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We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor
lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT),
we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a
lattice spacing of 0.11 fm with four pion masses ranging between M, = 290 MeV and 540 MeV and with a
strange quark mass m, close to its physical value. We utilize the all-to-all quark propagator technique to
calculate the EM form factors with high precision. Their dependence on m; and on the momentum transfer
is studied by using the reweighting technique and the twisted boundary conditions for the quark fields,
respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading
order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the
pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii,
and find reasonable agreement with phenomenological and experimental results.
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I. INTRODUCTION

The rapid increase of computational power and
improvements in simulation algorithms allow us to perform
large-scale simulations of unquenched lattice QCD in the
chiral regime, where the nonperturbative dynamics is
characterized by chiral symmetry. Chiral perturbation
theory (ChPT) [1,2] is an effective theory in this regime,
though its Lagrangian has unknown parameters, called low-
energy constants (LECs). A detailed comparison between
lattice QCD and ChPT may validate numerical lattice
calculations and analytical predictions of ChPT. This also
provides a first-principle determination of LECs, and hence
widens the applicability of ChPT to different physical
observables.

In such a program, chiral symmetry plays an essential
role. However, it is violated in most of the existing lattice
calculations, and the comparison had to be made after
carefully taking the continuum limit. Effects of the explicit
violation by the use of conventional Wilson and staggered
fermion formulations on the lattice were studied at next-to-
leading order (NLO) in ChPT [3-8]: in general, it modifies
the functional form of the ChPT expansion of physical
observables, and introduces additional unknown LECs. It is
therefore not clear how one can disentangle the next-to-
next-to-leading order (NNLO) corrections, which are
significant in kaon physics, from the extra terms due to
the explicit chiral violation. Lattice QCD with exact chiral
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symmetry provides a clean framework for an unambiguous
comparison between lattice QCD and ChPT. The JLQCD
and TWQCD Collaborations have performed such simu-
lations employing the overlap quark action [9,10], and
studied the chiral behavior of various observables in
detail [11].

Pion and kaon electromagnetic (EM) form factors are
fundamental quantities in ChPT. The charged pion EM
form factor F7' is defined through the matrix element of
the EM current J, sandwiched by the pion states

(P(PIIP(P)) = (p+P),Fy(1). t=(p=-p),
(1)
J, = %ﬁyﬂu - %Ziyﬂd - %Eyﬂs, (2)

where |P(p)) specifies the light meson state (i.e., the
charged pion P = z*) of momentum p, and t=(p—p’)?
is the momentum transfer. This form factor is known up to
NNLO both in SU(2) ChPT [1,12,13], where the depend-
ence on the strange quark mass m, is implicitly encoded in
LECs, and in SU(3) ChPT with strange mesons as dynami-
cal degrees of freedom [14,15]. Detailed analyses of
experimental data based on NNLO ChPT have led to
precise estimates of the charge radius [13,15],
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which can be used as a benchmark of lattice calculations.
Its dependence on the momentum transfer ¢+ and mass of
degenerate up and down quarks m; has been studied in
unquenched lattice QCD [16-26]. Recent detailed compar-
isons with SU(2) ChPT [22-26] show that lattice data at the
pion mass M, < 500 MeV are described reasonably well
by the NNLO chiral expansion, and reproduce the exper-
imental value of the pion charge radius. The NNLO
contribution turns out to be non-negligible in accordance
with the two-loop ChPT analysis [13]. This test has not yet
been extended to SU(3) ChPT, in which the m dependence
of FZ' and (r?)% is explicitly taken into account.

The EM form factors of the charged and neutral kaons
are similarly defined through Eq. (1) with P = K* and K°,
respectively. Since strange valence quarks are involved, we
need SU(3) ChPT to describe their chiral behavior [27].
These form factors are known up to NNLO [15]. The m;
expansion is expected to have poorer convergence than that
in terms of m; due to m, > m;. A detailed examination of
the convergence and first-principle determination of rel-
evant LECs are helpful for a better understanding of kaon
physics: for instance, the phenomenologically important
form factors of the K — 7 semileptonic decays share LECs
with the EM form factors [29,30]. To our knowledge, there
has been no lattice calculation nor detailed comparison
with ChPT.

In the present work, we calculate the pion and kaon EM
form factors in three-flavor lattice QCD. We employ the
overlap quark action [9,10] to maintain exact chiral
symmetry for a direct comparison of our lattice data with
ChPT up to NNLO. The form factors are precisely
calculated using the all-to-all quark propagator [31,32].
We also utilize the reweighting technique [33,34] and the
twisted boundary conditions [35] to study their dependence
on my and ¢, respectively. We compare their chiral behavior
with NNLO SU(2) and SU(3) ChPT in detail, and present
an estimate of the relevant LECs and charge radii. Our
preliminary analysis has been reported in Ref. [36].

