperature. Taking account
of the gluonic dynamics, on the other hand, how much the
topological charge density contributes to the low-energy
physics may depend on the amount of topological activity
in the background gauge field. In fact, at a high temperature
T ≫ Tc [1], the instanton density is exponentially sup-
pressed, and the Uð1ÞA symmetry, as probed by physical
observables, would be restored.
Just above the transition temperature Tc, topological

fluctuations are not well understood theoretically, due to

nonperturbative nature of QCD dynamics, and the question
remains open about whether the Uð1ÞA symmetry is
effectively restored or not. It is related to the important
question on the order and the critical exponents of the two-
flavor QCD chiral phase transition, since the symmetry
determines the properties of the transition as discussed in
[2,3]. The fate of the Uð1ÞA symmetry is also of phenom-
enological interest, since the topological susceptibility in
the hot early Universe gives a strong constraint on the axion
dark matter scenario [18–22].
One of the possible observables for the Uð1ÞA symmetry

breaking is the difference of flavor nonsinglet meson
susceptibilities,

Δπ−δ ¼
Z

d4x½hπaðxÞπað0Þi − hδaðxÞδað0Þi�; ð1Þ

where πa ¼ ψ̄τaγ5ψ and δa ¼ ψ̄τaψ represent the isospin
triplet pseudoscalar and scalar operators, respectively.
Here, τa denotes one of the SUð2Þ generators. The
measurement of (1) is relatively easy as it does not involve
disconnected diagrams. Decomposing the quark propagator
into the eigenmodes of the Dirac operator, Δπ−δ may be
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written only in terms of its eigenvalue spectrum ρðλÞ (in the
continuum limit),

Δπ−δ ¼
Z

∞

0

dλρðλÞ 2m2

ðλ2 þm2Þ2 : ð2Þ

Here, the Dirac operator eigenvalue density is defined by
ρðλÞ ¼ ð1=VÞhPλ0δðλ − λ0Þi, with the four-dimensional
volume V ¼ L3 × Lt. To be precise, this relation is valid
only in the large volume limit L3 → ∞. We need to take the
spatial lattice size Lmuch larger than the correlation length
of the system so that corrections of order 1=L are
negligible. The size Lt in the temporal direction corre-
sponds to the inverse temperature 1=T. Since the integrand
of (2) at finite eigenvalue λ vanishes in the massless limit,
ρð0Þ (including its derivatives) controls whether Δπ−δ
survives or not above the chiral phase transition temper-
ature [23–25]. In fact, under an assumption of analyticity
(inm2), it can be shown that ρð0Þ vanishes before taking the
massless limit [26], and therefore the integral (2) vanishes.
Our previous work using overlap fermions [27], as well as
the work by TWQCD Collaboration [28], supports this
argument. We also note that a recent numerical simulation
with Wilson fermions [29] and an analytic study [30] report
that the Uð1ÞA anomaly effect is consistent with zero in the
chiral limit.
A possible counter argument to [26] is that the spectral

function could be nonanalytic near λ ¼ 0 in the infinite
volume limit. Some of the recent lattice calculations
suggest this possibility by finding a peak of ρðλÞ near
λ ¼ 0 [31–33]. There is however a delicate issue due to the
violation of chiral symmetry on the lattice, since the zero
modes are necessarily chiral (left- or right-handed) in the
continuum QCD, and even tiny violation of chiral sym-
metry in the lattice fermion formulation may induce
spurious zero modes or destroy the physical zero modes.
In fact, we demonstrated in [34] that the near-zero modes
are largely affected by the violation of the Ginsparg-Wilson
relation [35,36] even if one uses the Möbius domain-wall
fermion, which suppresses the violation of chiral symmetry
at the level of the residual mass being Oð1 MeVÞ.
In this work, we study the spectral function of the Dirac

operator at a finite temperature in order to elucidate the
possible effect of the residual chiral symmetry violation in
the Möbius domain-wall fermion formulation. We intro-
duce the reweighting technique to realize the formulation
that exactly satisfies the Ginsparg-Wilson relation based on
the ensembles generated with the Möbius domain-wall
fermions [37,38]. Any difference between the spectral
functions before and after the reweighting may indicate
contamination due to imprecise chiral symmetry. In our
previous work [27], we employed the overlap fermion
formulation [39,40] that has exact chiral symmetry [41],
but the simulation was restricted to a fixed topological
sector [42,43]. We avoided this problem in the present work

by generating ensembles with the Möbius domain-wall
fermion that allows frequent topology changes during
simulations.
We generate ensembles of two-flavor QCD configura-

tions at temperatures in the range between 170 and
220 MeV that cover the temperature region slightly above
the chiral phase transition. We employ the Möbius domain-
wall fermion for the sea quark formulation to achieve good
chiral symmetry, while allowing the topology tunnelings.
Spatial volume sizes are in the range L ¼ 2–4 fm.
Degenerate bare quark masses are taken in the range
2–25 MeV.
As we will see below, we find a strong suppression of

low-lying Dirac eigenvalues and the results for the Möbius
domain-wall and overlap fermions agree with each other.
The Uð1ÞA susceptibility Δπ−δ is more subtle. It turns out
that the violation of the Ginsparg-Wilson relation for the
lowest modes of Möbius domain-wall fermion is much
larger than what we expect from the residual mass
∼Oð1Þ MeV, and the violation dominates the signals of
Δπ−δ [34]. We also find that the use of the overlap fermion
only in the valence sector (as proposed in [33,44]) suffers
from partially quenching artifacts. Replacing the Möbius
domain-wall Dirac operator by the overlap Dirac operator
both in valence and sea quarks, we find a strong suppres-
sion of Δπ−δ towards the chiral limit. The chiral extrapo-
lation ofΔπ−δ is consistent with zero, which is insensitive to
the change of lattice volume V and lattice spacing a.
The rest of this paper is organized as follows. In Sec. II,

we explain the technical details of our numerical setup. The
result for the Dirac eigenvalue spectrum is presented in
Sec. III and that for the Uð1ÞA susceptibility is given in
Sec. IV. Our conclusions are given in Sec. V. Preliminary
reports of this work can be found in [45–48].

