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We invalidate the arguments given in [T. Yamazaki and Y. Kuramashi, Phys. Rev. D 96, 114511 (2017)]
over the HAL QCD method for hadron-hadron interactions on the lattice. We also pose questions on the
practical usefulness of the method proposed in this reference.
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In a recent article [1], Yamazaki and Kuramashi present a
theoretical analysis on the “relation between scattering
amplitude and Bethe-Salpeter wave function in quantum
field theory.” This subject is important for hadron-hadron
interactions in lattice QCD simulations and is closely
related to the physics of multihadron systems such as
the exotic resonances and the atomic nuclei.
In the present comment, we show that the arguments in

Ref. [1] over the HAL QCD method [2–5] for hadron-
hadron interactions can be invalidated on the basis of the
previously published works by the present authors; in
particular, Sec. 2, Sec. 3.1, Sec. 3.2, Appendix A and
Appendix B of [2], as well as Sec. I of [3].
Let us consider the interaction between bosons with

identical mass m as analyzed in [1]. The basic idea of the
HAL QCD method is to define the energy-independent and
nonlocal potential Uðr; r0Þ [2–5] from the Nambu-Bethe-
Salpeter (NBS) wave function ϕkðrÞ below the inelastic
threshold (jkj < kth) as

ð∇2 þ k2ÞϕkðrÞ ¼ mVðr;kÞϕkðrÞ

¼ m
Z

d3r0Uðr; r0Þϕkðr0Þ: ð1Þ

The primary confusion of Ref. [1] originates from a
claim that Vðr;kÞ in Eq. (1) is replaced by Vðr;qÞ even for
q ≠ k in the HAL QCD method. Such a replacement

however has never been introduced in the HAL QCD
method. The correct mathematical relation between
Uðr; r0Þ and Vðr;kÞ has been shown to be [see Eq. (2.3)
in [2] and Eq. (7) in [3] ]1

Uðr; r0Þ ¼
X

jkj<kth
Vðr;kÞϕkðrÞϕ̄kðr0Þ; ð2Þ

where ϕ̄kðr0Þ are dual basis functions associated with the
nonorthonormal basis functions ϕkðr0Þ, with the property,R
d3rϕ̄kðrÞϕqðrÞ ¼ δk;q. Equation (2) represents a clear

connection between the k-dependent local-potential
Vðr;kÞ and the k-independent nonlocal potential Uðr; r0Þ.
In the practical applications of the HAL QCD method

[2–5], the expansion ofUðr; r0Þ in terms of its nonlocality is
employed according to the well-known method of deriva-
tive expansion [6,7],

Uðr; r0Þ ¼
X
n

VnðrÞ∇n
r δ

ð3Þðr − r0Þ; ð3Þ

with ∇n
r ≡∇nx

rx∇ny
ry∇nz

rz . (Here we have not assumed any
spatial symmetry.) The ∇ dependence is historically called
the velocity dependence, since it is the origin of the spin-
orbit term, the quadratic spin-orbit term, etc., in the case of
the nuclear force. (See the original articles, Refs. [6,7], and
Appendix B of Ref. [2].) Possible systematic errors
associated with the truncation of this expansion can be
estimated through order-by-order analysis using lattice
QCD data [8–10].
In Ref. [1], there is a confusion on the number of degrees

of freedom. First of all, Uðr; r0Þ is k independent from
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Eq. (2), so that VnðrÞ is k independent from Eq. (3).
Secondly, n (“i” in the notation of Ref. [1]) is a three-
dimensional vector, so that there are sufficient degrees of
freedom in the right-hand side of Eq. (3) to represent the
nonlocality of Uðr; r0Þ. In fact, as shown explicitly in
Sec. II.D of Ref. [9], the inversion of Eq. (3) reads

VnðrÞ ¼
Z

d3r0Uðr; r0Þ ðr
0 − rÞn
n!

; ð4Þ

with ðr0 − rÞn=n!≡Q
l¼x;y;zðr0 − rÞnll =nl!. This implies

VnðrÞ is manifestly k independent. Here we note that the
above integral is expected to be convergent below the
inelastic threshold, since there are no massless particles as
asymptotic fields in QCD with physical quark masses.
In Ref. [1], there is a statement that “The problem in this

expansion becomes manifest in the practical determination
of ViðxÞ. The simplest example is the determination
of the leading term V0ðxÞ, which is approximated by
hðx; kÞ=ϕðx; kÞ. We find that it should contain the con-
tributions of Oðk2nÞ (n ≥ 0Þ from the higher order terms of
the velocity expansion in order to properly describe the k
dependence of hðx; kÞ.” This statement originates from a
confusion of the systematics from the truncation of the
derivative expansion with the k dependence. To make this
point clear, let us consider a hypothetical nonlocal potential
Uð2Þ which has only two terms in the right-hand side of
Eq. (2),

Uð2Þðr; r0Þ ¼ ðV0ðrÞ þ V2ðrÞ∇2Þδð3Þðr − r0Þ: ð5Þ

Suppose we have two NBS wave functions at different
momentums, ϕkðrÞ and ϕk0 ðrÞ. Then, we can reconstruct
the potentials, V0 and V2, as

