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We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)
F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form
factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is
involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF
induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition,
we calculate the electric dipole moment of the neutron using a background electric field that respects time
translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula
but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and
observe that after the correction is applied, they either agree with zero or are substantially reduced in
magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
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I. INTRODUCTION

The origin of nuclear matter can be traced back to the
excess of nucleons over antinucleons in the early Universe,
and it is one of the greatest puzzles in physics, known as the
baryonic asymmetry of the Universe (BAU). One of the
required conditions for the BAU is violation of the CP
symmetry (CP). In the standard model (SM), the CKM
matrix phases lead to CP violations in weak interactions,
but their magnitudes are not sufficient to explain the BAU,

and signs of additional CP are actively sought in experi-
ments. The most promising ways to look for CP are
measurements of electric dipole moments (EDM) of atoms,
nucleons and nuclei. In particular, the standard-model
prediction for the neutron EDM is 5 orders below the
current experimental bound, and represents a negligible
background. Near-future EDM experiments plan to
improve this bound by 2 orders of magnitude, and are
capable of constraining various beyond-the-standard-model
(BSM) extensions of particle physics, purely from low-
energy nuclear and atomic high-precision experiments.
Knowledge of nucleon structure and interactions is neces-
sary to interpret these experiments in terms of quark and
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gluon effective operators and to put constraints on proposed
extensions of the standard model, in particular SUSY and
GUT models, as sources of additional CP. Connecting the
quark- and gluon-level to hadron-level effective CP inter-
actions is an urgent task for lattice QCD (an extensive
review of EDM phenomenology can be found in Ref. [1]).
The proton and the neutron can have electric dipole

moments only if the symmetry is broken by P- or T-odd
interactions. The only such dimension-4 operator is the
QCD θ̄ angle (θ̄ stands for the physically relevant combi-
nation of the QCD θ angle and quark mass phases). The θ̄-
induced nucleon EDMs (nEDMs) have been calculated on
a lattice from energy shifts in a uniform background electric
field [2–4] or by extracting the P-odd electric dipole form
factor (EDFF) F3ðQ2Þ from nucleon matrix elements of the
quark vector current in a CP vacuum [5–11]. Nucleon
EDMs have also been studied using QCD sum rules, quark
models, and chiral perturbation theory (see Refs. [12–18]).
On a lattice, quark EDM-induced nucleon EDMs have been
recently computed in a partially quenched framework [19].
Another important dimension-5 (or 6)1 operator is the CP-
odd quark-gluon interaction, also known as the chromo-
electric dipole moment (cEDM):

LcEDM ¼ i
X
ψ¼u;d

~δψ
2
ψ̄ðTaGa

μνÞσμνγ5ψ ; ð1Þ

and calculations of cEDM-induced nEDMs have recently
been started using Wilson fermions [20,21].
In this paper, we report several important achievements in

studying nucleon EDMs on a lattice. First, we argue that the
commonly accepted methodology for computing electric
dipole form factors of spin-1=2 particles on a lattice identifies
the electric dipole moment form factor incorrectly. In par-
ticular, in the standard analysis of the nucleon-current
correlators [5–11], the electric dipole form factor F3 receives
a large and likely dominant contribution from spurious
mixing with the Pauli form factor F2. The energy-shift
methods [2–4] are not affected by such mixing, but their
precision has not been sufficient to detect the discrepancy.
This problem affects all of the previous lattice calculations
of the nucleon EDFFs and EDMs that use nucleon-current
correlators, including those studying the θ̄ angle [5–10] as
well as themore recent ones studying the quark chromo-EDM
[20,21]. We demonstrate the problem formally in Sec. II and
also derive the correction for the results of Refs. [5–11] to
subtract the spuriousmixing withF2. In addition, in Sec. II C
we study the energy shift of a neutral particle on a Euclidean
lattice in a uniform background electric field. We introduce
the uniform electric field, preserving translational invariance

and periodic boundary conditions on a lattice [22]. In order to
satisfy these conditions, the electric field has to be analytically
continued to an imaginary value upon theWick rotation from
Minkowski to Euclidean spacetime, and we demonstrate that
the eigenstates of a fermion possessing an EDM are shifted
by a purely imaginary value. In Sec. III C, we apply this
formalism to the analysis of neutron correlators computed in
the presence of the quark chromo-EDM interaction (1).
Calculations of the neutron EDM in background fields

are independent from parity-mixing ambiguities, and this
allows us to validate our new formula for the EDFF F3

numerically. The difference is evident only if the nucleon
“parity-mixing” angle α5 is large, α5 ≳ 1. Quark chromo-
EDMs generate very strong parity mixing compared to the
θ̄ angle, which is beneficial for our numerical check. In
Sec. III B, we calculate the proton and neutron EDFFs
F3p;nðQ2Þ induced by the quark chromo-EDM interaction
(1), as well as the regular CP-even Dirac and Pauli form
factors F1;2. In Sec. III D, we compare the EDM results
from the form-factor and the energy-shift calculations,
providing a numerical confirmation of the validity of our
new EDFF analysis. Finally, in Sec. IV we analyze some
select results for the nucleon EDM induced by the θ̄ angle
available in the literature [5,6,8,10,11] and attempt to
correct them according to our findings.

II. CP-ODD FORM FACTORS
OF SPIN-1=2 PARTICLES

A. Form factors and parity mixing

In this section, we argue that the ubiquitously used
expression for computing the CP-odd electric dipole form
factor F3 on a lattice does not correspond to the electric
dipole moment measured in experiments and leads to a
finite and perhaps dominant contribution from the Pauli
form factor F2 to the reported values of EDFF F3 and the
EDM of the proton and the neutron. First, we recall the
lattice framework for the calculation of the CP-violating
form factor F3 first introduced in Ref. [5], and later used
without substantial changes in the subsequent papers
studying the QCD θ term [6–11], as well as more recent
papers studying the quark chromo-EDM [20,21].
To compute nucleon form factors on a lattice, one

evaluates nucleon two- and three-point functions (see
Fig. 1) in the presence of CP-violating (CP) interactions:

CCP
NN̄ðp⃗; tÞ ¼

X
x⃗

e−ip⃗·x⃗hNðx⃗; tÞN̄ð0ÞiCP; ð2Þ

CCP
NJN̄ðp⃗0; tsep; q⃗; topÞ
¼

X
y⃗;z⃗

e−ip⃗
0·y⃗þiq⃗·z⃗hNðy⃗; tsepÞJμðz⃗; topÞN̄ð0ÞiCP: ð3Þ

The subscript CP indicates that these correlation functions
are evaluated in a CP vacuum, either with a finite value of

1These operators are sometimes referred to as “dimension-6”
because they contain a factor of the Higgs field in the standard
model.
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the relevant CP coupling or an infinitesimal value, i.e.
performing first-order Taylor expansion of the correlation
functions. As argued in Ref. [5], as well as earlier model
calculations [14,15], the CP background leads to a CP
phase in the nucleon mass in the Dirac equation that
governs the on-shell nucleon fields N, N̄:

ði∂ −mN0e−2iα5γ5ÞNðxÞ ¼ 0; ð4Þ
where the real-valued mN0 > 0 is the nucleon ground-state
mass in the new vacuum. The spinor wave functions ~up, ~̄up
for the new ground states

hΩjNjp; σiCP ¼ ZN0 ~up;σ ¼ ZN0eiα5γ5up;σ ð5Þ
also satisfy the same Dirac equation:

ðp −mN0e−2iα5γ5Þ ~up ¼ ðp −mN0e−2iα5γ5Þeiα5γ5up ¼ 0; ð6Þ
where the chirally rotated spinors ~up, ~̄up have the Lorentz-
invariant CP phase similar to the mass term,

~u ¼ eiα5γ5u; ~̄u ¼ ūeiα5γ5 ; ð7Þ
while the regular spinors up, ūp satisfy the regular Dirac
equation with a real-valued nucleon mass,

ðp −mN0 Þup ¼ 0; ūpðp −mN0 Þ ¼ 0: ð8Þ
From the above equation (8), it also follows that the spinors
up, ūp transform under spatial reflection (parity P) as the
regular spinors:

γ4up¼ðp⃗;EÞ ¼ u ~p¼ð−p⃗;EÞ: ð9Þ

Below we will discuss correlation functions on a
Euclidean lattice, which depend on Wick-rotated four-
momenta and are more conveniently expressed using the
Euclidean matrices ½γμ�Euc (A4). Whenever a confusion
may arise, we will explicitly specify the type M2
(Minknowski) or Euc (Euclidean) of γ-matrices and

four-vectors (see Appendix A for details). The Euclidean
versions of the Dirac equation (8) for the nucleon spinors
are

ðipEuc þmN0 Þup ¼ 0; ūpðipEuc þmN0 Þ ¼ 0; ð10Þ

where ð−ipEucÞ ¼ ð−iÞpμ
Euc½γμ�Euc ¼ E½γ4�Euc − ip⃗ · ½γ⃗�Euc,

in which the Euclidean on-shell four-momentum pμ
Euc ¼

ðp⃗; iEÞ is contracted with the Euclidean γ-matrices, and

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

N0 þ p⃗02
q

is the real-valued on-shell energy of the

nucleon. Due to the chiral phase (7), the nucleon propagator
on a lattice (2) contains chiral phases eiα5γ5 . Keeping only
the ground state and omitting the exponential time depend-
ence for simplicity, we get

CNN̄ðp⃗; tÞjg:s: ∝
P

σ ~up;σ ~̄up;σ
2EN0

¼ −ipEuc þmN0e2iα5γ5

2EN0

¼ eiα5γ5
−ipEuc þmN0

2EN0
eiα5γ5 : ð11Þ

Analogously, the expression for the nucleon-current corre-
lator (3) contains the phases eiα5γ5 :

CNJN̄ðp⃗0; tsep; q⃗; topÞjg:s:
∝
X
σ0;σ

~up0;σ0 hp0; σ0jJμjp; σiCP ~̄up;σ

¼ eiα5γ5
�X

σ0;σ

up0;σ0 hp0; σ0jJμjp; σiCPūp;σ
�
eiα5γ5 : ð12Þ

The problem with the commonly used expression for the
three-point function is caused by unclear physical inter-
pretation of a parity-mixed fermion state (5) on a lattice. In
Refs. [5–11], the nucleon matrix elements of the vector
current in a CP vacuum are assumed to have the form (in
Minkowski space, up to sign conventions for F3 and FA)

hp0; σ0jJμjp; σiCP
¼? ~̄up0;σ0

�
F1ðQ2Þγμ þ ~F2ðQ2Þ iσ

μνqν
2mN0

− ~F3ðQ2Þ γ5σ
μνqν

2mN0
þ FAðQ2Þ ðqq

μ − γμq2Þγ5
m2

N0

�
~up;σ;

ð13Þ

where q ¼ p0 − p, Q2 ¼ −½q2�M2 ¼ −ðq4Þ2 þ q⃗2, F1 and
~F2 are the Dirac and Pauli form factors, ~F3 is the electric
dipole form factor (EDFF), and FA is the anapole form
factor (notations ~F2;3 are introduced to avoid confusion
with the true F2;3 below). The matrix element expression
(13), however, disagrees with the literature [23],

FIG. 1. Nucleon connected three-point function [Eq. (3)] and
labeling of the source-sink separation tsep and operator insertion
time top.
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hp0;σ0jJμjp;σiCP
¼ ūp0;σ0