II. LATTICE SETUP

A. Möbius domain-wall and overlap fermions

In this work, we employ the Möbius domain-wall
fermion [37,38], which is numerically less expensive than
the overlap fermion and allows topology tunneling at the
cost of violating the Ginsparg-Wilson relation [35] at some
small amount, which is controllable by the finite size Ls of
the fifth direction. This formulation is one of many possible
implementations of lattice fermions satisfying the
Ginsparg-Wilson relation. They are classified by the kernel
operator and the approximation of the sign function. As
described below, the Möbius domain-wall fermion has the
same Shamir kernel DW=ð2þDWÞ [49,50], with DW the
Wilson-Dirac operator, as that of the conventional domain-
wall fermion [49–51], while improving the approximation
of the sign function by introducing a scale parameter to the
kernel. In this sense, the Möbius domain-wall fermion is a
better domain-wall fermion. The overlap fermion formu-
lation of Neuberger [39,40] has a different kernel, DW , and
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the rational approximation of the sign function is typically
adopted. As far as the chiral symmetry of the resulting
fermion is concerned, the difference of the kernels and
the details of the sign function approximation are not
important.
In the following, we take the lattice spacing a ¼ 1 unless

otherwise stated. It is shown that the fermion determinant
generated with the domain-wall fermion together with the
associated Pauli-Villars field is equivalent to a determinant
of the four-dimensional (4D) effective operator [37,38],

D4D
DWðmÞ ¼ 1þm

2
þ 1 −m

2
γ5sgnðHMÞ: ð3Þ

Here, m is the quark mass, and the matrix sign function
“sgn” is approximated by

sgnðHMÞ ¼
1 − ðTðHMÞÞLs

1þ ðTðHMÞÞLs
ð4Þ

with the transfer matrix TðHMÞ ¼ ð1 −HMÞ=ð1þHMÞ.
The kernel operator HM is written as

HM ¼ γ5
αDW

2þDW
; ð5Þ

where DW is the Wilson-Dirac operator with a large
negative mass −1=a. The scale parameter α is set to 2
in this work. This corresponds to the Möbius domain-wall
fermion [38], while α ¼ 1 gives the standard domain-wall
fermion. With this choice, the Ginsparg-Wilson relation
is realized with a better precision at a fixed Ls. The
sign function in (4) is equivalent to the form
tanhðLs tanh−1ðHMÞÞ, which converges to the exact sign
function in the limit Ls → ∞. This is called the polar
approximation. In this limit, the Ginsparg-Wilson relation
is exactly satisfied. The details of our choice of the
parameters are reported in [52].
The size of the violation of chiral symmetry for the

Möbius domain-wall fermion may be quantified by the
residual mass,

mres ¼
htrG†ΔGWGi
htrG†Gi ; ð6Þ

with

ΔGW≡ γ5
2
½D4D

DWð0Þγ5þ γ5D4D
DWð0Þ− 2aD4D

DWð0Þγ5D4D
DWð0Þ�;

ð7Þ

where G is the contact-term-subtracted quark propagator,

G ¼ 1

1 −m
ððD4D

DWðmÞÞ−1 − 1Þ: ð8Þ

We confirm that the residual mass of the Möbius domain-
wall fermion as defined in (6) is roughly 5–10 times smaller
than that of the standard domain-wall Dirac operator at the
same value of Ls [52].
Even when the residual mass calculated as (6) is small, at

a level of a few MeV or less, the low-lying mode of D4D
DW

may be significantly affected by such small violation of the
Ginsparg-Wilson relation [34]. In fact, it was shown that
the contribution to the chiral condensate is in some cases
dominated by the lattice artifact that violates the Ginsparg-
Wilson relation. Since we are interested in the details of the
low-mode spectrum, we need to carefully study such
effects. For that reason, we introduce the overlap fermion
(with the same kernel as the domain-wall fermion) and
perform the reweighting to eliminate the contamination
from the lattice artifact.
One may improve the sign function approximation in (3)

by exactly treating the low-lying eigenmodes of the kernel
operatorHM, since the polar approximation is worse for the
low modes. We compute Nth lowest eigenmodes of the
kernel operator HM and exactly calculate the sign function
for this part of the spectrum. Namely, we define

DovðmÞ ¼
X

jλMi j<λMth

�
1þm
2

þ 1 −m
2

γ5sgnðλMi Þ
�
jλMi ihλMi j

þD4D
DWðmÞ

�
1 −

X
λMi <jλMth j

jλMi ihλMi j
�
; ð9Þ

where λMi is the ith eigenvalue ofHM nearest to zero and λMth
is a certain threshold. We choose λMth ¼ 400 − 600 MeV
depending on the parameters. With these choices, the
violation of chiral symmetry is kept negligible, at the order
of ∼1 eV in our ensembles.
In this paper, we slightly misuse the terminology and call

thus defined Dov the overlap-Dirac operator, though the
kernel is that of domain-wall fermion, i.e., the Shamir
kernel.
Since the difference between D4D

DW and Dov appears only
in the treatment of the low modes of HM, we expect a good
overlap in their relevant configuration spaces and a mild
fluctuation of the reweighting factor between them. This is
indeed the case for the 163 × 8 and 323 × 12 lattices we
generated using D4D

DW, as we will see below.