This paper is organized as follows. Section II introduces
our method of generating the gauge ensembles and of
calculating relevant light meson correlators. The EM form
factors are extracted at the simulation points in Sec. III. We
then study the chiral behavior of the form factors based on
NNLO SU(2) and SU@3) ChPT in Secs. IV and V,
respectively. We summarize our conclusions in Sec. VL.

II. SIMULATION METHOD

A. Configuration generation

We simulate Ny =2+ 1 QCD, in which the strange
quark has a distinct mass from degenerate up and down
quarks. We employ the Iwasaki gauge action [37] and the
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overlap quark action [9,10]. The Dirac operator of the latter
is given by

Din) = (1= )D0) 4y )
D(0) = mg(1 +yssgn[Hy (—my)]). (5)

Here m , represents the quark mass, whereas —my, is the mass
parameter of the Hermitian Wilson-Dirac operator Hy
appearing in the construction of the overlap fermion as a
kernel. We set mq = 1.6 so that the overlap-Dirac operator
D(m,) has good locality [38]. This action exactly preserves
chiral symmetry at finite lattice spacing [39]. This enables us
to directly compare the lattice results for the form factors at a
finite lattice spacing with ChPT in the continuum limit,
where the NNLO chiral expansion is available.
We introduce an auxiliary determinant [40,41]

_ det[Hy(—mg)?]
Y det[Hy (—mo)? + 4]

(n=02) (6)

into the Boltzmann weight in the generation of the gauge
ensembles. This suppresses exact- and near-zero modes of
Hyw(—myg), and hence remarkably reduces the computa-
tional cost without changing the continuum limit of the
theory. Another interesting property of Ay is that the global
topological charge Q is unchanged during the update of the
gauge fields with the hybrid Monte Carlo (HMC) algo-
rithm. In this study, we simulate the trivial topological
sector, O = 0. We note that local topological excitations are
active, and the topological susceptibility is consistent with
the ChPT expectation [42]. The effect of the fixed global
topology is a part of finite volume effect, which is sup-
pressed by the inverse of the space-time volume [43].

We set the gauge coupling = 6/g* = 2.30, where the
lattice spacing determined from the € baryon mass is
a = 0.112(1) fm. We perform simulations at four values of
degenerate up and down quark mass m; that cover a range
of M, ~290-540 MeV. The gauge ensembles are gener-
ated at a strange quark mass m, = 0.080, which is close to
its physical value my ,,c = 0.081. The EM form factors at
a different value my; =0.060 are calculated by the
reweighting method [33,34].

We set a spatial lattice extent to Ny = L/a = 24 at m; <
0.025 and to 16 at m; > 0.035 in order to control finite
volume effects by satisfying a condition M,L = 4. The
additional finite volume effect due to the fixed global
topology turned out to be small in our previous study in
Ny =2 QCD on similar or even smaller lattice volumes.
The temporal lattice size is fixed to N, =T/a =48.
At each combination of m; and mg, we generate 50 gauge
configurations separated by 50 HMC trajectories. The
statistical error quoted in this article is estimated by a
single-elimination jackknife method. Our simulation
parameters are summarized in Table I.
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TABLE I. Simulation parameters. Meson masses, M, and My are in units of MeV.

Lattice m my M, My 0

16° x 48 0.050 0.080 540(4) 617(4) 0.00, 0.40, 0.96, 1.60
163 x 48 0.035 0.080 453(4) 578(4) 0.00, 0.60, 1.28, 1.76
243 x 48 0.025 0.080 379(2) 548(3) 0.00, 1.68, 2.64

243 x 48 0.015 0.080 293(2) 518(3) 0.00, 1.68, 2.64

16> x 48 0.050 0.060 540(4) 567(4) 0.00, 0.40, 0.96, 1.60
16% x 48 0.035 0.060 451(7) 524(5) 0.00, 0.60, 1.28, 1.76
243 x 48 0.025 0.060 378(7) 492(7) 0.00, 1.68, 2.64

243 x 48 0.015 0.060 292(3) 459(4) 0.00, 1.68, 2.64

B. Calculation of meson correlators

We employ the all-to-all quark propagator [31,32] in
order to improve statistical accuracy of the meson corre-
lators. Let us consider an expansion of the quark propagator
D(m,)™" in terms of the eigenmodes of the overlap
operator D(m,), where m, (¢ = 1, s) represents the valence
quark mass. Light meson observables including the EM
form factors are expected to large contributions from the
low-lying modes. We calculate this important part by

[Dmy) oy (5.3) = 30— ()l (3),

q)
=

(7)

where A,({q) represents the kth lowest eigenvalue of D(m,),

and u;, is the normalized eigenvector associated with /I,Eq).