�
F1ðQ2ÞγμþF2ðQ2Þiσ

μνqν
2mN0

−F3ðQ2Þγ5σ
μνqν

2mN0
þFAðQ2Þðqq

μ−γμq2Þγ5
m2

N0

�
up;σ; ð14Þ

in which the vertex spin matrix

Γμðp0; pÞ ¼ F1γ
μ þ ðF2 þ iF3γ5Þ

iσμνqν
2mN0

þ FA
ðqqμ − γμq2Þγ5

m2
N0

ð15Þ

is contracted with the spinors satisfying the regular parity
transformations (9). Only in this case, the contribution of
the form factor F3 to the matrix element hp0; σ0jJμjp; σi
transforms as an axial four-vector so that F3 is indeed the
P-, CP-odd coupling of the nucleon to the electromagnetic
potential [23]. Let us show that this is not the case if the
matrix element of the current has the form (13). Upon
spatial reflection, the true four-vectors of momenta and
current transform as

ðp⃗ð0Þ; p4ð0ÞÞ → ð−p⃗ð0Þ; p4ð0ÞÞ; ðJ⃗; J4Þ → ð−J⃗; J4Þ; ð16Þ

while the axial vector current Aμ transforms with the sign
opposite to Jμ:

ðA⃗; A4Þ → ðA⃗;−A4Þ: ð17Þ

The chirally rotated spinors transform as

~up⃗ → ~u−p⃗ ¼ e2iα5γ5γ4 ~up⃗; ð18Þ

~̄up⃗ → ~̄u−p⃗ ¼ ~̄up⃗γ4e2iα5γ5 ; ð19Þ

up to an irrelevant overall phase factor. Finally, remember-
ing that the spatial momentum q⃗ is also reflected and using
the identities

γ4σ
iνð−q⃗; q4Þνγ4 ¼ −σiνðq⃗; q4Þν; ð20Þ

γ4σ
4νð−q⃗; q4Þνγ4 ¼ σ4νðq⃗; q4Þν; ð21Þ

we observe that the combination of the ~F2;3 form factors
transforms as

e2iα5ð ~F2 þ i ~F3Þ → e−2iα5ð ~F2 − i ~F3Þ: ð22Þ

Therefore, we conclude that the axial-vector contribution of
the matrix element (13) appears because of the parity-odd
form-factor combination

Im½e2iα5ð ~F2 þ i ~F3Þ� ¼ sinð2α5Þ ~F2 þ cosð2α5Þ ~F3; ð23Þ

which is different from F3 if α5 ≠ πn.
Since the expression (13) is used in lattice calculations so

ubiquitously, we present extensive arguments that it is not
correct. The form factor FA is irrelevant for this discussion,
and will be omitted.2 In Appendix B, we directly show that
it is the expression (14) that leads to the correct CP-odd
EDM coupling ∝ E⃗ · S⃗, and the forward limits Q2 → 0 of
the form factors F2ðQ2Þ and F3ðQ2Þ yield the anomalous
magnetic κ and electric ζ dipole moments [in units
e=ð2mNÞ], respectively. In Sec. II B, we calculate the mass
shift of a particle governed by the Dirac equation with a
chirally rotated mass in the background electric field.
In this section, we offer several heuristic arguments why

expression (13) is not correct. First, revisiting the form-
factor expressions (13) and (14), we note that the only
effect of the chiral phases is to mix form factors F2 and F3

into each other,

~̄up0

�
F1γ

μ þ ð ~F2 þ i ~F3γ5Þ
iσμνqν
2mN0

�
~up

¼ ūp0

�
F1γ

μ þ e2iα5γ5ð ~F2 þ i ~F3γ5Þ
iσμνqν
2mN0

�
up; ð24Þ

while the form factor F1, as well as the omitted FA, are
independent of α5. Thus, the form factors ~F2;3 computed in
Refs. [5–11] are linear combinations of the true form
factors F2;3:

ðF2 þ iF3γ5Þ ¼ e2iα5γ5ð ~F2 þ i ~F3γ5Þ; or� ~F2 ¼ cosð2α5ÞF2 þ sinð2α5ÞF3;

~F3 ¼ − sinð2α5ÞF2 þ cosð2α5ÞF3;
ð25Þ

which is also consistent with Eq. (23).
It is easy to see that the effect of the phase eiα5γ5 can be

completely removed by a field redefinition N0 ¼ e−iα5γ5N.
After this transformation, the on-shell nucleon field N0 will
satisfy the Dirac equation with a real-valued mass mN0 ,

ði∂ −mN0 ÞN0ðxÞ ¼ 0: ð26Þ

A similar transformation for the nucleon correlators
CN½J�N̄ → C0

N½J�N̄ ¼ e−iα5γ5CN½J�N̄e−iα5γ5 will remove any

dependence on α5 altogether. Note, however, that this is
the case only if Eq. (14) is used for the nucleon matrix
elements of the current. Thus, this phase is purely conven-
tional and similar to the operator normalization ZN0 , in that
physical quantities cannot depend on it. In lattice calcu-
lations, however, this phase is not known in advance and

2It is also worth noting that FA is not affected by the parity
mixing, unlike F2;3.
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must be determined numerically to be removed from the
two- and three-point correlators [Eqs. (2) and (3)].
To make this point more evident, suppose one calculated

nucleon form factors in CP-even QCD, but using uncon-
ventional nucleon interpolating fields eiα

0
5
γ5N with some

arbitrary phase α05. If Eq. (13) were used, the definition
of ~F2;3 would depend on this arbitrarily chosen α05.
Consequently, because of the spurious mixing (25), the
electric dipole form factor would obtain the nonzero value
~F3 ¼ −F2 sinð2α05Þ in absence of any CP interactions.
Analogously, the apparent nucleon magnetic moment
~μN0 ¼ ~GMð0Þ ¼ F1ð0Þ þ ~F2 would have contributions
from both F2 and F3. In a CP-even QCD vacuum, F3 ¼
0 and the mixing (25) would just reduce the contribution of
F2 to ~μN0 by a factor of cosð2α05Þ. This would happen
because the spin operator Σk ¼ 1

2
ϵijkσij was “sandwiched”

between chirally rotated 4-spinors and

ð2S⃗Þk ¼ Σk ¼ ~̄up0
Σk

2mN0
~up ¼ ξ0†σkξ cosð2α5Þ; ð27Þ

where the initial and final momenta p⃗, p⃗0 ≈ 0 and ξ, ξ0 are
the corresponding 2-spinors.
The resolution to this apparent paradox is hinted at by the

modified form of the Gordon identity for the spinors ~up, ~̄up.
Since these spinors satisfy the Dirac equation with the
chirally rotated mass (6), the Gordon identity takes the form

~̄up0γμ ~up ¼ ~̄up0

�ðp0 þ pÞμ þ iσμνðp0 − pÞν
2mN0e2iα5γ5

�
~up; ð28Þ

which is obtained from the standard Gordon identity by
replacing mN0 → mN0e2iα5γ5 . The form of the nucleon-
current vertex must be compatible with the Gordon identity,
which relates form factors F1;2 to GM. Therefore, to make
the nucleon-current vertex compatible with the spinors ~up,
~̄up, the nucleon mass in the ~F2;3 terms in Eq. (13) has to be
adjusted similarly to Eq. (28), which leads back to the
correct expression (14).
Finally, we emphasize that Eqs. (13) and (14) result in

different prescriptions for analyzing the three-point
nucleon-current correlators:

CNJN̄ðp⃗; tsep; q⃗; topÞjg:s:
¼? e−E

0
N0 ðtsep−topÞ−EN0 topeiα5γ5

×
−ip0

Euc þmN0

2E0
N0

feiα5γ5g?Γμ
Eucfeiα5γ5g?

×
−ipEuc þmN0

2EN0
eiα5γ5 ; ð29Þ

where phase factors in curly braces feiα5γ5g? are present
only if one uses the (incorrect) Eq. (13). In the above

equation, we have introduced the Euclidean nucleon-
current vertex

Γμ
Eucðp0; pÞ ¼

�
F1γ

μ þ ðF2 þ iγ5F3Þ
σμνqν
2mN0

�
Euc

: ð30Þ

B. EDM energy shift from Dirac equation

We argued in the previous section that one has to use the
regular “even” spinors satisfying Eq. (9) to evaluate the
nucleon matrix elements even if the QCD vacuum is CP-
broken, contrary to the previous works [5–11]. Most of the
ambiguity must have resulted from the notion that in a CP-
broken vacuum, particles are no longer parity eigenstates;
hence, the argument goes, the nucleon must be described
by a parity-mixed spinor. This argument is rather confus-
ing, because parity transformations of fermion fields are
fixed only up to a phase factor, and only a fermion-
antifermion pair may have definite parity. To clarify this
question, in this section we calculate the energy spectrum
of a particle described by the Dirac operator ~DN with the
complex mass me−2iα5γ5 and with magnetic and electric
dipole interactions in the form (13) in the background of
uniform magnetic and electric fields. Such an operator is
exactly the nucleon effective operator on a lattice. The
zero modes of this operator (i.e., the poles of its Green’s
function) must correspond to particle eigenstates, and their
calculation avoids the spinor phase ambiguity completely.
The energy shifts linear in these fields may then be
identified with the magnetic κ and electric ζ dipole
moments, respectively.
The effective action for the Euclidean lattice nucleon

field in the CP vacuum and pointlike electromagnetic
interaction introduced via a “long derivative” is

Lint ¼ N̄ði∂ −QγμAμ −me−2iα5γ5ÞN; ð31Þ

where we neglect the momentum-transfer dependence of
the nucleon form factors for simplicity, setting F1 to a
“pointlike” value Q ¼ F1ð0Þ ¼ const. In the absence of
electromagnetic potential Aμ, the nucleon propagator hNN̄i
takes the form (11). We add effective pointlike anomalous
magnetic ~κ ¼ ~F2ð0Þ and electric ~ζ ¼ ~F3ð0Þ dipole inter-
actions to the interaction vertex:

Qγμ → Qγμ þ ~κ
iσμνqν
2m

− ~ζ
γ5σ

μνqν
2m

: ð32Þ

Using conventions (B10)–(B12) as well as (B8) and (B9),
the Dirac equation for N becomes

h
p −QγμAμ − ð~κ þ i~ζγ5Þ

1

2
Fμν

σμν

2m
−me−2iα5γ5

i
N ¼ 0:

ð33Þ
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We are going to find the energy levels of the particle in the
presence of constant field strength Fμν. To avoid irrelevant
complications, we consider only a neutral particle with
Q ¼ 0. Using the identity (A3) to trade γ5 for Fμν → ~Fμν,
we obtain the Dirac operator in the block-diagonal form in
the chiral basis (A1):

p −
1

2
ð~κFμν − ~ζ ~FμνÞ

σμν

2m
−me−2iα5γ5

¼
� −M E − p⃗ · σ⃗

Eþ p⃗ · σ⃗ −M†

�
; ð34Þ

where M ¼ me2iα5 − 1
2m ð~κ − i~ζÞðH⃗ þ iE⃗Þ · σ⃗. In the rest

frame, p⃗ ¼ ð0⃗; E0Þ, and the operator (34) has solutions if

det

�−M E0

E0 −M†

�
¼ 0 ⇔

detðE2
0 −M†MÞ ¼ detðE2

0 −MM†Þ ¼ 0: ð35Þ

Up to terms linear in ~κ, ~ζ, the normal operator M†M is

M†M ¼ m2 −
1

2
½e2iα5ð~κ þ i~ζÞðH⃗ − iE⃗Þ

þ e−2iα5ð~κ − i~ζÞðH⃗ þ iE⃗Þ� · σ⃗ þOð~κ2; ~ζ2Þ
¼ m2 − ½κH⃗ þ ζE⃗� · σ⃗ þOðκ2; ζ2Þ; ð36Þ

where in the last line we have redefined e2iα5ð~κ þ i~ζÞ ¼
ðκ þ iζÞ, which is the same transformation as Eq. (25).
Finally, the energy of the particle’s interaction with the EM
background is

E0 −m ¼ −
κ

2m
H⃗ · Σ̂ −

ζ

2m
E⃗ · Σ̂þOðκ2; ζ2Þ; ð37Þ

where Σ̂ is the unit vector of the particle’s spin. From the
interaction energy, we conclude that indeed

κ ¼ F2ð0Þ; ζ ¼ F3ð0Þ ð38Þ

are the particle’s magnetic and electric dipole moments. For
a neutral particle such as the neutron, the form factor F2ð0Þ
is indeed the full magnetic moment.
Thus, we have shown that if the field of a spin-1=2

particle is governed by the Dirac equation with a complex
mass (33), electric and magnetic dipole moments have to be
properly adjusted ð~κ; ~ζÞ → ðκ; ζÞ. This adjustment is equiv-
alent to the redefinition of the field and the operator

N → N0 ¼ e−iα5γ5N;

~DN → DN ¼ eiα5γ5 ~DNeiα5γ5 ð39Þ

to remove the complex (chiral) phase from the mass, where
~DN and DN contain ~κ, ~ζ and κ, ζ, respectively.