B. Configuration generation

For the gauge part, we use the tree-level improved
Symanzik gauge action [53]. We apply the stout smearing
[54] 3 times on the gauge links with the ρ parameter
ρ ¼ 0.1 before computing the Dirac operators. All the
details on the choice of the parameters for these actions are
reported in our zero temperature studies [55,56].
Our simulation setup is summarized in Table I. The

lattice spacing a is estimated by the Wilson flow on a few
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selected zero-temperature configurations. We use the refer-
ence flow time t0 ¼ ð0.1539 fmÞ2 determined by the
ALPHA Collaboration [57] for Nf ¼ 2 QCD. The results
at different quark masses are extrapolated to the chiral limit,
and the data are interpolated in β assuming perturbative
running [58–62],

a¼ c0fðg2Þð1þ c2âðgÞ2Þ; âðgÞ2≡ ½fðg2Þ�2;

fðg2Þ≡ ðb0g2Þ−b1=2b20 exp
�
−

1

2b0g2

�
;

b0 ¼
1

ð4πÞ2
�
11−

2

3
Nf

�
; b1 ¼

1

ð4πÞ4
�
102−

38Nf

3

�
;

ð10Þ

where g2 ¼ 6=β, Nf ¼ 2, and c0 and c2 are free parameters
of the fit. The result is plotted in Fig. 1 with our estimates
c0 ¼ 6.9ð2Þ and c2 ¼ 6.1ð6Þ × 103. The simulated lattice
spacing covers the range between 0.074 fm (β ¼ 4.30) and
0.127 fm (β ¼ 4.05). Our estimates of the temperature on
Ls ¼ 8 and 12 lattices are listed in Table I.
We estimate the critical temperature as Tc ¼

175ð5Þ MeV from the inflection point of the Polyakov
loop, as shown in Fig. 2. We confirm that the ensembles
listed in Table I are at or above the chiral phase transition.
The physical lattice size L is 2–4 fm in the spatial

directions. We confirm by the calculation of the pseudo-
scalar correlators that the correlation length in the spatial

direction 1=MPS is sufficiently small compared to the
spatial lattice size L. The values of MPSL are listed in
Table I. We also present some effective mass plots in Fig. 3.
Because of a small correlation length of the finite temper-
ature system, no significant finite volume effects are
expected even for those ensembles at smallest quark
masses.

TABLE I. Summary of simulated ensembles. The residual massmresa is calculated using the definition (6). #trj denotes the number of
trajectories. Nconf presents the number of configurations generated (those with parenthesis are not used in the main analysis of this work

but used for the estimate of the critical temperature). Neff
conf and Neffð2Þ

conf are the effective statistics after the overlap/domain-wall
reweighting, which are defined by (15) and (16) (data with � are measured by a low-mode approximation of the reweighting). τCGint and
τtopint are the integrated autocorrelation time of the CG iteration count and topological charge, respectively, in the units of the molecular
dynamics time. MPSL is the screening mass of the pseudoscalar correlator multiplied by the lattice size L.

L3 × Lt β ma Ls mresa T [MeV] #trj Nconf Neff
conf Neffð2Þ

conf τCGint τtopint MPSL

163 × 8 4.07 0.01 12 0.00166(15) 203(1) 6600 239 11(13) 45(8) 70 25(6) 5.4(3)
163 × 8 4.07 0.001 24 0.00097(43) 203(1) 12000 197 7(7) 14(3) 315 23(4) 5.3(4)
163 × 8 4.10 0.01 12 0.00079(5) 217(1) 7000 203 23(7) 150(17) 134 30(10) 6.9(5)
163 × 8 4.10 0.001 24 0.00048(14) 217(1) 12000 214 31(10) 121(10) 104 24(4) 6.3(9)
323 × 8 4.07 0.001 24 0.00085(9) 203(1) 4200 210 10(3)* � � � 128 18(4) 11.7(9)
323 × 8 4.10 0.01 12 0.0009(5) 217(1) 3800 189 9(4)* � � � 125 30(10) 12.6(5)
323 × 8 4.10 0.005 24 0.00053(4) 217(1) 3100 146 20(4)* � � � 84 24(9) 11.6(7)
323 × 8 4.10 0.001 24 0.00048(5) 217(1) 7700 229 18(5)* � � � 10 23(5) 12.3(9)
323 × 12 4.18 0.01 16 0.00022(5) 172(1) 2600 (319) � � � � � � � � � � � � 5.8(1)
323 × 12 4.20 0.01 16 0.00020(1) 179(1) 3400 (341) � � � � � � � � � � � � � � �
323 × 12 4.22 0.01 16 0.00010(1) 187(1) 7000 (703) � � � � � � � � � � � � 5.4(2)
323 × 12 4.23 0.01 16 0.00008(1) 191(1) 5600 51 28(4) 38(5) 240 120(50) � � �
323 × 12 4.23 0.005 16 0.00012(1) 191(1) 10300 206 22(2) 27(2) 131 160(140) � � �
323 × 12 4.23 0.0025 16 0.00016(4) 191(1) 9400 195 16(2) 255(31) 85 110(30) � � �
323 × 12 4.24 0.01 16 0.00008(1) 195(1) 7600 49 23(5) 36(5) 125 100(40) 6.8(5)
323 × 12 4.24 0.005 16 0.00010(2) 195(1) 9700 190 9(18) 53(6) 84 130(30) � � �
323 × 12 4.24 0.0025 16 0.00011(2) 195(1) 16000 188 8(10) 7(1) 618 80(20) 6(2)

FIG. 1. Lattice spacing a as a function of β, for the choice of
lattice action in this work, estimated using the Wilson flow
scale t0. The data are interpolated by a perturbative prediction
given in (10). The band represents the error in the estimate, which
is negligible (<0.5%) for the ensembles discussed in this work.