Note that the overlap action has advantages in solving the
eigenvalue problem: (i) the eigenvector does not depend on
mg, which only changes the normalization and the additive
shift of D [see Eq. (4)], and (ii) the left and right
eigenvectors are equal to each other, since D is normal.
We employ the implicitly restarted Lanczos algorithm to
calculate the low modes, the number of which is N, = 240
(160) on the 24° x 48 (16 x 48) lattice.

The remaining contribution from higher eigenmodes is
evaluated stochastically by the noise method [44] with the
dilution technique [32]. We prepare a complex Z, noise
vector for each configuration, and split it into N; = 3 x
4 x N,/2 vectors n4(x)(d =1, ..., N,), each of which has
nonzero elements only for a single combination of color
and spinor indices and at two consecutive time slices. The
high-mode contribution can be estimated as

{D(my) ™ ian (.7) Zxd (8)
by solving a linear equation for each diluted source,
D(m)x' = Pygna(d = 1,...,N,). (9)

Here Pygn = 1 = Py, and Py, = Zg;l uku',[ is the pro-
jector to the eigenspace spanned by the low modes.

The typical size of the momentum transfer is |¢f| >
(500 MeV)? on our lattice of size L ~ 1.8-2.7 fm, if we
insert the meson momenta by using the Fourier trans-
formation with the standard periodic boundary condition.
Our previous study in two-flavor QCD [23] suggested that
the next-to-next-to-next-to-leading order (N°LO) correc-
tion to the pion form factor F%' can be sizable in this region
of . In order to suppress such higher-order contributions,
which are not known in ChPT, we simulate near-zero
momentum transfers || < (300 MeV)? by employing the
twisted boundary condition [35] for the valence quarks

qg(x + Lk, xy) = eq(x,x,),

g(x + Lk, x;) = e7g(x,x4) (k=1,2,3), (10)
where k is a unit vector in the kth direction. We set a
common twist angle # in all three spatial directions for
simplicity. This boundary condition induces a quark
momentum of p, = 60/L < 2x/L. We choose the angles
listed in Table I, so that || < (300 MeV)?, where the N*LO
correction to F7' is expected to be insignificant.

We calculate the all-to-all quark propagator for each
choice of §. By combining Egs. (7) and (8), the all-to-all
propagator can be expressed as

N,
T
Hoy) =Y ol x)w)

k=1

{D(mg;0)" (g =1Ls) (11)

with the following two sets of vectors v and w:

Upg Uy, .0
(0 tl) =i S il (02
’11,0 ’1Ne-,9

(q)

MN(HQ,?]LH,... (13)

(q) (@) v _ (q)
{wigs-ees le_ya} ={ug, ..., ”7Nd,6‘}’
where N, = N, + N,.

Meson two-point functions with a temporal separation

Ax, and a spatial momentum p can be expressed as
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¢¢,(Ax4,p ZZ ﬂ(/)’ x', x4 +Ax4)0ﬂ¢(x xg)")e ~ip('x)
lx4 1 x'x
(L)
,Z Z Oy i (5s + BTG g (x3) (14)
x4:1 kk’

Cg,/;/(AxMP) =

tX4 lxx

*ZZ

[x4—1 kK=

where p,= (0 —60)/L (i=1, 2, 3) represents the
meson momentum induced by the twisted boundary
conditions. Interpolating operators for z* and K™ are
given by

Orgx.) = D gl + r)psutx.0). (16

Ok 4(X,1) = 24) e)3(x +r, )ysu(x.1), (17)

where ¢(|r|) is a smearing function. Note that light quarks
are degenerate and are denoted by /(= u, d) in this paper.
The quantity

|

CI;’(Az).(M, (Ax4, A‘x47p p

’x4—lxx X

Z Z Ok (X', x4 + Axy) Ok 4(x, x4)T)e7PX=X)

Ls
4 oo (K2 £ Ax4)0;5',(/2,k'k,9/9(x4)’ (15)

/

(’)q 00 (Xa) Zd) wqT (x+r, x4)ka,€,(x xy)