C. EDM energy shift in Euclidean spacetime

In order to verify our findings, in this paper we calculate
the EDM of the neutron on a lattice using two methods:
(1) from the energy shift in the background electric field,
and (2) using the new formula for the CP-odd form factor
F3. The electric field is introduced following Ref. [22] and
preserving the antiperiodic boundary condition in time.
Such an electric field [22] is analytically continued to an
imaginary value. If the particle’s electric dipole moment is
finite and real-valued, the energy shift is imaginary, which
might be problematic for the analysis of corresponding
lattice correlators. However, in our methodology, the CP-
odd interaction is always infinitesimal, and so are the
electric dipole moments and the corresponding energy
shifts, which are extracted from Taylor expansion of the
nucleon correlation functions to the first order in the
CP-odd interaction. In this paper, we study only neutral
particles, because the analysis of charged particle propa-
gators is more complicated [24].
In this section, we repeat the calculation of Sec. II B for a

neutral particle on a Euclidean lattice, which has on-shell
Euclidean four-momentum pEuc ¼ ðp⃗; iEÞ, with energy
E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
0 þ p⃗2

p
up to discretization errors. The energy at

rest E0 is modified from the mass m due to electric and
magnetic dipole interactions. To avoid any confusion,
we imply no relation between the Minkowski E⃗, H⃗ and

Euclidean E⃗, H⃗ electric and magnetic fields. Instead, we
introduce ad hoc uniform Abelian fields on a lattice (see
Fig. 2) preserving boundary conditions in both space and
time [22] that probe the MDM and EDM: the magnetic
ϵijkHk ¼ ð∂iAj − ∂jAiÞ ¼ nijΦij (no summation over i, j)

�Ax;j ¼ nijΦijxi
Ax;ijxi¼Li−1 ¼ −nijΦijLixj

ð40Þ

FIG. 2. Abelian gauge potential (41) corresponding to a uni-
form background electric field on a periodic lattice [22]. The
horizontal arrows show positive, and the triple vertical arrows
show negative Abelian potential ∝ Lz on the corresponding
lattice links. The resulting circulation of the Abelian potential
is the same around each plaquette (shown by the black arrows)
and equal to the flux of the electric field 2π

LzLt
.
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and the electric Ek ¼ ð∂kA4 − ∂4AkÞ ¼ nk4Φk4�
Ax;4 ¼ nk4Φk4xk
Ax;kjxk¼Lk−1 ¼ −nk4Φk4Lkx4

; ð41Þ

where Φμν ¼ 6π
LμLν

is the quantum of field flux through a

plaquette ðμνÞ and nμν is the corresponding number of
quanta. The fractional quark charges Qu ¼ 2=3, Qd ¼
−1=3 and the periodic boundary conditions require that
the flux through the edge of the lattice LμLνΦμν ¼ 6π.
From potentials (40) and (41), the Euclidean field strength
tensor F μν ¼ ∂μAν − ∂νAμ:

F μν ¼

0
BBBBBBB@

1 2 3 4

1 0 H3 −H2 E1

2 −H3 0 H1 E2

3 H2 −H1 0 E3

4 −E1 −E2 −E3 0

1
CCCCCCCA
; ð42Þ

with H⃗ ¼ ðn23Φ23; n31Φ31; n12Φ12Þ and E⃗ ¼ ðn14Φ14;
n24Φ24; n34Φ34Þ.
We start from the effective EDM and MDM coupling in

the nucleon-current vertex. The Dirac operator for the
nucleon on a lattice is Dþm ¼ γμð∂μ þ iQAμÞ þm,
which we extend to include the pointlike effective inter-
actions from Eq. (30):�

ipþmþ iQAq −
�
1

2
σμνF μν

�
κ þ iζγ5

2m

�
Euc

; ð43Þ

with κ ¼ F2ð0Þ and ζ ¼ F3ð0Þ. We use the Euclidean
matrices γμ (A4) and ½γ5�Euc ¼ ðγ1γ2γ3γ4ÞEuc (A5)3 and the
plain-wave fields ψpðxÞ and Aq;μðxÞ depending on the
Euclidean four-momenta p, q as

ψpðxÞ ∝ eipx; ∂μψpðxÞ ↔ ipμup;

Aq;μðxÞ ∝ eiðp0−pÞx ¼ eiqx; ∂νAq;μðxÞ ↔ iqνAμ: ð44Þ

The mass m in the above equation (43) is chosen real and
positive, since the chiral phase factor may be removed with
a field redefinition (39), which at the same time rotates the
dipole couplings ðκ; ζÞ into the physical magnetic and
electric dipole moments, as has been shown in Sec. II B.
After setting the charge Q ¼ 0 and the momentum p⃗ ¼ 0,
we use

σijEuc ¼ ϵijk
�
−σk

−σk

�
; σi4Euc ¼

�
σi

−σi

�
ð45Þ

and transform the operator (43) into the block-diagonal
form, and find the condition for on-shell fermion energies

det

�
M− −E0

−E0 Mþ

�
¼ 0 ⇔

detðE2
0 −MþM−Þ ¼ detðE2

0 −M−MþÞ ¼ 0; ð46Þ
where

M� ¼ mþ 1

2m
ðκ ∓ iζÞðH⃗� E⃗Þ · σ⃗: ð47Þ

The on-shell energies are then determined by the eigen-
values of the spin-dependent operator

M∓M� ¼ m2 þ κσ⃗ · H⃗ − ζσ⃗ · iE⃗ þOðk2; ζ2Þ; ð48Þ

E0 −m ¼ κ

2m
H⃗ · Σ̂ −

ζ

2m
iE⃗ · Σ̂þOðk2; ζ2Þ; ð49Þ

where Σ̂ is the direction of the particle’s spin. Note that

the electric field enters Eq. (49) as iE⃗, with an imaginary
factor emphasizing that its value has been analytically
continued to the imaginary axis, and the corresponding
energy shift is purely imaginary. Equation (49) provides
a prescription for extracting the EDM and MDM from
mass shifts of a neutral particle on a lattice in uniform
background fields.

III. cEDM-INDUCED EDM AND EDFF
ON A LATTICE

In our initial calculation of cEDM-induced nucleon
EDMs, we use two lattice ensembles with Iwasaki gauge
action and Nf ¼ 2þ 1 dynamical domain wall fermions:
163 × 32 with mπ ≈ 420 MeV [25], and 243 × 64 with
mπ ≈ 340 MeV [26,27]. The ensemble parameters are
summarized in Table I. We use identical ensembles,
statistics, and spatial sampling per gauge configura-
tion in both calculation methods discussed in further
sections.
We use the all-mode-averaging framework [28] to

optimize sampling, in which we approximate quark propa-
gators with truncated CG solutions to a Möbius operator
[29]. We use the Möbius operator with a short fifth
dimension L5s and complex s-dependent coefficients
bs þ cs ¼ ω−1

s (later referred to as “zMobius”), which
approximates the same four-dimensional effective operator
as the Shamir operator with the full L5f ¼ 16. The
approximation is based on the equivelence between the
domain wall and the overlap operators

½DDWF�4d ¼
1þmq

2
−
1 −mq

2
γ5ϵL5

ðHTÞ;

HT ¼ γ5
DW

2þDW
; ð50Þ3The results are manifestly independent from the basis of γ-

matrices used if the relation between γ5 and γμ is kept unchanged.
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ϵMöbius
L5s

ðxÞ¼
QL5s

s ð1þω−1
s xÞ−QL5s

s ð1−ω−1
s xÞQL5s

s ð1þω−1
s xÞþQL5s

s ð1−ω−1
s xÞ≈ϵShamir

L5f
ðxÞ;

ð51Þ
where the coefficients ωs are chosen so that the “sign”
function ϵMöbius

L5s
ðxÞ is the minmax approximation to the

ϵShamir
L5f

ðxÞ. We find that L5s ¼ 10 is enough for an efficient

four-dimensional operator approximation. A shortened fifth
dimension reduces the CPU and memory requirements: for
example, L5f ¼ 16 is reduced to L5s ¼ 10, saving 38%
of the cost. We deflate the low-lying eigenmodes of the
internal even-odd preconditioned operator to make the
truncated-CG AMA more efficient. The numbers of defla-
tion eigenvectors Nev and truncated CG iterations NCG are
given in Table I. We compute 32 sloppy samples per
configuration. To correct any potential bias due to the
approximation of the D operator and the truncated CG
inversion, in addition we compute one exact sample per
configuration using the Shamir operator. The latter is
computed iteratively by refining solutions of the
“zMobius,” again taking advantage of the short L5s and
deflation.

A. Parity-even and -odd nucleon correlators

The EDFF F3 is a parity-odd quantity induced by CP
interactions. To compute the effect of CP-odd interactions,
we modify the lattice action

S → Sþ iδCPS ¼ Sþ i
X
i;x

ci½OCP
i �x; ð52Þ

where ci are the CP-odd couplings such as the QCD θ
angle, quark (chromo-)EDMs, etc. We Taylor-expand
QCDþ CP vacuum averages in the couplings ci. For
example, for the three-point function, we get4

hN½q̄γμq�N̄iCP ¼ 1

Z

Z
DUDψ̄Dψe−S−iδ

CPSN½q̄γμq�N̄

¼ CNJN̄ − i
X
i

ciδCPi CNJN̄ þOðc2ψ Þ; ð53Þ

where C… and δCPC… stand for CP-even and CP-odd
correlators. Similarly, we also analyze the effect of CP
interaction on the nucleon-only correlators. In total, we
calculate the following two- and three-point CP-even
correlators as well as three- and four-point CP-odd
correlators:

CNN̄ ¼hNN̄i; δCPi CNN̄ ¼hNN̄
X
x

½OCP
i �xi;

CNJN̄ ¼hN½q̄γμq�N̄i; δCPi CNJN̄ ¼hN½q̄γμq�N̄
X
x

½OCP
i �xi;

where h� � �i stand for vacuum averages computed with CP-
even QCD action S. In Sec. III C, we also modify the action
S to include a uniform background electric field as a probe
of the electric dipole moment. In this work, we study only
the quark chromo-EDM as the source of CP violation,

OCP
ψG ¼ 1

2
ψ̄ ½Gμν�clovσμνγ5ψ ¼ 1

2
ψ̄ðgSGa;cont

μν TaÞσμνγ5ψ ;
ð54Þ

where Ga;cont is the continuum color field strength tensor
and ½Gμν�clov is the “clover” gauge field strength tensor on a
lattice (see Fig. 3)

½Gμν�clov ¼
1

8i
½ðUP

x;þμ̂;þν̂ þ UP
x;þν̂;−μ̂ þUP

x;−μ̂;−ν̂ þ UP
x;−ν̂;þμ̂Þ

− H:c:�: ð55Þ

TABLE I. Lattice ensembles on which the simulations were performed. Both ensembles use Iwasaki gauge action and Nf ¼ 2þ 1
domain wall fermions. The statistics are shown for “sloppy” (low-precision) samples. The nucleon masses were extracted using two-
state fits. For the background electric field method, we quote the quantum of the electric field E0 ¼ 6π

a2LtLx
.