A. TOMIYA et al. PHYSICAL REVIEW D 96, 034509 (2017)

034509-4



The bare quark mass is chosen in the range from 2 to
25 MeV. The residual mass (6) in our simulations is
≤1 MeV around Tc and even smaller at higher temperature.
We have data at two values of Ls ¼ 8 and 12 to check the
discretization effects.
The ensembles are generated with the standard hybrid

Monte-Carlo method. We estimate the autocorrelation time
using the conjugate gradient (CG) iteration number in the
inversion of the fermion matrix. Depending on ensembles,
it is around 70–600 in the unit of the molecular dynamics
time. Statistical error is estimated using the jackknife
method with the bin size greater than the integrated
autocorrelation time of the observable. The number of

measurement is Oð100Þ depending on the ensemble as
listed in the column of #conf. Each measurement is
separated by 20–100 molecular dynamics time.
In order to check whether the topology tunneling

frequently occurs in our simulations, we monitor the
topological charge Q of each configuration. Here, we
use the field theoretical definition for Q

Q ¼ 1

32π2
X
x

ϵμνρσTrFμνðxÞFρσðxÞ; ð11Þ

where the field strength Fμν is defined using the clover leaf
construction, measured after the Wilson flow [63] of its
flow time ta2 ≃ 5 (the measurement of Q is stable for
ta2 ≳ 3). We confirm that it changes frequently along the
simulations. One example is shown in Fig. 4. The auto-
correlation time for the topological charge is also listed in
Table I.
For the configurations generated, we compute the low-

lying eigenvalues of the 4D Hermitian effective operators
H4D

DWðmÞ≡ γ5D4D
DWðmÞ and HovðmÞ≡ γ5DovðmÞ using the

implicitly restarted Lanczos algorithm with Oð100Þ Krylov
vectors [64]. From the eigenvalues of HovðmÞ, we can also
extract the number of chiral zero modes nþ with positive
chirality and n− with negative chirality. For each zero mode
of Dovð0Þ with � chirality, we have a mode whose
eigenvalue of HovðmÞ is �m. Since these zero modes
are generally isolated, while other nonzero modes make
�λðmÞ pairs, our numerical determination of nþ and n− is
quite robust, and thus, we can determine the topological
index ν ¼ nþ − n− of the overlap Dirac operator, as well as
the number of the zero modes N0 ¼ nþ þ n−.

C. Overlap/domain-wall reweighting

The expectation value of an observable O with the
dynamical overlap fermion can be estimated by the
reweighting as

FIG. 2. The Polyakov loop expectation value as a function of
temperature. The results for Lt ¼ 8 (top panel) and those for
Lt ¼ 12 (bottom) are shown. The critical temperature Tc is
estimated as 175(5) MeV, which is shown by a shadow band.

FIG. 3. Effective mass plots of the spatial correlator at β ¼ 4.10, m ¼ 0.001 on the 323 × 8 lattice (left panel), and those at β ¼ 4.24,
m ¼ 0.0025 on the 323 × 12 lattice (right). The correlation functions in the pseudoscalar (black) and scalar (red) channels are shown.
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hOiov ¼
hORiDW
hRiDW

; ð12Þ

where h� � �iDW and h� � �iov denotes the ensemble average
with the Möbius domain wall and overlap sea quarks, and R
is the reweighting factor

R≡ det½HovðmÞ�2
det½H4D

DWðmÞ�2 ×
det½H4D

DWð1=4aÞ�2
det½Hovð1=4aÞ�2

: ð13Þ

The second factor det½H4D
DWð1=4aÞ�2= det½Hovð1=4aÞ�2 in

(13) is introduced to cancel the noise from high modes at
the cutoff scale [65]. It corresponds to adding fermions and
ghosts of a cutoff scale mass 1=4a, and therefore does not
affect the low-energy physics we are interested in. The
reweighting factor is stochastically estimated [66] with
Gaussian noise fields ξi and ξ0i,

R ¼ 1

N

XN
i¼1

exp½−ξ†i ½H4D
DWðmÞ�2½HovðmÞ�−2ξi

− ξ0†i ½H4D
DWð1=2aÞ�−2½Hovð1=2aÞ�2ξ0i�; ð14Þ

with a few noise samples for each configuration.
The reweighting is effective when the factor R does not

fluctuate too much. Since the factor scales exponentially as
a function of the volume of the lattice, the relevant matrix
½H4D

DWðmÞ�2½HovðmÞ�−2 needs to be close to an identity
operator. Our operator DovðmÞ is designed to satisfy this
condition, i.e., only the treatment of the near-zero eigenm-
odes of the kernel operator is different. It is however not
known how such difference affects R until we actually
compute it. Figure 5 shows examples of the Monte Carlo
history of R. It turns out that the maximum of R is at the
level ofOð10Þ on 163 × 8 and 323 × 12 lattices, which does
not destroy the ensemble average when we have Oð100Þ
samples. To assess the quality of the reweighting, we define
the effective number of configurations [67] by

Neff
conf ¼

hRi
Rmax

; ð15Þ

where Rmax is the maximum value of the reweighting factor
in the ensemble. However, as shown in the same plot in
Fig. 5, it turns out that Rmax does not necessarily coincide
with the peak of the observable OR, e.g., O ¼ Δ̄ov

π−δ as
defined later. Therefore, we also measure

Neffð2Þ
conf ¼ hRi

R0
max

; ð16Þ

with R0
max the reweighting factor which gives the maximum

value of Δ̄ov
π−δ × R in the ensemble. Both Neff

conf and Neffð2Þ
conf

are listed in Table I. Neffð2Þ
conf is larger than Neff

conf except for
the configurations at β ¼ 4.24 and m ¼ 0.0025.
In particular, on the 163 × 8 lattices, the reweighting

factors are stable enough that we can choose different quark
masses from that of the original ensemble: m ¼ 0.005 on
m ¼ 0.01 Möbius domain-wall ensembles.
There are some configurations for which the reweighting

factor is essentially zero, say R < 10−3. For these configu-
rations, we find chiral zero modes for the overlap-Dirac
operator. They are suppressed as the fermion determinant
contains a factor ðamÞ2 from the zero mode, and the next
lowest eigenvalues are also smaller compared to the
corresponding eigenvalues of the Möbius domain-wall
Dirac operator. We note that the pairing of the positive
and negative eigenvalues of Hov is precisely satisfied other
than the exact zero modes. WithH4D

DW, such correspondence
is hardly visible especially for the coarser lattices at Lt ¼ 8.
For the large-volume lattices of size 323 × 8, we found

that the reweighting as described above are not effective.