(18)

can be considered as a smeared meson field constructed from
the v and w vectors at a time slice x,. In this study, we employ
both the local and an exponential smearing function, namely
¢(r) = 69 and ¢ (r) = exp[—0.4|r|]. The latter turned out
to be effective in reducing excited state contamination in our
previous study of F ’{f in two-flavor QCD [23].
Three-point functions needed to calculate the EM form
factors can be constructed in a similar way. For example,
the kaon three-point function with the light-quark current

v = ly,l is expressed as

Z Z OK(/)’ X )C4+AX4+A)C4)V” (X X4+AX4)OK{/,(X X4)T>Xe_ip/<xl/_xl)e_ip(x/_x)

Ll l,s
Z O]/ K00 ()C4 + A.X4 + AX4)O}</W351J(/]€.9/6(X4 + AX4) X Oils,dz,kk”,eéw (X4) s (19)

lx4 lkk/k" 1

where Ax, (Ax}) represents the temporal separation be-
tween the vector current and meson source (sink) operator.
The initial and final meson momenta are given by the twist
angles as

6_0//
L )

/

o —g
pi =

L

pi= (i=1,2.3). (20)

Note that we need to apply different twist angles to the
quark and antiquark fields in Op, and V,(,q) so that the
mesons can carry nonzero momentum.

We only calculate connected diagrams because of the use
of the twisted boundary condition. The contribution of the

disconnected diagram to F’{,+ vanishes due to charge

|
conjugation symmetry [45]. As a numerical check, we

calculate the disconnected contributions to £ i,’ﬁ’KA’KO} with
meson momenta p = (2z/L,0,0) and p’ = (0,0,0) using
the Fourier transformation and the periodic boundary con-
dition also for the valence quarks. The disconnected contri-
butions turn out to be insignificant with our statistical accuracy.
By using the all-to-all propagator, we can average the
meson correlators over the location of the source operator,
i.e. the summation over x and x4 in Egs. (14), (15), and
(19). Figure 1 compares the statistical fluctuation of the
pion three-point function with a certain choice of Ax,(") and
p"). We observe that an average over the temporal
coordinate x, reduces the statistical error of the pion (kaon)
three-point functions by about a factor of 2 (4).
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the horizontal axis represents the HMC trajectory count of the excluded configuration for the jackknife analysis. Triangles and circles
are data before and after averaging over the temporal location of the source operator x,. Each data point is normalized by the statistical

average.

C. Reweighting
We use the gauge ensembles generated at the single value
of my = 0.080. In order to study the m, dependence of the
EM form factors, the meson correlators are calculated at a
different value m) = 0.060 by utilizing the reweighting
technique [33,34]. The kaon three-point function at m/, is
estimated on the gauge configurations at m, as

(CKy Yy = (CE 1)

v g v o

w(mg. my)),, .

where (---),, represents the Monte Carlo average at m,,
and w is the reweighting factor for each configuration,

\Z/(mls, ms) =
w(m, my) = det[ (22)

It is prohibitively time consuming to exactly calculate the

quark determinant det[D(mgl))]. Instead, we decompose w
into contributions from low and high modes,

w(my, mg) = wigy (ms, ms)Whigh(m/sv my), (23)
D(m,
Wiow (high) (m/sv ms) = det | Ploy (high) IMPIOW (high) | »
(24)

and the low-mode contribution wy,,, is exactly calculated by
using the low-lying eigenvalues. We estimate the high-
mode contribution wy;, by a stochastic estimator for

N,
Wﬁigh(m Z ~3(Prign )" (Q— I)ngh-fr (25)

with Q= D(m,)"{D(m
introduce N,
{&. ... 8w, 1
At m; = 0.050, we study how many Gaussian random
vectors are needed to reliably estimate the high-mode
contribution wy;g, for the reweighting from m; = 0.080
to m, = 0.060. The normalized reweighting factor w shows
rather minor dependence on N,, as shown in Fig. 2. This
suggests that w is dominated by the low-mode contribution
Wiow for our choice of the number of low modes N, and the

O D(m)7'D(my).  We
normalized Gaussian random vectors

4 T
m,=0.050, m_=0.080, m’=0.060

— N.=50
30 r_3o i
N =10
~ [ —N=0 1
S‘ r
g? |
E

LML
RAURRLAEALY

2000

0 1000
HMC trajectory

FIG. 2. Monte Carlo history of the reweighting factor
w(ml, my) at m; = 0.050 with different numbers of the Gaussian
random vectors N,.
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lattice size N3 x N,. We do not need many random vectors,
so we set N, = 10 in this study.

Figure 3 compares w at different values of m;. We
observe that w is typically in a range [0.5, 2.0]. There is no
systematic trend in the magnitude of the statistical fluc-
tuation of w, as we decrease m;. We therefore consider that
a large value w =8 observed at m; = 0.025 and at the
1800th HMC trajectory is accidental.