L3
x × Lt × L5 a [fm] aml ams mπ [MeV] mN [GeV] E0 [GeV2] Conf. Stat. Nev NE¼1;2

ev NCG

163 × 32 × 16 0.114(2) 0.01 0.032 422(7) 1.250(28) 0.110 500 16000 200 150 100
243 × 64 × 16 0.1105(6) 0.005 0.04 340(2) 1.178(10) 0.0388 100 3200 200 200 200

FIG. 3. “Clover” definition of the gauge field strength tensor on
a lattice. The arrows correspond to products of gauge links taken
around the plaquettes beginning and ending at point x.

4In this section, all conventions for correlators, form factors,
and momenta are Euclidean.
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Insertions of the quark-bilinear cEDM density (54) can
generate both connected and disconnected contractions,
similarly to the quark current. In this work, we calculate
only the fully connected contributions to these correlation
functions shown in Fig. 4. The disconnected contributions
(see Fig. 5) are typically much more challenging to
calculate, and we will address them in future work.
Neglecting the disconnected diagrams will not affect the
comparison of the form-factor and the energy-shift meth-
ods, because they are omitted in both calculations.
To compute the connected diagrams, we insert the quark-

bilinear cEDM density (54) once in every ψ -quark line of
CNJN̄ diagrams, generating the four-point functions shown in
Fig. 4. We evaluate all the connected three- and four-point
contractions using the forward propagator and the set of
sequential propagators shown in Fig. 6. In addition to the
usual forward F and backward (sink-sequential) B propa-
gators,wecompute cEDMsequentialC anddoubly sequential
(fcEDM; sinkg-sequential) (E þ G) propagators. For every
additional value of the source-sink separation tsep and the sink
momentum p⃗0, additional backwardB and doubly sequential
(E þ G) propagators must be computed, i.e.

NF ¼ NC ¼ 1; NB ¼ NqNsepNmom;

NEþG ¼ NqNψNsepNmom;

where Nq is the number of separate flavors in the quark
current and Nψ is the number of separate flavors in the CP
operator. The connected CP-even two- and three-point
correlators do not require any additional inversions. In this
scheme, we perform only the minimal number of inversions
required for computing all the diagrams for the neutron and
proton EDMs induced by a connected flavor-dependent
quark-bilinearCP interactionwith the two degenerate flavors
u and d. Compared to Ref. [20], in which a small finite CP-
odd perturbation term∝ ϵ, ϵ ≪ 1 is added to the quark action
resulting in modified quark propagators

D−1
m → ðDm þ iϵσμν ~GμνÞ−1; ð56Þ

our four-point contractions correspond to computing the first
derivative ð∂Cϵ

2;3=∂ϵÞϵ¼0 directly, thus avoiding any higher-
order dependence on ϵ andobviating the ϵ-extrapolation. As a
cross-check, we have verified our contraction code on a small
test lattice by replacing propagators D−1

m η with

D−1
m η → ½D−1

m −D−1
m ðiϵΓÞD−1

m �η ð57Þ

to approximate ½Dm þ iϵΓ�−1η,whereΓ ¼ 1
2
Gμνσ

μνγ5. Using
these “CP-perturbed” propagators, each of which required
two inversions, we have computed the nucleon Cϵ

NN̄ and the
nucleon-current Cϵ

NJN̄ correlators, and compared their finite-
difference ϵ-derivatives to δCNN̄ and δCNJN̄ .
We use only one value of the sink momentum p⃗0 ¼ 0.

We compute nucleon-current three- and four-point corre-
lators with two source-sink separation values tsep ¼
f8; 10ga ¼ f0.91; 1.15g fm for the 163 × 32 ensemble,
and three values tsep¼f8;10;12ga¼f0.88;1.11;1.33g fm
for the 243 × 64 ensemble. For the 243 × 64 lattice, we use
the Gaussian-smeared sources with APE-smeared gauge
links, using parameters optimized for overlap with the
ground state [30], while for the 163 × 32 ensemble we use
the smearing parameters from Ref. [11]. The effective
nucleon mass plots from both ensembles are shown in
Fig. 7. Correlators CNJN̄ and δC̄PCNJN̄ are computed with
the polarization projector

Tþ
Szþ ¼ 1þ γ4

2
ð1þ ΣzÞ ¼

1

2
ð1þ γ4Þð1 − iγ1γ2Þ; ð58Þ

FIG. 4. Quark-connected contractions of the nucleon, quark current (dots), and cEDM operators (crosses).

FIG. 5. Quark-disconnected contractions of the nucleon, quark
current (dots), and cEDM operators (crosses).

FIG. 6. Propagators required for computing quark-connected
contractions of the nucleon, quark current, and cEDM operators.
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FIG. 7. Effective energy plots from the 243 × 64 (left) and 163 × 32 (right) lattices, together with two-state fits.

FIG. 8. Nucleon vector current form factors from the 243 × 64 (left) and 163 × 32 (right) lattices. Disconnected contractions are not
included.
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while correlators CNN̄ and δC̄PCNN̄ are computed with all
16 polarizations and saved to be used later for disconnected
contractions. We reduce the cost of computing backward
propagators with the widely used “coherent” trick, com-
bining two backward sources from samples separated by
Lt=2 into one inversion. Combining four samples resulted
in a large increase in the statistical uncertainty, negating its
cost-saving advantages.

B. Nucleon form factors

Following the discussion in Sec. II A, we use the form-
factor decomposition that is different from those in the
previous works [5–11]:

hNp0 jq̄γμqjNpi

¼ ūp0

�
F1ðQ2ÞγμþF2ðQ2Þσ

μνqν
2mN

þF3ðQ2Þ iγ5σ
μνqν

2mN

�
up;

ð59Þ
where the spinors up,ūp0 have definite (positive) parity.
Details of evaluating kinematic coefficients for form factors
F1;2;3 are given in Appendix C. We use the standard plateau

method to evaluate both CP-even and CP-odd matrix
elements of the nucleon,

½δCP�RNJN̄ðtsep; topÞ

¼ ½δC̄P�CNJN̄ðtsep; topÞ
c02ðtsepÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c02ðtsepÞ
c2ðtsepÞ

c02ðtopÞ
c2ðtopÞ

c2ðtsep − topÞ
c02ðtsep − topÞ

s
;

ð60Þ

where the two-point functions are projected with the
positive-parity polarization matrix Tþ ¼ 1

2
ð1þ γ4Þ,

cð0Þ2 ðtÞ ¼ Tr½TþCNN̄ðp⃗ð0Þ; tÞ�: ð61Þ

The averages of the three central points on the ratio plateaus
are used as estimates of ground-state matrix elements. This
is a crude estimate, and improved analysis of excited states
is necessary for better control of systematic uncertainties.
However, we find that our results change insignificantly
when increasing the source-sink separation (see Figs. 9
and 13); therefore, we conclude that excited-state effects
cannot influence the main conclusions of the paper.

FIG. 9. Plateau plots for the neutron and proton Pauli form factors: the three smallest Q2 > 0 points. Results are shown for the
243 × 64 (left) and 163 × 32 (right) lattices.
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We calculate the Dirac and Pauli form factors F1;2 using
a correlated χ2 fit to the matrix elements of the quark vector
current (“overdetermined analysis”). The system of equa-
tions for form factors is reduced by combining equivalent
equations to reduce the system dimension and make
estimation of the inverse covariance matrix more stable
(see, e.g., Ref. [30] for details). The quark-current operator
is renormalized using renormalization constants ZV ¼
0.71408 for 243 × 64 [27] and the chiral-limit value ZV ¼
ZA ¼ 0.7162 for 163 × 32 [31] ensembles. We show the
momentum dependence of the resulting Sachs electric and
magnetic form factors

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4m2
N
F2ðQ2Þ;

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ ð62Þ

for the proton and the neutron (connected only) for both
ensembles in Fig. 8. Our data for form factors GE;M show
no significant systematic variation with an increase of the
source-sink separation tsep.
In order to compute the form factor F3, we first need

to calculate the parity mixing angle α5 in order to subtract
the F1;2 mixing terms. Expanding the nucleon two-point
functionCCP

NN̄ðtÞ to the first order in α5 ∝ cψG and assuming
that the ground state dominates for a sufficiently large time
t, we get

CNN̄ðtÞ − icψGδCPCNN̄ðtÞ þOðc2ψGÞ

¼t→∞ jZN j2
�
1þ γ4

2
þ iα5γ5 þOðα52Þ

�
e−mNt: ð63Þ

We use the projectors Tþ ¼ 1þγ4
2

and Tþγ5 to calculate the
“effective” mixing angle α̂5ðtÞ normalized to cψG ¼ 1,

α̂eff5 ðtÞ ¼ −
Tr½Tþγ5δCPCNN̄ðtÞ�

Tr½TþCNN̄ðtÞ�
¼t→∞ α5

cψG
: ð64Þ

The time dependence of the ratios (64) for both ensembles
is shown in Fig. 10. The quark flavors in the cEDM
interaction are shown respective to the proton, and for the
neutron u ↔ d must be switched according to the isospin
symmetry. The plateau is reached for time t ≥ 8, and we
extract the α5 values from a constant fit (weighted average)
to points t ¼ 8…11. An interesting observation is that
the mixing angle depends very strongly on the flavor
involved in the CP interaction. Thus, for the proton
Pδ ¼ uδðuTCγ5dÞ, in which the d quark is combined with
the u quark into a scalar diquark, the d cEDM does not lead
to any observable parity mixing.
Finally, the electric dipole form factor F3 is calculated

from the CP-odd four-point correlator δCPCNJN̄. Similarly
to the extraction of α̂5 above, we expand the CP three-point
function in the CP-odd interaction. We extract the matrix
elements using the ratios (60) of polarization-projected
three-point functions Tr½TRCP

NJN̄ � to CP-even two-point
functions (61). Expanding the ratio in α5 ∝ cψG, we get

Tr½TðRNJN̄ − icψGδCPRNJN̄ þOðc2ψGÞÞ�
¼t→∞ X

i¼1;2

½KðTÞ
Ri þ iα5K

ðfT;γ5gÞ
Ri �Fi þKðTÞ

R3F3 þOðα52Þ;

ð65Þ

where KðTÞ
R1;2;3 are the kinematic coefficients [Eqs. (C9)–

(C12)] for form factors F1;2;3 computed with the polariza-
tion matrix T and with K → KR (C14). Matching the
OðcψGÞ terms in the above expansion and neglecting
excited states, we obtain

iKðTÞ
R3F̂3 ¼ Tr½TδCPRNJN̄ �g:s: þ α̂5

X
i¼1;2

KðfT;γ5gÞ
Ri Fi: ð66Þ

FIG. 10. Chiral rotation angle α5 of the proton field induced by u- and d-quark cEDM interactions on the 243 × 64 (left) and 163 × 32
(right) lattices. The angles α5 for the neutron are related by the SUð2Þf symmetry u ↔ d. The chromo-EDM interactions are not
renormalized and may contain mixing with other operators.
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The second term on the rhs of the above equation is the
mixing subtraction. Its form indicates that the mixing
between form factors F1;2 and F3 happens only because
of the polarization mixing of the nucleon interpolating
fields on a lattice. This is substantially different from the
expressions used in Refs. [5–11], which also include an
additional subtraction term ð−2α5F3Þ because of the
spurious mixing of F2 and F3 in the vector current
vertex (24).
Although both timelike and spacelike components of the

current can be used to calculate F3, in practice we find that
the time component J4 yields much better precision than the
spacelike component J3. Due to the larger uncertainty of the
J3 signal, combining both components did not result in
improved precision of the F3 form factor. If only the J4

component is used, the overdetermined fit to matrix ele-
ments is not required, and for T¼Tþ