FIG. 4. History of the topological charge for
L3 × Lt ¼ 323 × 12, β ¼ 4.24, m ¼ 0.01.

FIG. 5. History of the reweighting factor R (solid) and that of
Δ̄ov

π−δ × R=hRi (dashed) for L3 × Lt ¼ 323 × 12 ensembles at
β ¼ 4.23 (top), 4.24 (bottom) with the same bare quark mass
m ¼ 0.0025. The definition of Δ̄ov

π−δ is given by Eq. (24).
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On these lattices, the lattice spacing is relatively large,
a≃ 0.11 fm, and the difference between D4D

DW and Dov is
more significant. With a larger spatial volume, such a
difference is enhanced exponentially. For these lattices, we
introduce a reweighting scheme that takes only the low-
mode part of the eigenvalue spectrum. Namely, we
approximate the reweighting factor by

Rlow ¼
QNth

k¼1ðλðmÞ
ov;kÞ2QNth

k¼1ðλðmÞ
DW;kÞ2

; ð17Þ

where λðmÞ
ov;k and λðmÞ

DW;k denote the kth lowest eigenvalue of
the Hermitian operatorsHovðmÞ andH4D

DWðmÞ, respectively.
The number of the eigenvalues included Nth is 40 except
for Nth ¼ 10 at β ¼ 4.10 and m ¼ 0.01. The threshold is
around 0.1=a ∼ 160 MeV.
The low-mode reweighting (17) corresponds to intro-

ducing an extra ultraviolet modification to the fermion
determinant ratio (13). However, its modification does not
distort the continuum limit since D4D

DW precisely converges
to Dov in that limit as the probability of having low-lying
modes of 2HM less than λMth vanishes. Namely, both R and
Rlow are guaranteed to converge to unity in the continuum
limit and share the same continuum limit. We confirm on
the small 163 × 8 lattice, where the full reweighting is
available, that R and Rlow give consistent results for the
Dirac spectrum. We also confirm that our observable for the
Uð1ÞA symmetry breaking is dominated by the lowest
modes much below the threshold of 0.1=a, as will be
discussed in Sec. IV.

TABLE II. Polyakov loop for original configurations hLi and
the reweighted one hLirew. Here, coarser lattice data are for
L3 ¼ 163.

β amud hLi hLirew
4.07 0.01 0.01032 (45) 0.01023 (18)
4.07 0.001 0.01147 (27) 0.0117 (15)
4.10 0.01 0.01457 (34) 0.0141 (13)
4.10 0.001 0.01294 (45) 0.0130 (11)
4.23 0.01 0.00225 (16) 0.00254 (54)
4.23 0.005 0.00495 (75) 0.00435 (92)
4.23 0.0025 0.00262 (23) 0.00235 (57)
4.24 0.01 0.00233 (18) 0.00245 (77)
4.24 0.005 0.00788 (61) 0.0076 (13)
4.24 0.0025 0.00400 (48) 0.00367 (75)

FIG. 6. Eigenvalue spectrum of the Möbius domain wall (top panels), partially quenched overlap with Möbius domain-wall sea quarks
(middle), and the (reweighted) overlap (bottom) Dirac operators. Data at β ¼ 4.10 (T ∼ 217 MeV) on 163 × 8 (left panels) and 323 × 8

(right) are shown. The data for m ¼ 0.005 on the 163 × 8 lattice are obtained by reweighting on the m ¼ 0.01 ensemble.
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As will be shown below, our target of this work, Uð1ÞA
sensitive quantities, are sensitive to the overlap/Domain-
wall reweighting. However, the reweighting does not affect
those insensitive to the Uð1ÞA symmetry. For example, we
find that the plaquette changes only by less than 0.3%,which
is much smaller than its statistical error (of reweighted
plaquettes). Table II is a comparison of the Polyakov loop
with and without the reweighting. This table shows that for
Uð1ÞA insensitive quantities, the overlap fermions and
Möbius domain-wall fermions are essentially the same.

III. DIRAC SPECTRUM

In this section, we study the Dirac spectrum ρðλÞ, which
is tightly related to both of the SUð2ÞL × SUð2ÞR and

Uð1ÞA symmetries [68]. We compute the eigenvalues λðmÞ
k

of the massive operators H4D
DWðmÞ and HovðmÞ, and

evaluate those of the massless operators using

λk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλðmÞ

k Þ2 −m2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

p : ð18Þ

When the Ginsparg-Wilson relation is satisfied, λk is
exactly the same as the corresponding eigenvalue of the

massless Dirac operator. We apply the same formula to the
Möbius domain-wall Dirac eigenvalues, though the
Ginsparg-Wilson relation is not exact. We confirm that

jλðmÞ
k j > m is always satisfied, and the effect of mres is

invisible with our resolution of the Dirac eigenvalue density
explained below.
Figure 6 shows the eigenvalue histograms of the Möbius

domain wall (top panels), partially quenched overlap with
Möbius domain-wall sea quarks (middle), and (reweighted)
overlap (bottom) Dirac operators. Data at β ¼ 4.10
(T ∼ 217 MeV) on the 163 × 8 lattice are shown on the
left panels, and those on the 323 × 8 lattice are shown on
the right panels. Here, we count the number of eigenvalues
in a bin ½λ − 4MeV; λþ 4MeV� and rescale them by 1=V to
obtain the eigenvalue density ρðλÞ in the physical unit.
When the data for different sea quark masses are plotted
together, the heavier mass data are shown by shaded
histograms. When there are exactly chiral zero modes,
they are included in the lowest bin.
The Möbius domain-wall Dirac operator spectrum shows

a mild slope towards zero at the lightest quark masses near
the chiral limit. This slope is consistent with λ3, which was
also reported in [28] employing the optimal domain-wall
fermions. The reweighted overlap Dirac operator