�
V0ðrÞ
V2ðrÞ

�
¼ 1

D

�∇2ϕk0 ðrÞ −∇2ϕkðrÞ
−ϕk0 ðrÞ ϕkðrÞ

��
hðr;kÞ
hðr;k0Þ

�
;

ð6Þ

with D≡mðϕkðrÞ∇2ϕk0 ðrÞ − ϕk0 ðrÞ∇2ϕkðrÞÞ. In this
simple example, V0ðrÞ and V2ðrÞ, which are k independent
by definition, reproduce the exact value of the phase shift
δðkÞ at all k below the inelastic threshold. In more realistic
cases with higher order derivative terms in Eq. (2), the
phase shift δðkÞ calculated from V0;2 as constructed in
Eqs. (6) is exact at q ¼ k and k0, and is only approximate at
other q. How accurate at other q can be checked if more
NBS wave functions for different momentums are avail-
able. In practice, the time-dependent HAL QCD method
based on the Euclidean-time (t) dependence of the hadronic
correlation function is a useful equivalent method to treat
those states with different momentums simultaneously, as
demonstrated in [8].
In Ref. [1], there is also a statement that “Therefore, a

smearing of the interpolating operator in the BS wave

function gives a different scattering amplitude from the one
obtained from the fundamental relation, which depends on
the smearing function sðxÞ.” As already shown explicitly in
Sec. II. D of [9], this statement is mathematically incorrect.
To clarify the source of this error, let us start with the well-
known formula [11]

ϕkðrÞ ¼ CϕðkÞeik·r þ
Z

d3p
ð2πÞ3

Hϕðp; kÞ
p2 − k2 − iϵ

eip·r; ð7Þ

where the NBS wave function ϕkðrÞ is defined by

ϕkðrÞ≡ h0jπ1ðr=2Þπ2ð−r=2Þjπ̂1ðkÞπ̂2ð−kÞ; ini; ð8Þ

with an interpolating operator of the ith scalar particle
πi (i ¼ 1, 2), and CϕðkÞ being a normalization factor.
The on-shell amplitude is related to the phase shift
as Hϕðk; kÞ=CϕðkÞ ¼ 4πeiδðkÞ sin δðkÞ=k.
If we use the smeared NBS wave function ϕ̃kðrÞ with a

smearing function, sðrÞ, acting e.g., on one of the operators
in Eq. (8), one easily obtains

Hϕðk; kÞ
CϕðkÞ

¼ Hϕ̃ðk; kÞ
Cϕ̃ðkÞ

¼ 4π

k
eiδðkÞ sin δðkÞ; ð9Þ

with Cϕ̃ðkÞ=CϕðkÞ ¼
R
d3rsðrÞe−ik·r by a simple change of

variable [see Eq. (19) in [9] ]. Thus the smearing does not
affect the observable as long as the correct normalization is
taken into account. Note that the situation is the same even
for composite sink operators as long as they are “almost-
local operator fields” defined by Haag in Ref. [12].2

Some additional comments are in order here.
First, it is stated in Ref. [1] that “Although we call it as

the effective potential here, the relation between this
quantity and the potential in quantum mechanics is not
trivial; the former is the reduced BS wave function
normalized by the BS wave function being manifestly
momentum dependent, while the latter is defined to be
momentum independent in principle. This is an essential
difference between relativistic quantum field theory and
nonrelativistic quantum mechanics.” This statement is
inaccurate. The difference between local (momentum-
dependent) and nonlocal (momentum-independent) poten-
tials does not have direct correspondence to the difference
between nonrelativistic quantum mechanics and relativistic
quantum field theory. There are numerous examples where
nonlocal (momentum-independent) potentials appear in
nonrelativistic quantum mechanics, especially for scatter-
ing problems of composite objects such as the atoms and
atomic nuclei.

2See also a brief summary in Appendix A of [2] on the
Nishijima-Zimmermann-Haag reduction formula for the scatter-
ing of composite particles.
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Secondly, the so-called fundamental relation [Eq. (11) in
Ref. [1]]

−
Z

d3xhðx; kÞe−ik·x ¼ 4π

k
eiδðkÞ sin δðkÞ ð10Þ

cannot provide an alternative method to determine the
phase shift δðkÞ in lattice QCD. Indeed, this equation is
nothing but Eq. (9), so that the independent determinations
of the normalization CϕðkÞ and the momentum k on the
lattice are necessary.3 If k is known, however, the phase
shift δðkÞ can be obtained directly from Lüscher’s finite
volume formula [13] without recourse to Eq. (10).
Therefore, the above relation gives at most a consistency

check for the determination of k, but does not provide an
alternative method to obtain δðkÞ. Moreover, in the case
that k2 < 0 in the finite volume, the Fourier transformation
of hðx; kÞ must be analytically continued to the pure
imaginary k by the numerical integral, which may
introduce uncertainties due to statistical errors of hðx; kÞ
at large x. These comments apply to a recent paper [14] too.
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