Szþ¼
1þγ4
2
ð1−iγ1γ2Þ

from Eqs. (C10) and (C12),

ð1þ τÞF3ðQ2Þ ¼ mN

q3KR
Tr½Tþ

Szþδ
CPRNJ4N̄ � − α̂5GEðQ2Þ;

ð67Þ

where τ is the kinematic variable (C6). It is remarkable that
for the neutron, the subtraction term ∝ α5GE is zero in the
forward limit. In fact, if one uses the traditional formula for
extracting the neutron EDM dN ¼ F3ð0Þ=ð2mNÞ, a large
contribution ð−2α5F2ð0ÞÞ=ð2mNÞ comes from the spurious
mixing if α5 is not zero. In Sec. IV, we will discuss the

FIG. 11. Nucleon electric dipole form factors F3 induced by u- and d-quark chromo-EDM interactions from the 243 × 64 (left) and
163 × 32 (right) lattices. The chromo-EDM interactions are not renormalized and may include mixing with other operators.
Disconnected contractions are not included for either current or cEDM insertion.
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currently available lattice results for the neutron and proton
EDMs induced by the QCD θ term.
To compute form factors from data with each source-sink

separation tsep, we use the value α̂5 ¼ α̂5
effðtsepÞ in Eq. (67)

to subtract the mixing. The results for the EDFF F3 are
shown in Fig. 11. Despite relatively high statistics, the
signal for the cEDM-induced form factor is noisy. There is
no significant dependence on the source-sink separation
tsep. Since the cEDM operator is not renormalized, it can
include contributions from other operators of dimension 5,
as well as operators from lower dimension 3 [32]. One
peculiar feature of these results is that, similarly to α5, the
contribution to the proton EDM comes mostly from the u
cEDM, while the contribution to the neutron comes mostly
from the d cEDM. However, a substantial increase in
statistics, as well as a more elaborate analysis of excited
states, is required to confirm these observations.
The electric dipole moment is determined by the value of

the form factor F3ðQ2Þ at zero. This value is not directly
calculable, and one has to extrapolate the Q2 > 0 data
points to Q2 ¼ 0. In Fig. 12, we show linear extrapolation
of these form factors using the three smallest Q2 > 0
points. Other fit models are not warranted until the
statistical precision is substantially improved. We also
show the comparison of three-point function plateaus in
Fig. 13 with different source-sink separations.

C. Neutron electric dipole moments from energy shifts

Calculation of the dipole moment using a uniform
background field has an advantage, in that no momentum
extrapolation of form factors is required, because energy
shifts depend on forward matrix elements of the nucleon.
This calculation is easier for the neutron than for the proton:

in the case of a charged particle, the analysis of its
correlation function is more complicated due to its constant
acceleration [22]. On the other hand, since the uniform
background field is quantized on a lattice, these fields
cannot be made arbitrarily small. In fact, the field quanta
are very large, and their magnitudes are comparable to the
QCD scale, especially on the smaller 163 × 32 lattice.
Because of the fractional charges of quarks, the minimal
value of the electric field contains an additional factor of 3,
and it is quantized in multiples of E0 ¼ 6π

a2LxLt
. The E0

values are shown in Table I, and for the smaller 163 × 32

lattice, the minimal electric field is E0 ¼ 0.110 GeV2 ¼
560 MV=fm. Such an electric field pulls the u quark in the
neutron with tension ≈ð270 MeVÞ2, or approximately 40%
of the QCD string tension, and may deform the neutron too
far away from the ground state.
We introduce the uniform electric field on a lattice as

described in Sec. II C along the z direction. Using modified
QCDþUð1Þ gauge links, we calculate the regular nucleon
correlator CNN̄;E, as well as the correlator with the insertion
of CP-odd interaction, in full analogy with Sec. III A, e.g.,

δCPCNN̄;Eðp⃗; tÞ ¼
X
y⃗

e−ip⃗ðy⃗−x⃗ÞhNðy⃗; tÞN̄ðx⃗; 0ÞOCP
ψGiE :

ð68Þ

The modified gauge links are used both in computing the
propagators and in the construction of smeared sources
and sinks. In fact, since the individual quarks are charged,
smearing their distributions with the original QCD gauge
links breaks gauge covariance and makes the calculation
dependent on the choice of the gauge of the electromag-
netic potential. The QCD links used in Gaussian smearing

FIG. 12. Linear Q2 fits to the neutron EDFF F3 (same data as in Fig. 11) including only the three smallest Q2 > 0 points and source-
sink separations T ¼ 8a, 10a. Results are shown for the 243 × 64 (left) and 163 × 32 (right) lattices.
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are first APE-smeared, and then the electromagnetic
potential is applied to them.
From Eq. (49), the energy of a particle on a lattice with

the spin polarized along the electric field E⃗ ¼ Eẑ is shifted
by the imaginary value δE ¼ −ðζ=2mÞiE. The nucleon
correlator at rest (p⃗ ¼ 0) thus must take the form

CCP
NN̄;Eðp⃗¼0;tÞ¼jZN j2eiα5γ5

1þγ4
2

×

�
1þΣz

2
e−ðmþδEÞtþ1−Σz

2
e−ðm−δEÞt

�
eiα5γ5 :

ð69Þ

As with the CP-odd form factor F3, expanding the
correlator up to the first order in α5, δE, ζ ∝ cψG, we get

CNN̄;E − icψGδC̄PCNN̄;E

¼t→∞ jZN j2e−mNt

�
1þ γ4

2
þ iα5γ5 − ΣzδEt

�
; ð70Þ

and for the electric dipole moment we obtain the following
estimator from the effective energy shift:

ζeffðtÞ ¼ 2mNdeffN ðtÞ ¼ −
2mN

Ez
½Rzðtþ 1Þ − RzðtÞ�;

RzðtÞ ¼
Tr½TþΣzδ

C̄PCNN̄;EzðtÞ�
Tr½TþCNN̄;EzðtÞ�

: ð71Þ

We have computed the neutron correlation functions with
two values of the electric field E ¼ E0 and 2E0. The results
for both ensembles are shown in Fig. 14. We choose
t ¼ 6…9 as the common plateau to estimate the value of ζ
on both ensembles and both flavors in the cEDM operator.
In the case of d cEDM, we observe nonzero values of the
energy shift. Also, the EDM values computed with E ¼ E0

and 2E0 agree well with each other, indicating that the
energy shift is linear in E and our EDM result does not
depend on the polarizing effect of the electric field on the
nucleon.

D. Numerical comparison of the form-factor
and energy-shift methods

The normalization and the sign convention of the
dimensionless EDM ζ in Sec. III C are identical to those
of F3ð0Þ in Sec. III B, and we plot them for comparison in
Fig. 15. We observe satisfactory agreement between the

FIG. 13. Plateau plots for the neutron EDFF form factors: the three lowestQ2 > 0 points. Results are shown for the 243 × 64 (left) and
163 × 32 (right) lattices.
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values of ζ computed in the uniform background method
and the values obtained from the Q2 → 0 extrapolation of
form factors F3nðQ2Þ.
In order to check how the spurious mixing affects the

results, in Fig. 15 we also plot the values of form factors
computed with the old formula used in Refs. [5–11],

~F3 ¼ F3 − 2α5F2: ð72Þ

This formula obviously gives a value for ~F3 different from
F3 only if α5 is large. In the case of u cEDM, the value α5 for

the neutron is small, and there is no observable difference
between F3 and ~F3. However, in the case of d cEDM, the
difference is remarkable. None of the three sources of
uncertainty—excited-state bias in the energy shift calcula-
tion, excited-state bias in the form-factor calculation, or the
Q2 → 0 extrapolation of the form factors—can plausibly
change the outcome of this comparison, due to the large
value of α5. The agreement between the new form-factor
extraction formula and the energy-shift method is one of the
main results of this paper, and serves as a numerical cross-
check of our analytic derivation.

FIG. 14. The neutron EDM computed from energy shifts with two values of the electric field. The units are dimensionless, and the
scale is the same as for F3. The values used in comparison are computed as averages of the t ¼ 6…9 conservative plateaus common for
both ensembles and both cEDM flavors. Results are shown for the 243 × 64 (left) and 163 × 32 (right) lattices.

FIG. 15. Comparison of the neutron EDFF F3nðQ2Þ computed with the conventional (“OLD”) [5–11] and the “NEW” formula (C12)
to the neutron EDM ζ computed from the energy shift (see Fig. 14). The “OLD” F3nðQ3Þ data are extrapolated with the dipole fit, and
the “NEW” with the linear fit. Data points are shifted horizontally for legibility. Results are shown for the 243 × 64 (left) and 163 × 32
(right) lattices.
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We collect the values of α5, extrapolated F3ð0Þ, and ζn
from the background field method in Table II.

IV. CORRECTIONS TO EXISTING θ-INDUCED
nEDM LATTICE RESULTS

In Sec. II A, it has been shown that the commonly used
formula for extracting the form factor F3 from CP nucleon
matrix elements on a lattice is incorrect. This formula has
been used in all of the papers that compute QCD θ-induced
nucleon EDMs [5–11]. Fortunately, the correction has a
very simple form (25), in which ~F2;3 refer to the old results
and F2;3 refer to the corrected results. Unfortunately,
Refs. [5–11] offer a broad spectrum of conventions for
~F3 and α5 differing in sign and scale factors. However, by
comparing expressions for polarized CP-odd matrix ele-
ments of the timelike component of the vector current J4,
we can deduce the appropriate correction using that
reference’s conventions. For example, using Eq. (55) from
Ref. [10],

Π0
3pt;Q

�
Γk ¼

i
4
ð1þ γ0Þγ5γk

	
∼

iQk

2mN

�
α1
�
F1 þ

EN þ 3mN

2mN
F2

�
þ EN þmN

2mN

~F3

�

¼ iQk

2mN
½α1GE þ ð1þ τÞð ~F3 þ 2α1F2Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

F3

�
; ð73Þ

where τ ¼ EN−mN
2mN

introduced in Eq. (C6), and GE ¼
F1 − τF2 is the Sachs electric form factor. Comparing
the above equation to the expected form (C12), for the
corrected value of F3, we obtain

F3ðQ2Þ ¼ ~F3ðQ2Þ þ 2α1F2ðQ2Þ; ð74Þ

which holds for any value of Q2.
Although it is more suitable that the original authors of

Refs. [5–11] reanalyze their data with these new formulas,
it is interesting to examine whether the presently available
lattice calculations yield nonzero values for the θ̄-induced
nucleon EDMs after corrections similar to Eq. (74) have
been applied. The most precise result for F3nð0Þ that also
allows us to perform the correction unambiguously is
Ref. [10], which reports an 8σ nonzero value for F3ð0Þ ¼
−0.56ð7Þ from calculations with dynamical twisted-mass
fermions at mπ ¼ 373 MeV. However, when we apply the
corresponding correction (74), the value becomes 0.09(7)
and essentially compatible with zero.
Calculations with a finite imaginary θ angle [7,8] yield

the most precise values of the neutron EDM to date.
However, they do not contain sufficient details to deduce
the proper correction for F3. It must also be noted that it is
not clear if the sign of the CP-odd interaction ∼ ~GG is
consistent in all of the Refs. [5–11]. On the other hand, all
the reported nonzero results for the proton and neutron
EDM agree in sign so that F3nð0Þ < 0 and F3pð0Þ > 0, and
it is reasonable to assume that any differences in the
conventions are compensated in the final reported EDM
values. Furthermore, because the θ angle is equivalent to a
chiral rotation of quark fields, it is then reasonable to
assume that upon conversion to some common set of
conventions, e.g., those of Ref. [10], the sign of the
chiral rotation angle α agrees between different calcula-
tions. Based on these plausible assumptions, we deduce
that the results in Refs. [7,8] must be corrected as

TABLE II. Comparison of the neutron EDM ζn computed from
the energy shift to the neutron forward EDFF F3ð0Þ computed
with the new formula (C12) and the old formula [5]. The parity
mixing angle α5 is computed from the plateaus in Fig. 10 (the
flavors have been switched u ↔ d to describe the neutron).