FIG. 7. Same as Fig. 6 but at β ¼ 4.07 (T ∼ 203 MeV).
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histograms look similar but we can see a stronger sup-
pression of the near zero modes: the first three bins are
consistent with zero, which is consistent with our previous
work [27].
In contrast to a qualitative agreement of the Möbius

domain wall and overlap Dirac operators, a striking differ-
ence is seen in the data for the partially quenched overlap or
the overlap Dirac spectrum without reweighting: a sharp
peak is found at the lowest bin, which does not disappear
even at the lightest quark mass. The appearance of such a
peak structure, mainly coming from the chiral zero modes,
is known from previous works with overlap fermions on
pure gauge configurations (see, e.g., [27]). Recently, a
similar structure was reported in the overlap Dirac spectrum
on the ensembles generated by the HISQ action [33]. Since
such a peak does not appear in the Möbius domain wall and
reweighted overlap eigenvalues, they are likely an artifact
of partial quenching.
The above properties of the Dirac eigenvalue spectrum

are insensitive to the volume and lattice spacing, as
presented in Figs. 7 and 8. We emphasize that the strong
suppression of the near-zero modes does not change even
when we vary the lattice volume size from 2 fm to 4 fm,

where the latter volume is 8 times larger than the former. If
there were a (pseudo)gap due to the finite volume, it should
scale as a power of 1=L. We also confirm that the screening
mass in the pseudoscalar channel MPS is large enough to
satisfy MPSL > 5, and the finite volume effects are well
under control.
We also remark that our data at the lowest bin, or the

eigenvalue density below 8 MeV, show a monotonically
decreasing quark mass dependence, as presented in Fig. 9.
Both data of the Möbius and overlap Dirac operators at
m < 5 MeV are consistent with zero.
Since the difference between the Möbius domain wall

and the reweighted overlap Dirac spectra are not clear, one
may think that they are qualitatively the same, and the
overlap/domain-wall reweighting is not needed for the
analysis of the Uð1ÞA susceptibility. However, as we
already reported in [34,70], we found a significant differ-
ence in the chiral symmetry of the individual eigenmodes
of the two Dirac operators. In [34], we investigated the
effects of chiral symmetry violation, or violation of the
Ginsparg-Wilson relation on each eigenmode, and how
they affect the physical observables. For example, we
observed

FIG. 8. Same as Fig. 6 but on finer lattices. Data at β ¼ 4.23 (T ∼ 191 MeV) (left panel) and at β ¼ 4.24 (T ∼ 195 MeV) (right) on the
323 × 12 lattice are plotted.
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FIG. 9. The quark mass dependence of the eigenvalue density at the first bin [0,8] MeV. The data of the Möbius domain wall (left
panel) and those of the overlap (right) Dirac operators are shown. All the data for m < 5 MeV are consistent with zero.

FIG. 10. Violation of the Ginsparg-Wilson relation gi as measured for individual eigenmodes. Data for β ¼ 4.07 on a L3 × Lt ¼
163 × 8 lattice (top panel), those for β ¼ 4.10 and L3 × Lt ¼ 323 × 8 (middle), and those for β ¼ 4.24 and L3 × Lt ¼ 323 × 12
(bottom) are shown. Results for all the measured configurations are plotted.
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gi ≡ ψ†
iΔGWψ i

λðmÞ
i

�ð1 − amÞ2
ð1þ amÞ

�
; ð19Þ

where ΔGW is defined by (7), and λðmÞ
i , ψ i denote the ith

eigenvalue/eigenvector of massive Hermitian Dirac oper-
ator, respectively. The last factor in (19) comes from the
normalization of the Dirac operator. gi vanishes when the
Ginsparg-Wilson relation is exactly satisfied.
As shown in Fig. 10, we found that the low-lying modes

of the Möbius domain-wall Dirac operator (cross symbols)
violate the chiral symmetry to the order of one, which
means that the expectation value of the violation of the
Ginsparg-Wilson relation is comparable to the eigenvalue

λðmÞ
i itself. On the top panel of Fig. 10, we also plotted the
data using D4D

DWð−mresÞ (solid circles) instead of D4D
DWð0Þ,

expecting some cancellation with the effect from the
residual mass [72]. The improvement is at most 20%,
and the violation remains to beOð1Þ. For the overlap Dirac
operator (star symbols on the top panel), gi is negligibly
small, as expected.
This large violation of chiral symmetry may potentially

distort the physical observables, if they are sensitive to
these low-lying modes and their chirality. As will be shown
in the next section (and it is discussed in detail in [34]), we
find that at our lightest simulated mass, 60%–90% of the
Uð1ÞA susceptibility measured by the Möbius domain-wall
Dirac fermions comes from the violation of the Ginsparg-
Wilson relation.
The violation of the Ginsparg-Wilson relation on the

low-lying modes of the Möbius domain-wall Dirac operator
explains the large difference between the partially
quenched and the reweighted overlap fermions. Not only
the valence fermions but also sea fermions are required to

satisfy a good chirality; otherwise, the physical observables
can be largely distorted. Therefore, the overlap/domain-
wall reweighting is essential in our analysis.

