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We are interested in graphs and networks in biology, chemistry, and medical sciences, including metabolic networks, 
protein-protein interactions and chemical compounds. We have developed original techniques in machine learning and 
data mining for analyzing these graphs and networks, occasionally combining with table-format datasets, such as gene 
expression and chemical properties. We have applied the techniques developed to real data to demonstrate the perfor-
mance of the methods and find new scientific insights.
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Advanced Machine Learning for Metabolite 
Identification from Mass Spectrometry

Metabolites are small molecules and play important 
functions in living cells such as energy transport, signaling, 
building blocks of cells and so on. Identifying their bio-
chemical characteristics or so-called metabolite identifica-
tion is an essential task in metabolomics to increase the 
knowledge of biological systems. However, it is still a 
challenging task due to the size or coverage of spectra 
libraries. Mass spectrometry is a widely used technique in 
analytical chemistry for dealing with metabolite identifica-
tion task. In detail, a chemical compound is decomposed 
into fragments, of which mass-to-charge ratios (m/z) are 
measured to obtain a mass spectrum. The spectrum can 
also be represented by a list of peaks, each of which corre-
sponds to a fragment captured by MS. The MS spectra 
provide structural information about the measured com-
pound, which makes MS more useful for tackling the task 
of metabolite identification.

Computational methods proposed for identifying metab-
olites from MS data can be categorized into three main 
groups: (i) spectra library search; (ii) in silico fragmenta-
tion; and (iii) machine learning [1]. Our research focuses 
on machine learning based approach, where the common 
scheme is to predict a chemical structure of a given spec-
trum through an intermediate representation called molec-
ular fingerprints. It consists of two steps: (i) predicting 
molecular fingerprints from spectra; (ii) searching molecu-
lar structures in database corresponding to the predicted 
fingerprints. Molecular fingerprints are often binary feature 
vectors, which should be large to cover all possible sub-
structures and chemical properties, and therefore heavily 
redundant, in the sense of having many substructures irrel-
evant to the task, causing limited predictive performance 
and computational efficiency.

We propose a machine learning framework for metabo-
lite identification task, named ADAPTIVE [2], which 
allows to learn representation for molecular structures, 
which we call molecular vectors, instead of using mole
cular fingerprints to characterize or represent molecules. It 
has two subtasks in learning step: (i) learning a mapping 
from structures to molecular representation vectors and (ii) 
learning another mapping from spectra to molecular vec-
tors as illustrated in Figure 1. In Subtask 1, ADAPTIVE 
learns a mapping to generate molecular vectors for metab-
olites using their chemical structures and these vectors are 
specific to both data and task, and therefore less redundant. 
The mapping is parameterized by a model, namely mes-
sage passing neural network (MPNN), and its parameters 
are trained so that the correlation (measured by Hilbert-

Schmidt Independence Criterion, HSIC) between spectra 
and molecular vectors are maximized. For Subtask 2, 
ADAPTIVE use IOKR [3], standing for Input Output 
Kernel Regression, to learn another mapping from spectra 
to molecular vectors generated by the Subtask 1.

We conducted experiments using a benchmark data to 
evaluate the proposed method against existing ones in 
terms of predictive performance and computational effi-
ciency. As shown in Figure 2, ADAPTIVE achieved the 
best predictive performance, outperforming the second 
best method, IOKR, with the difference of around 3–5% 
of top-20 under the same conditions. Furthermore, 
ADAPTIVE was significantly faster than IOKR (4–7 
times) because molecular vectors by ADAPTIVE are much 
more concise and adaptive to given data and task than 
molecular fingerprints used in existing methods.

[1]	Nguyen, D. H. et al., Recent Advances and Prospects of Computational 
Methods for Metabolite Identification: a Review with Emphasis on 
Machine Learning Approaches, Brief. Bioinf., doi:10.1093/bib/bby066 
(2018).

[2]	Nguyen, D. H. et al., Adaptive: Learning Data-dependent, Concise 
Molecular Vectors for Fast, Accurate Metabolite Identification from 
MS/MS, Bioinformatics, 35, i164-i172 (2019).

[3]	Brouard, C. et al., Fast Metabolite Identification with Input Output 
Kernel Regression, Bioinformatics, 32, i28-i36 (2016).

Figure 1. Overview of ADAP-
TIVE. It has two subtasks: (i) 
Subtask 1: estimate parameters of 
a mapping from structures to 
molecular vectors, given a set of 
spec-structure pairs; (ii) Subtask 
2: learn another mapping from 
spectra to molecular vectors, gen-
erated by subtask 1.

Figure 2. Evaluation of ADAPTIVE against existing methods in terms of 
top-k (k = 1,10 and 20) accuracies and compution time.
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