243 × 64

ðcEDMÞU ðcEDMÞD
α5 t ¼ 8…11 −0.16ð14Þ −32.2ð2Þ
ζn from ΔEðEÞ E=E0 ¼ 1 4.6(2.8) 12.5(4.2)

E=E0 ¼ 2 1.3(1.9) 8.4(2.8)
NEW F3nð0Þ [(C12)] T ¼ 8a 3.7(1.1) 13.1(1.5)

T ¼ 10a 3.1(2.4) 11.0(3.5)
OLD F3nð0Þ [5] T ¼ 8a 3.1(1.3) −80.8ð3.8Þ

T ¼ 10a 3.2(2.7) −82.4ð8.2Þ

163 × 32

α5 t ¼ 8…11 0.23(12) −19.54ð15Þ
ζn from ΔEðEÞ E=E0 ¼ 1 4.2(2.0) 11.8(3.0)

E=E0 ¼ 2 2.8(1.3) 7.6(1.8)
NEW F3ð0Þ [(C12)] T ¼ 8a 1.9(8) 6.5(1.1)

T ¼ 10a 1.1(1.9) 4.4(2.7)
OLD F3ð0Þ [5] T ¼ 8a 2.5(9) −55.0ð5.1Þ

T ¼ 10a 2.1(2.1) −62.0ð12.5Þ

FIG. 16. Corrected (filled symbols) and original (open sym-
bols) values for the neutron form factor F3 at a nonzero imaginary
θ angle from Ref. [8]. The linear parts in the limit θ → 0 are
shown in Table III.
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Fθ
3 ¼ ~Fθ

3 þ 2αðθÞF2,
5 where α < 0, in analogy with

Ref. [10]. The data for ᾱθ and ~Fθ
3ð0Þ at finite θ̄ values

are extracted from figures in Ref. [8]. The original ~Fθ
3ð0Þ

and the corrected Fθ
3ð0Þ values are shown in Fig. 16.

Following Ref. [8], the corrected Fθ
3ð0Þ values are inter-

polated to θ̄ → 0 using a linear þ cubic fit F3ð0Þθ̄ þ Cθ̄3,
and the resulting values F3ð0Þ ¼ dFθ

3=dθ̄jθ̄¼0 are given in
Table III. We observe that the corrected values at both the
finite and zero θ̄ values agree with zero at the ≲2σ level.
Corrections to other results [5,6] may be done on a

similar basis.6 The resulting values are also collected in
Table III, and in all cases they are compatible with zero,
deviating at most 2σ. We emphasize that, apart from
Ref. [10], these corrections are made using the sign
assumptions discussed above. If our assumptions are
wrong, the corrected central values will be approximately
twice as large compared to the originally reported values.
Although we find our assumptions plausible, and thus the
corrected values in Table III most likely valid, a final
confirmation of our findings can only be done if the authors
of Refs. [5–9,11] reanalyze their data with our correction.
It is possible that the difference between the lattice values
of the neutron EDM and phenomenological estimates
dn ∼Oð10−3…10−2Þθ̄e fm [12,14,18,36], which has been
ascribed to chiral symmetry breaking of lattice fermions
and heavy quark masses used in the simulations, can
disappear when the proper corrections are applied.

V. SUMMARY AND CONCLUSIONS

Among our most important findings in this paper are the
new formula for the analysis of nucleon-current correlators
computed in a CP vacuum and the extraction of the electric
dipole form factor F3. We have demonstrated, both ana-
lytically and numerically, that the analyses of the θ̄-induced
nucleon EDM in previous calculations [5–11] introduced
spurious contributions ð−2α5κÞ due to mixing with the
anomalous magnetic moment κ of the nucleon. Fortunately,
the correction is very simple and requires only the values of
the nucleon anomalous magnetic moments from calcula-
tions on the same lattice ensembles. Applying this correc-
tion properly is somewhat complicated, due to differences
in the conventions used in these works. Under some
plausible assumptions we have demonstrated that, after
the correction, even the most precise current lattice results
for θ̄ nEDMs may be compatible with zero. If this finding
is confirmed in detailed reanalyses of Refs. [5–11], the
precision of the current lattice QCD determination of θ̄
nEDMs may be completely inadequate to constrain the
QCD θ̄ angle from experimental data. The entire modern
program to search for fundamental symmetry violations as
signatures of new physics relies on our understanding of the
effects of quark and gluon CP interactions on nucleon
structure. The importance and urgency of first-principles
calculations of these effects hardly needs more emphasis,
and we conclude that they will likely be even more difficult
than thought before.
In this paper, we have also performed calculations of the

nucleon electric dipole moments induced by CP-odd
quark-gluon interactions using two different methods. In
the first method, we have successfully calculated the
nucleon-current correlators with and without the CP-odd
interaction, evaluating up to four-point connected nucleon
correlation functions. We have demonstrated that this novel

TABLE III. Corrections to the results reported in earlier calculations of θ̄-induced nucleon EDMs for the nucleon (n) and the proton
(p). Some of the used values are at nonzero momentum transfer Q2. Both form factors F2;3 are quoted as dimensionless [in “magneton”
units e=ð2mNÞ]. The errors for F3 are taken equal to those of ~F3 except for Ref. [8], in which the errors are extracted from our
interpolation of the corrected F̄3ðθ̄Þ values (see Fig. 16). In the first row, the correction follows the original conventions [10] exactly.
In the following rows, the parity-mixing angles α have been transformed to α < 0, and the EDMs have been corrected with
F3 ¼ ~F3 þ 2αF2 using the assumptions discussed in the text.

mπ [MeV] mN [GeV] F2 α ~F3 F3

[10] n 373 1.216(4) −1.50ð16Þa −0.217ð18Þ −0.555ð74Þ 0.094(74)
[5] n 530 1.334(8) −0.560ð40Þ −0.247ð17Þb −0.325ð68Þ −0.048ð68Þ

p 530 1.334(8) 0.399(37) −0.247ð17Þb 0.284(81) 0.087(81)
[6] n 690 1.575(9) −1.715ð46Þ −0.070ð20Þ −1.39ð1.52Þ −1.15ð1.52Þ

n 605 1.470(9) −1.698ð68Þ −0.160ð20Þ 0.60(2.98) 1.14(2.98)
[8] n 465 1.246(7) −1.491ð22Þc −0.079ð27Þd −0.375ð48Þ −0.130ð76Þd

n 360 1.138(13) −1.473ð37Þc −0.092ð14Þd −0.248ð29Þ 0.020ð58Þd
aEstimated as ð− 1

2
Fv
2ð0ÞÞ from Ref. [33], assuming Fs

2 ≈ 0.
bThe value f1n was reported incorrectly in Ref. [5] with a factor of 1

2
[34].

cFrom Ref. [35], where F2 was computed with θ̄ ¼ 0.
dEstimated from a linear þ cubic fit to plotted ᾱðθ̄Þ and Fθ

3 data [8].

5Strictly speaking, for finite values of θ̄ and ᾱðθ̄Þ, one has to use
the hyperbolic “rotation” formula coshð2αÞF3¼ ~F3þsinhð2αÞF2.
We neglectOðα2Þ terms because jαj ≲ 0.15, while the precision is
only ≈10%.

6Correction to the result in Ref. [7] requires the corresponding
values for F2, which we could not locate in published works.
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technique works well, and we argue that it is both cheaper
and has fewer uncertainties than the technique used in
Refs. [20,21] to compute the same observables with
modified Wilson action. One of the obstacles to applying
the technique of Refs. [20,21] is that low-eigenmode
deflation used to accelerate calculations will be more
expensive, because new eigenvectors have to be computed
for every modification of the fermion action. This may also
be partially true for recently introduced multi-grid methods,
in which null-subspace vectors of a Dirac operator have to
be computed in a setup phase, which has considerable cost.
In the second method, we computed the neutron EDM

using its energy shift in a uniform background electric field
and in the presence of the same CP-odd interaction. The
energy-shift method to compute nucleon EDM has been
used before [2–4], but our calculation is the first one that
uses the uniform background electric field respecting
boundary conditions [22]. We perform calculations with
identical statistics in both methods and can directly
compare the central values and the uncertainties of the
results. We find that the EDM results agree if the new
formula for extraction of the EDFF F3 is used. Also, both
methods yield comparable uncertainty, and the energy-shift
method may be preferable in the future because it does not
require forward-limit extrapolation, and excited states may
be easier to control [37].
Our calculations on a lattice are far from perfect and

require improvement of the treatment of excited states
and the forward-limit extrapolation of the form factors.
However, the associated systematic uncertainties are too
small to cast doubt on the numerical comparison of the
energy shift and the form-factor methods. Although our
calculations lack evaluation of the disconnected diagrams
and renormalization and mixing subtractions of the quark
chromo-EDM operator, these drawbacks apply equally to
both methods, and therefore do not affect said validation.
Future calculation of disconnected contributions to the

F3 form factors will be an extension to the present work, in
which the quark-disconnected loops with insertions of the
quark current, chromo-EDM, and both, will be evaluated
and used together with the existing nucleon correlators. The
disconnected contractions do not require four-point corre-
lators and are simpler to construct, although the stochastic
noise will likely be a much bigger problem than for the
connected contractions. We expect that with advances in
numerical evaluation of the disconnected diagrams [38],
this problem will be tractable.
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APPENDIX A: CONVENTIONS

In this appendix, we collect conventions for γ-matrices
implicitly or explicitly used throughout the text. In
Table IV, we also provide notes on the transformation
between Minkowski (M2) and Euclidean (Euc) notations
to avoid any ambiguities in matching Minkowski and

TABLE IV. Correspondence between notations used in
Minkowski M2 (metric f−;−;−;þg) and Euclidean Euc space-
time. Upon transition M2 ↔ Euc, the quantities in the corre-
sponding columns transform into each other.

Quantity ½��M2 ½��Euc
Coordinate ðx⃗; tÞ ¼ ðxi; x4Þ ðxi;−ix4Þ
Momentum ðp⃗; EÞ ¼ ðpi; p4Þ ðpi;−ip4Þ
Scalar product aμbμ ð−aμbμÞ
Plane wave e−ipx ¼ e−iEtþip⃗ x⃗ eipx ¼ e−Ex

4þip⃗ x⃗

γ-matrices ðγi; γ4Þ ðiγi; γ4Þ
“Slashed” vector p ¼ pμγμ ð−ipÞ ¼ ð−ipμγμÞ
Dirac operator ðp −mÞ ðipþmÞ
Spin matrix σμν ðσij; σi4Þ ð−σij; iσi4Þ
Spin matrix σμνqν ðσiνqν; σ4νqνÞ ðσiνqν;−iσ4νqνÞ
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Euclidean form-factor expressions for matrix elements
and vertices.
In Minkowski space with metric f−1;−1;−1;þ1g, we

use the chiral γ-matrix basis

½γi�M2 ¼
�

σi

−σi

�
; ½γ4�M2 ¼

�
1

1

�
; ðA1Þ

and with ϵ4123 ¼ þ1, we define the chiral γ5 matrix

½γ5�M2 ¼ −
i
4!
½ϵμνρσγμγνγργσ�M2 ¼ i½γ4γ1γ2γ3�M2

¼
�−1

1

�
: ðA2Þ

For the spin matrix σμν ¼ i
2
½γμ; γν�, we will also need the

relation

½σμνγ5�M2 ¼
i
2
½ϵμνρσσρσ�M2: ðA3Þ

In accordance with Table IV, the γ-matrices in Euclidean
spacetime are

½γi�Euc ¼
�

−iσi

þiσi

�
; ½γ4�Euc ¼

�
1

1

�
; ðA4Þ

in which γ1;3 have the opposite sign compared to the
deGrand-Rossi basis used in most of the lattice QCD
software. This difference is inconsequential, because all
results are manifestly covariant with respect to unitary basis
transformations. Finally, we use the γ5 definition that
agrees with the lattice software,

½γ5�Euc ¼ ½γ1γ2γ3γ4�Euc ¼
�
1

−1

�
; ðA5Þ

and note that the kinematic coefficients for vector form
factors derived in Appendix C depend on a particular γ5
definition in terms of γμ, but the numerical lattice results
are invariant as long as the same ½γ5�Euc is used in both
Eqs. (54) and (30).