IV. Uð1ÞA SUSCEPTIBILITY

In this section, we directly investigate the Uð1ÞA
anomaly at high temperature by computing the suscep-
tibility Δπ−δ in (1), which is obtained from the two-point
correlators in the isotriplet scalar and pseudoscalar chan-
nels. These correlators are related by the Uð1ÞA symmetry,
and their difference must vanish when the symmetry is
recovered. The use of the isotriplet channels has a practical
advantage of not including disconnected diagrams, which
are numerically demanding. In the previous work by the
JLQCD Collaboration using dynamical overlap fermions
[27], we measured the meson correlators at a finite temper-
ature and found that at temperatures close to the phase
transition, the mesons correlators coincide in the limit of
small bare quark masses. Here, we reexamine the Uð1ÞA
anomaly having a better control of systematic errors from
finite volumes and finite lattice spacings.
First, we examine how much the low-lying modes of the

Dirac operator contribute to Δπ−δ. The strong violation of
the chiral symmetry in the low-lying modes, found in the
previous section, may affect the results. We compare the
eigenvalue decomposition of Δπ−δ (at finite m) with Nev ¼
20–100 lowest eigenmodes of the Möbius domain-wall
Dirac operator, Δev

π−δ, and that directly computed by
inverting the Dirac operator, Δdirect

π−δ , with a stochastic
average of the source points. This source point averaging
is essential since our data at each single source point are
noisy. We find that the lowest modes below λ ∼ 0.1=a are
enough to saturate the signals on all simulated ensembles.

TABLE III. Summary of results. The data with the subscript “ov” denote those with reweighted overlap fermions, otherwise, those
with Möbius domain-wall fermions. The results at β ¼ 4.10,m ¼ 0.005 on the 163 × 8 lattice (for which the asterisk is put) are obtained
by choosing m ¼ 0.005 for the overlap Dirac operator to reweight the Möbius domain-wall ensemble generated with m ¼ 0.01.

L3 × Lt β m ρovð0–8 MeVÞ Δdirect
π−δ a2 Δev

π−δa
2 ΔGW

π−δ=Δev
π−δ Δov

π−δa
2 Δ̄ov

π−δa
2

163 × 8 4.07 0.01 0.0071(18) 0.132(14) 0.139(12) 0.37(2) 0.19(5) 0.032(13)
163 × 8 4.07 0.001 3ð3Þ × 10−12 0.032(7) 0.0498(14) 0.982(2) 0.00015(5) 1.5ð6Þ × 10−4

163 × 8 4.10 0.01 0.0042(15) 0.073(12) 0.064(11) 0.278(40) 0.074(19) 0.012(6)
163 × 8 4.10 0.005* 0.0008(3) 0.009(2) � � � � � � 0.0003(1) 0.003(1)
163 × 8 4.10 0.001 1.5ð1.5Þ × 10−8 0.017(8) 0.0232(13) 0.983(4) 6ð3Þ × 10−5 6ð3Þ × 10−5

323 × 8 4.07 0.001 0.00002(1) 0.105(32) 0.105(35) 0.65(10) 0.03(2) −0.004ð3Þ
323 × 8 4.10 0.01 0.0067(14) 0.076(5) 0.069(5) 0.30(2) 0.120(24) 0.065(29)
323 × 8 4.10 0.005 0.00147(20) 0.111(16) 0.107(15) 0.17(2) 0.111(34) 0.025(9)
323 × 8 4.10 0.001 1.5ð1.3Þ × 10−5 0.036(11) 0.0125(50) 0.975(3) 0.097(38) −0.010ð5Þ
323 × 12 4.23 0.01 0.011(1) 0.112(10) 0.109(4) 0.038(4) 0.11(1) 0.064(11)
323 × 12 4.23 0.005 0.00444 (96) 0.107(11) 0.107(8) 0.083(9) 0.115(16) 0.026(7)
323 × 12 4.23 0.0025 0.0017(4) 0.186(47) 0.216(41) 0.162(22) 0.162(40) 0.0065(20)
323 × 12 4.24 0.01 0.011(1) 0.135(8) 0.101(3) 0.046(3) 0.107(14) 0.065(10)
323 × 12 4.24 0.005 0.0054(9) 0.112(17) 0.124(13) 0.057(10) 0.122(21) 0.030(14)
323 × 12 4.24 0.0025 0.0008(5) 0.052(15) 0.041(13) 0.32(8) 0.078(52) 0.0030(6)
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The results for Δdirect
π−δ and Δev

π−δ are presented in Table III.
The saturation of the low-mode approximation is demon-
strated in Fig. 11 for two typical configurations.
Next, let us separate the contribution coming from the

violation of the Ginsparg-Wilson relation. As we already
discussed in [34], Δev

π−δ can be decomposed into the chiral
symmetric part ΔGW

π−δ and violating part ΔGW
π−δ as

Δev
π−δ ¼ ΔGW

π−δ þ ΔGW
π−δ; ð20Þ

ΔGW
π−δ ≡ 1

Vð1 −m2Þ2
X
i

2m2ð1 − λðmÞ2
i Þ2

λðmÞ4
i

; ð21Þ

ΔGW
π−δ ≡ 1

Vð1 −mÞ2
X
i

�
hi

λðmÞ
i

− 4
gi

λðmÞ
i

�
; ð22Þ

where gi was already defined in Eq. (19) and

hi ≡ 2ð1 −mÞ2
ð1þmÞ ψ†

i γ5ðH4D
DWðmÞÞ−1γ5ΔGWðH4D

DWðmÞÞ−1ψ i

þ 2

1þm

�
1þ m

λðmÞ2
i

�
gi ð23Þ

is another measure of the violation of Ginsparg-Wilson
relation. Both of these quantities must be zero if the
Ginsparg-Wilson relation is satisfied.