APPENDIX B: ELECTRIC AND MAGNETIC
DIPOLE MOMENTS AND FORM FACTORS

In this appendix, we recall the connection between the
form factors F2;3 and the magnetic and electric dipole
moments of a spin-1=2 particle. Although this is discussed
in many textbooks, we find it useful to perform a rigorous
derivation expanding the matrix element (14) in the
momentum transfer q ¼ p0 − p and taking the limit
q → 0. For completeness and to avoid any ambiguities,
in addition to the γ-matrices in Appendix A, we collect
all relevant conventions for EM fields, 4-spinors, and their

interaction. The discussion in this appendix assumes
Minkowski conventions M2 with gμν ¼ diagf−1;−1;
−1;þ1g.
The charged fermion-photon interaction is determined

by the form of the “long” derivative,

Dμ ¼ ∂μ þ ieAμ;

L ¼ ψ̄ðiDμγ
μ −mÞψ ¼ ψ̄ði∂ −mÞψ − eAμJμ; ðB1Þ

which leads to the interaction Hamiltonian

Hint ¼
Z

d3xð−LintÞ ¼ e
Z

d3xAμJμ

¼ e
Z

d3xðρϕ − J⃗ · A⃗Þ; ðB2Þ

where the EM potential Aμ ¼ ðA⃗;ϕÞ, EM current
Jμ ¼ ðJ⃗; ρÞ, and the electric coupling (charge) e ¼ jej.
To evaluate the matrix element (14) in the interaction

(B2), we use the chiral γ-matrix representation summarized
in Appendix A. The on-shell spinors satisfying the regular
Dirac equation with a real-valued mass m > 0 and energy

Eð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p⃗ð0Þ2p

take the form

up¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E−p⃗σ⃗
p

ξffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eþp⃗σ⃗

p
ξ

�
¼ ffiffiffiffi

m
p �

1þp⃗Σ⃗
2m

γ5þOðp⃗2Þ
��

ξ

ξ

�
;

ūp0 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E0−p⃗0σ⃗
p

ξ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E0þp⃗0σ⃗

p
ξ0

�†
γ4¼ ffiffiffiffi

m
p �

ξ0

ξ0

�†�
1−

p⃗0Σ⃗
2m

γ5þOðp⃗2Þ
�
;

ðB3Þ

where

Σk ¼ 1

2
ϵijkσjk ¼

�
σk

σk

�
:

Wewill use these spinors to evaluate matrix elements of the
Hamiltonian (B2), treating the EM field as classical back-
ground. Note that in order to treat these matrix elements
as the interaction energy, the states must be normalized as
nonrelativistic:

Eint ¼ hp⃗0; σ0jHintjp⃗; σiNR
¼ eAμ

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E02E

p ūp0Γμðp0; pÞup ≐ eAμ⟪Γμ⟫; ðB4Þ

where we have introduced the notation hhXii ¼
1ffiffiffiffiffiffiffiffiffi

2E02E
p ūp0Xup for convenience, and Γμ was introduced in

Eq. (15). In the limit of small spatial momenta jp⃗j,
jp⃗0j → 0, only the spatial components σij give nonvanish-
ing contributions when contracted with the spinors (B3):
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⟪σij⟫ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E2E0p ūp0σijup ¼ ϵijkξ0†σkξþOðjp⃗j; jp⃗0jÞ;

⟪σ4k⟫ ¼ ūp0σ4kup ¼ Oðjp⃗j; jp⃗0jÞ: ðB5Þ

Recalling the conventions [40] for the EM potential Aμ,

ðE⃗Þi ¼ −
∂
∂xi A

4 −
∂
∂t ðA⃗Þ

i; ðB6Þ

ðH⃗Þi ¼ ðcurlA⃗Þi ¼ ϵijk
∂
∂xj ðA⃗Þ

k; ðB7Þ

which result in the following field strength tensor Fμν and
its dual ~Fμν ¼ 1

2
ϵμνρσFρσ , ϵ1234 ¼ þ1:

Fμν ¼

0
BBBBBBB@

1 2 3 4

1 0 −H3 H2 −E1

2 H3 0 −H1 −E2

3 −H2 H1 0 −E3

4 E1 E2 E3 0

1
CCCCCCCA
; ðB8Þ

~Fμν ¼

0
BBBBBBB@

1 2 3 4

1 0 E3 −E2 −H1

2 −E3 0 E1 −H2

3 E2 −E1 0 −H3

4 H1 H2 H3 0

1
CCCCCCCA
; ðB9Þ

where the rows and the columns are enumerated by μ and ν,
respectively. With the following conventions for the fer-
mion and photon fields with definite momenta pð0Þ and q,
respectively:

ψpðxÞ ∼ e−ipx; ψ̄p0 ðxÞ ∼ eip
0x;

Aq;μðxÞ ∼ e−iðp0−pÞx ¼ e−iqx; ðB10Þ

the derivatives acting on these fields are translated into
factors of momenta,

∂ψ ¼ γμ∂μψ → γμð−ipμÞψ ¼ ð−iÞpψ ; ðB11Þ

FμνðxÞ ¼ ∂μAν − ∂νAμ → ð−iÞðqμAν − qνAμÞ: ðB12Þ

Applying the Gordon identity to Eq. (14) and omitting the
FA form factor, we get

hp0; σ0jJμjp; σiCP
¼ ūp0

�
F1

ðp0 þ pÞμ
2m

þ ðGM þ iγ5F3Þ
iσμνqν
2m

�
up;σ;

ðB13Þ

where GM ¼ F1 þ F2 is the magnetic Sachs form factor
determining the full magnetic moment μ ¼ Qþ κ ¼
GMð0Þ. The first term is independent of the spin and is
equal to the electromagnetic interaction of a scalar particle,
which we omit as irrelevant to the discussion. With the use
of (A3) and (B12), the spin-dependent interaction energy
takes the form

Eint;spin ¼ iqνAμ

�
eGM

⟪σμν⟫

2m
− eF3

1

2
ϵμνρσ

⟪σρσ⟫

2m

�

¼ 1

2

�
eGM

2m
Fμν −

eF3

2m
~Fμν

�
⟪σμν⟫: ðB14Þ

Neglecting all but the leading order in Oðjp⃗j; jp⃗0jÞ, we only
have to keep the spatial components hhσijii:

Eint;spin ¼ −
eGM

2m
H⃗ · Σ̂ −

eF3

2m
E⃗ · Σ̂; ðB15Þ

where the unit spin vector Σ̂ ¼ ξ0†σ⃗ξ, jΣ̂j ¼ 1. The coupling
coefficients to the magnetic and electric fields in the above
equation have to be identified with the magnetic and
electric dipole moments, respectively:

μN ¼ GMð0Þ; dN ¼ F3ð0Þ; ðB16Þ

both of which are expressed here in the particle magneton
units e=ð2mÞ.
Note that the above derivation could be repeated for the

chirally rotated spinors and the nucleon-current vertex (13).
It can be easily shown that the only change compared to
Eq. (B15) would be that the magnetic and electric fields
would couple to some orthogonal linear combinations of
~F2;3, and that these combinations would reproduce F2 and
F3 exactly in agreement with Eq. (25).
Finally, we note that if one uses the chirally rotated

spinors to calculate the spatial matrix elements ⟪σij⟫, they
are reduced by a factor of cosð2α5Þ while the timelike
matrix elements ⟪σ4k⟫ become nonzero:

e2iα5γ5σij ¼ cosð2α5Þσij þ sinð2α5Þϵijkσ4k;
e2iα5γ5ϵijkσ4k ¼ − sinð2α5Þσij þ cosð2α5Þϵijkσ4k: ðB17Þ

As we noted above, ūp0σijup couples to the magnetic field,
while ūp0σ4kup couples to the electric field. This “mixing”
of electric and magnetic fields compensates exactly the
mixing in Eq. (25) induced by using the chirally rotated
spinors ~̄u, ~up instead of the regular spinors ūp0 , up.

APPENDIX C: KINEMATIC COEFFICIENTS

In this appendix, we present expressions for the kinematic
coefficients for form factorsF1;2;3 on a Euclidean lattice.We
use two types of the polarization projectors: (1) spin-average
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Tþ and (2) polarized Tþ
Sz
. Both projectors also select the

upper (positive-parity) part of the nucleon spinors

Tþ ¼
�
1þ γ4

2

�
Euc

; Tþ
Sz
¼
�
1þ γ4

2
ð−iγ1γ2Þ

�
Euc

: ðC1Þ

Form factor F3 can be extracted from μ ¼ 3, 4 compo-
nents of the vector current matrix elements between Sz-
polarized nucleon states. Using handy notations for the
positive-parity nucleon spinor matrices,

S ¼ −ipEuc þm; S0 ¼ −ip0
Euc þm; ðC2Þ

the form-factor expression for the CP nucleon-current
correlation function on a lattice CCP

3pt ¼ CCP
NJμN̄ can be

written as

Tr½TpolCCP
NJμN̄ðp⃗0; t; q⃗; topÞ�

¼ e−E
0ðt−topÞ−Etop

2E02E
Tr½eiα5γ5Teiα5γ5S0Γμ

Eucðp0; pÞS�

¼ e−E
0ðt−topÞ−Etop

2E02E
Tr½ðT þ iα5fγ5; Tg

þOðα52ÞÞS0Γμ
Eucðp0; pÞS�; ðC3Þ

where, assuming that the CP-odd interaction is small, we
have expanded in the CP-odd mixing angle α5.
Below, we quote formulas for contributions to the

last line of Eq. (C3) computed for zero sink momentum
p⃗0 ¼ 0:

source p⃗ ¼ −q⃗; E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ q⃗2

q
;

sink p⃗0 ¼ p⃗þ q⃗ ¼ 0; E0 ¼ m;

with the nucleon spin projectors Tþ and Tþ
Sz
. The α5-

independent contribution is

Tr½TþS0Γμ
EucS� ¼ 4m2

0
BBBB@

iq1=m −iτq1=m 0

iq2=m −iτq2=m 0

iq3=m −iτq3=m 0

2ð1þ τÞ −2τð1þ τÞ 0

1
CCCCA; ðC4Þ

Tr½Tþ
Sz
S0Γμ

EucS�¼4m2

0
BBBB@
−q2=m −q2=m q1q3=ð2m2Þ
q1=m q1=m q2q3=ð2m2Þ

0 0 q23=ð2m2Þ
0 0 −ið1þτÞq3=m

1
CCCCA;

ðC5Þ

where the rows correspond to the Lorentz components
μ ¼ 1, 2, 3, 4 and the columns correspond to the form
factors F1;2;3. We have also introduced the frequently used
kinematic variable τ:

τ ≐ Q2

4m2
≡p⃗0¼0E −m

2m
: ðC6Þ

The coefficients of the contributions ∝α5 are

Tr½fγ5;TþgS0Γμ
EucS� ¼ 4m2

0
BBBB@
0 0 −τq1=m
0 0 −τq2=m
0 0 −τq3=m
0 0 2iτð1þ τÞ

1
CCCCA; ðC7Þ

Tr½fγ5; Tþ
Sz
gS0Γμ

EucS�

¼ 4m2

0
BBBB@

0 iq1q3=ð2m2Þ 0

0 iq2q3=ð2m2Þ 0

−2iτ −2iτ þ iq23=ð2m2Þ 0

−q3=m τq3=m 0

1
CCCCA: ðC8Þ

Up to order Oðα5Þ, the CP nucleon correlation functions
are7

Tr½TþCCP
NJ3N̄

� ¼ K
�
i
q3
m

GE þOðα52Þ
�
; ðC9Þ

Tr½TþCCP
NJ4N̄

� ¼ K½2ð1þ τÞGE þOðα52Þ�; ðC10Þ

Tr½Tþ
Sz
CCP
NJ3N̄

� ¼ K
�
2τα5GM − α5

q23
2m2

F2

þ q23
2m2

F3 þOðα52Þ
�
; ðC11Þ

Tr½Tþ
Sz
CCP
NJ4N̄

� ¼ K
�
−iα5

q3
m

GE

− ið1þ τÞ q3
m

F3 þOðα52Þ
�
; ðC12Þ

where GE ¼ F1 − τF2 is the electric and GM ¼ F1 þ F2 is
the magnetic Sachs form factor, and

K ¼ m
E
e−E

0ðtsep−topÞ−Etop ðC13Þ

is the time dependence combined with kinematic factors. In
the analysis of the CNJN̄=CNN̄ ratios (60), the exponential
time dependence is canceled, and the kinematic coefficients
have to be modified to take into account the traces of the
nucleon two-point functions:

KR ¼ mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eðmþ EÞp : ðC14Þ

In addition, we evaluate the extra contributions to the
kinematic coefficients ∼α5fγ5;Γμ

Eucg that come from spu-
rious mixing of F2;3:

7Note that both α5 and F3 are proportional to the CP-odd
perturbation; therefore, we consider F3 ¼ Oðα5Þ and drop terms
α5F3 and higher.
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Tr½TþS0fγ5;Γμ
EucgS� ¼ 4m2

0
BBBB@

0 0 2τq1=m

0 0 2τq2=m

0 0 2τq3=m

0 0 −4iτð1þ τÞ

1
CCCCA;

ðC15Þ

Tr½Tþ
Sz
S0fγ5;Γμ

EucgS�

¼ 4m2

0
BBBB@

0 −iq1q3=m2 −2iq2=m
0 −iq2q3=m2 2iq1=m

0 −iq23=m2 0

0 −2ð1þ τÞq3=m 0

1
CCCCA; ðC16Þ

which in Refs. [5–11] contributes to the polarized nucleon-
current correlators as

δTr½Tþ
Sz
CCP
NJ3N̄

� ¼? K
�
α5

q23
m2

F2 þOðα52Þ
�
; ðC17Þ

δTr½Tþ
Sz
CCP
NJ4N̄ � ¼

? K
�
−2iα5ð1þτÞq3

m
F2þOðα52Þ

�
: ðC18Þ

If the terms (C17) and (C18) are erroneously added to the
kinematic coefficients (C11) and (C12), analysis of the
same lattice correlation functions will result in incorrect
values of EDFF, ~F3 ¼ F3 − 2α5F2, in full agreement
with Eq. (25).

[1] J. Engel, M. J. Ramsey-Musolf, and U. van Kolck, Prog.
Part. Nucl. Phys. 71, 21 (2013).

[2] S. Aoki and A. Gocksch, Phys. Rev. Lett. 63, 1125 (1989);
65, 1172(E) (1990).

[3] E. Shintani, S. Aoki, N. Ishizuka, K. Kanaya, Y. Kikukawa,
Y. Kuramashi, M. Okawa, A. Ukawa, and T. Yoshié, Phys.
Rev. D 75, 034507 (2007).

[4] E. Shintani, S. Aoki, and Y. Kuramashi, Phys. Rev. D 78,
014503 (2008).

[5] E. Shintani, S. Aoki, N. Ishizuka, K. Kanaya, Y. Kikukawa,
Y. Kuramashi, M. Okawa, Y. Taniguchi, A. Ukawa, and T.
Yoshié, Phys. Rev. D 72, 014504 (2005).

[6] F. Berruto, T. Blum, K. Orginos, and A. Soni, Phys. Rev. D
73, 054509 (2006).

[7] R. Horsley et al., arXiv:0808.1428.
[8] F. K. Guo, R. Horsley, U.-G. Meißner, Y. Nakamura, H.

Perlt, P. E. L. Rakow, G. Schierholz, A. Schiller, and J. M.
Zanotti, Phys. Rev. Lett. 115, 062001 (2015).

[9] A. Shindler, T. Luu, and J. de Vries, Phys. Rev. D 92,
094518 (2015).

[10] C. Alexandrou, A. Athenodorou, M. Constantinou, K.
Hadjiyiannakou, K. Jansen, G. Koutsou, K. Ottnad, and
M. Petschlies, Phys. Rev. D 93, 074503 (2016).

[11] E. Shintani, T. Blum, T. Izubuchi, and A. Soni, Phys. Rev. D
93, 094503 (2016).

[12] R. J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten,
Phys. Lett. 88B, 123 (1979).

[13] A. Pich and E. de Rafael, Nucl. Phys. B367, 313 (1991).
[14] M. Pospelov and A. Ritz, Phys. Rev. Lett. 83, 2526 (1999).
[15] M. Pospelov and A. Ritz, Phys. Rev. D 63, 073015 (2001).
[16] J. Hisano, J. Y. Lee, N. Nagata, and Y. Shimizu, Phys. Rev.

D 85, 114044 (2012).
[17] B. Borasoy, Phys. Rev. D 61, 114017 (2000).
[18] E. Mereghetti, J. de Vries, W. H. Hockings, C. M. Maekawa,

and U. van Kolck, Phys. Lett. B 696, 97 (2011).
[19] T. Bhattacharya, V. Cirigliano, R. Gupta, H.-W. Lin, and

B. Yoon, Phys. Rev. Lett. 115, 212002 (2015).

[20] T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti, and
B. Yoon, Proc. Sci., LATTICE2015 (2015) 238.

[21] T. Bhattacharya, V. Cirigliano, R. Gupta, and B. Yoon, Proc.
Sci., LATTICE2015 (2016) 225.

[22] W. Detmold, B. C. Tiburzi, and A. Walker-Loud, Phys. Rev.
D 79, 094505 (2009).

[23] C. Itsykson and J.-B. Zuber, Quantum Field Theory
(McGraw-Hill, New York, 1984) Chap. 3.4.4.

[24] W. Detmold, B. C. Tiburzi, and A. Walker-Loud, Phys. Rev.
D 81, 054502 (2010).

[25] T. Blum et al., Phys. Rev. D 84, 114503 (2011).
[26] Y. Aoki et al., Phys. Rev. D 83, 074508 (2011).
[27] T. Blum et al., Phys. Rev. D 93, 074505 (2016).
[28] E. Shintani, R. Arthur, T. Blum, T. Izubuchi, C. Jung, and C.

Lehner, Phys. Rev. D 91, 114511 (2015).
[29] R. Brower, H. Neff, and K. Orginos, Nucl. Phys. B, Proc.

Suppl. 153, 191 (2006).
[30] S. Syritsyn et al., Phys. Rev. D 81, 034507 (2010).
[31] C. Allton et al., Phys. Rev. D 76, 014504 (2007).
[32] T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti, and

B. Yoon, Phys. Rev. D 92, 114026 (2015).
[33] A. Abdel-Rehim et al., Proc. Sci., LATTICE2014 (2015)

148.
[34] E. Shintani (private communication).
[35] P. E. Shanahan, R. Horsley, Y. Nakamura, D. Pleiter, P. E. L.

Rakow, G. Schierholz, H. Stüben, A. W. Thomas, R. D.
Young, and J. M. Zanotti, Phys. Rev. D 89, 074511
(2014).

[36] F.-K. Guo and U.-G. Meissner, J. High Energy Phys. 12
(2012) 097.

[37] C. Bouchard, C. C. Chang, T. Kurth, K. Orginos, and A.
Walker-Loud, arXiv:1612.06963.

[38] A. S. Gambhir et al., Proc. Sci., LATTICE2016 (2016) 265.
[39] A. Pochinsky, Qlua software, https://usqcd.lns.mit.edu/qlua.
[40] L. Landau and E. Lifshitz, The Classical Theory of Fields,

4th ed., Course of Theoretical Physics Vol. 2 (Butterworth-
Heinemann, Oxford, England, 1980).

LATTICE CALCULATION OF ELECTRIC DIPOLE … PHYSICAL REVIEW D 96, 014501 (2017)

014501-23

https://doi.org/10.1016/j.ppnp.2013.03.003
https://doi.org/10.1016/j.ppnp.2013.03.003
https://doi.org/10.1103/PhysRevLett.63.1125
https://doi.org/10.1103/PhysRevLett.65.1172
https://doi.org/10.1103/PhysRevD.75.034507
https://doi.org/10.1103/PhysRevD.75.034507
https://doi.org/10.1103/PhysRevD.78.014503
https://doi.org/10.1103/PhysRevD.78.014503
https://doi.org/10.1103/PhysRevD.72.014504
https://doi.org/10.1103/PhysRevD.73.054509
https://doi.org/10.1103/PhysRevD.73.054509
http://arXiv.org/abs/0808.1428
https://doi.org/10.1103/PhysRevLett.115.062001
https://doi.org/10.1103/PhysRevD.92.094518
https://doi.org/10.1103/PhysRevD.92.094518
https://doi.org/10.1103/PhysRevD.93.074503
https://doi.org/10.1103/PhysRevD.93.094503
https://doi.org/10.1103/PhysRevD.93.094503
https://doi.org/10.1016/0370-2693(79)90128-X
https://doi.org/10.1016/0550-3213(91)90019-T
https://doi.org/10.1103/PhysRevLett.83.2526
https://doi.org/10.1103/PhysRevD.63.073015
https://doi.org/10.1103/PhysRevD.85.114044
https://doi.org/10.1103/PhysRevD.85.114044
https://doi.org/10.1103/PhysRevD.61.114017
https://doi.org/10.1016/j.physletb.2010.12.018
https://doi.org/10.1103/PhysRevLett.115.212002
https://doi.org/10.1103/PhysRevD.79.094505
https://doi.org/10.1103/PhysRevD.79.094505
https://doi.org/10.1103/PhysRevD.81.054502
https://doi.org/10.1103/PhysRevD.81.054502
https://doi.org/10.1103/PhysRevD.84.114503
https://doi.org/10.1103/PhysRevD.83.074508
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1016/j.nuclphysbps.2006.01.047
https://doi.org/10.1016/j.nuclphysbps.2006.01.047
https://doi.org/10.1103/PhysRevD.81.034507
https://doi.org/10.1103/PhysRevD.76.014504
https://doi.org/10.1103/PhysRevD.92.114026
https://doi.org/10.1103/PhysRevD.89.074511
https://doi.org/10.1103/PhysRevD.89.074511
https://doi.org/10.1007/JHEP12(2012)097
https://doi.org/10.1007/JHEP12(2012)097
http://arXiv.org/abs/1612.06963
https://usqcd.lns.mit.edu/qlua
https://usqcd.lns.mit.edu/qlua
https://usqcd.lns.mit.edu/qlua
https://usqcd.lns.mit.edu/qlua