Figure 12 shows the quark mass dependence of the ratio
ΔGW

π−δ=Δev
π−δ. The Ginsparg-Wilson relation violating part

ΔGW
π−δ dominates the signal as the quark mass decreases. For

data points less than m ¼ 5 MeV (at lower β), more than
60%–98% of the signal is the contribution from ΔGW

π−δ.
Thus, we need a careful control of the chiral symmetry on
the low-lying eigenmodes in taking the chiral limit of the
Uð1ÞA breaking observables.
Finally, let us examine the Uð1ÞA susceptibility with

overlap fermions. Here we do not use the partially
quenched overlap as we have shown its significant lattice
artifacts. We observe that the partially quenched overlap
Δπ−δ overshoots the Möbius domain-wall data. We confirm
that gi and hi for the overlap Dirac eigenmodes are
negligible (see Fig. 10), so that we can safely use ΔGW

π−δ
together with the OV/DW reweighting to estimate the
Uð1ÞA susceptibility (let us denote it as Δov

π−δ).
Taking the advantage of good chirality, we can subtract

the effect of the chiral zero-mode effects [73],

Δ̄ov
π−δ ≡ Δov

π−δ −
2N0

Vm2
: ð24Þ

FIG. 11. Low-mode saturation of Δπ−δ. The horizontal axis
shows the threshold of the eigenvalue, below which Δev

π−δ is
computed. The data for two typical configurations generated with
β ¼ 4.10, ma ¼ 0.001 on the 323 × 8 lattice are shown. The
dotted lines are the results for the direct computation Δdirect

π−δ .

FIG. 12. Quark mass dependence of the ratio ΔGW
π−δ=Δπ−δ. The

contribution from the chirality violating terms dominates the
signal near the chiral limit.

FIG. 13. The lattice size L dependence of hN0=Vi. The results
at Lt ¼ 8 are shown.
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The expectation value of N2
0 is expected to be an OðVÞ

quantity, as shown in [26], so that these chiral zero-mode’s
effects should not survive in the large volume limit, as
N0=V is vanishing as Oð1= ffiffiffiffi

V
p Þ. We numerically confirm

the monotonically decreasing volume scaling of hN0=Vi as
shown in Fig. 13. Therefore, Δ̄ov

π−δ and Δov
π−δ are guaranteed

to have the same thermodynamical limit. We also confirm
that the 5–15 lowest modes are enough to saturate the
reweighing for Δ̄ov

π−δ on 323 × 8 lattices.
Our results for Δ̄ov

π−δ (solid symbols) and Δov
π−δ (dashed)

are plotted in Fig. 14. We confirm that our data for Δ̄ov
π−δ are

stable against the change of the lattice size and lattice
spacing, and their chiral limits are all consistent with zero.
Precisely, all our data are well described (with
χ2=d:o:f ≲ 1) by a simple linear function, which becomes
consistent with zero “before” the chiral limit. We list the
linear extrapolation of Δ̄ov

π−δ at mud ¼ 4 MeV [74] in
Table IV. We observe neither strong volume dependence
nor β dependence of this behavior. Taking the largest value
in the table, we conclude that the chiral limit of Δ̄ov

π−δ is
estimated to be at most 0.0040ð130Þ GeV2. Although our
naive linear extrapolation may simply fail to detect higher
order mass dependence, the smallness of Δ̄ov

π−δ itself
compared to the data around mud ¼ 20 MeV is significa-
tive and has a phenomenological importance.

V. CONCLUSION

In this work, we have examined the Uð1ÞA anomaly in
two-flavor lattice QCD at a finite temperature with chiral
fermions. On the configurations generated by the Möbius
domain-wall Dirac quarks, we have measured the Dirac
eigenvalue spectrum of both the Möbius domain-wall and
overlap quarks, with or without OV/DW reweighting.
We have also examined the meson susceptibility difference
Δπ−δ, that directly measures the violation of the Uð1ÞA
symmetry. Our ensembles are generated at slightly above
the critical temperature of the chiral phase transition
(T ∼ 190–220 MeV) on different physical volume sizes
(L ¼ 2–4 fm), where frequent topology tunnelings
occur.
Our results for the histograms of the Möbius domain wall

and (reweighted) overlap Dirac operators both show a
strong suppression of the near zero modes as the quark
mass decreases. This behavior is stable against the change
of the lattice size and lattice spacing.
If we do not perform the reweighting of their determi-

nants, the overlap Dirac spectrum shows unphysical peaks
near zero. We have identified them as partially quenched
lattice artifacts, due to the strong violation of the Ginsparg-
Wilson relation in the low-lying eigenmodes of the Möbius
domain-wall operator. Our analysis indicates a potential
danger in taking the chiral limit of any observables with
domain-wall type fermions even when the residual mass is
small. If the observable target is sensitive to the low-lying
modes and their chiral properties, its chiral limit can be
distorted by the lattice artifacts.
After removal of these artifacts by the OV/DW reweight-

ing procedure, we have found that the Uð1ÞA susceptibility
is consistent with zero in the chiral limit. From these
evidences, we conclude that Uð1ÞA symmetry breaking in
two-flavor QCD is consistent with zero above the critical
temperature around 200 MeV in the vanishing quark
mass limit.

FIG. 14. The quark mass dependence of Δ̄ov
π−δ (solid symbols) and Δov

π−δ (dashed). Data for coarse (left panel) and fine (right) lattices
are shown.

TABLE IV. Linear extrapolation of Δ̄ov
π−δ to mmd ¼ 4 MeV. It

becomes consistent with zero before the chiral limit.

L3 × Lt β T (MeV)
Δ̄ov

π−δ½GeV2�
at mud ¼ 4 MeV χ2=d:o:f:

323 × 12 4.23 191(1) 0.0037(099) 0.002
323 × 12 4.24 195(1) −0.0199ð033Þ 0.2
163 × 8 4.10 217(1) 0.0025(017) 1.0
323 × 8 4.10 217(1) 0.0040(130) 0.01
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