III. EM FORM FACTORS AND CHARGE
RADII AT SIMULATION POINTS

A. EM form factors

Two- and three-point functions of the light mesons
(P ==, K) are dominated by the ground-state contri-
bution,

———=Zry(P)"Zp4(p)
P . ZP YY) ZP\E) —Ep(p)Ax
C¢¢/(AX4,p)AX4—>OO 2Ep(p) e p) 4 (26)
— = Zry (') Zpy(p) 1 B OAY (o)A
Clrgo (M50, A3 ) Ay ~ 0= o (o7, (PP (p)) e BBt - (27)

in the limit of large temporal separations between the meson source/sink operators and the EM current Ax,, Ax), — oco. Here
Zy is the renormalization factor for the vector current, and Zp ,(p) = (P(p)|Op ) is the overlap of the meson interpolating

field to the physical state. We consider a ratio

CP
R€Q(AX4’ Axi&-a P, p,) =

o, (B AX P P)CE, (Axis 0)C, (AX50)

c?

9 5 (B A0.0)CF , (Axiip) (A 0)

(28)

with three choices of (P,Q) = (z",z"), (K*,K") and (K°, K"). Since Zg: 4 = Zgo, with our simulation setup

m,, = mg, normalization factors Z Py and Zy as well as the exponential damping factors e

P VAL, O) . )
Ep(@")Ax" cancel in the ratio,

provided that they are dominated by the ground-state contribution [46]. Therefore we can calculate the effective value of the

EM form factors through this ratio as

FL(Axy, Ax;t) =

Fh(Axy, AX1)

2M
C RPZ(Axy, AX);p,p). (29)

where we assume the vector current conservation F g 0) =
1(Q = =", K), and use Mp and E determined by fitting
two-point functions to Eq. (26).

Taking the ratio R‘};Q turns out to be effective also in
reducing statistical fluctuation induced by reweighting. The
reweighting factor in our study is typically in a region
w € ]0.5,2.0], and significantly enhances the statistical
fluctuation of the meson correlators. In Fig. 4, for instance,
we observe about a factor of 5 increase in the statistical
error of the pion three-point function Clopp. At

m; = 0.050. The enhanced fluctuation, however, largely

F2(Axy, AXy;0)  Ep(p) + Ep(p')

[

cancels in the ratio RCQ, whose error increases only by
~15% by reweighting. This is also the case at m; = 0.025,
where the reweighing factor in Fig. 3 takes occasionally a
rather large value w =8. As suggested in Fig. 5, the
reweighting increases the error of C7 , , by about a factor
of 24, which is however remarkably reduced to 1.6 in the
ratio RCQ.

We extract the EM form factor (1) by a constant fit to
the effective value F(Ax,, Ax);t). Figures 6-11 show

examples of this fit for F7, (Figs. 6-7), FK' (Figs. 8-9),
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and F "fo (Figs. 10-11). We summarize numerical results in
Tables I1-IX.

The charged meson form factors are the sum of the
contributions with the light and strange quark currents,

L2, 1, - -
F§' o5 {aliula) + 5 (eldn,dlz) = (allp,dla). - (30)

. 1
Fy" o3 (K iy, ulK*) + 2 (K" [s7,5|K )

, 1 )
= 3 (KT d[KT) + 2 (K [57,5|K7). (31)

W N WIN

Their normalizations are fixed as F5,(0) =1 (P =z, K")
from the vector current conservation. Equation (29) implies
that what we study using RY? is a ratio FL(1)/FL(0),
namely the finite ¢ correction to F¥(¢). Since we explore
near-zero momentum transfer 7~ 0, this correction is
not large, typically F%(0)— FL(r) <0.1 as seen in
Tables II-IX. Its statistical accuracy is typically 5% at m; =
0.080 and 10% at m; = 0.060. For these fitted values of
FI, we observe about a factor of 2 larger error after the
reweighting from m; = 0.080 to 0.060.

ChPT suggests that finite volume effects are exponen-
tially suppressed as o exp[—M L] [47], which is roughly
2% or less on the lattices with M, L = 4. It has been
recently argued in Ref. [48] that the twisted boundary
condition breaks reflection symmetry and gives rise to an
additional correction, which is at the level of 0.1% for
meson masses and decay constants at M, L ~ 4. These
effects are well below the accuracy of the finite ¢ correction
to FY. Yet another finite volume correction appears in
our simulations due to the fixed global topology. We
expect from our previous study on a similar volume [23]
that this effect is also small compared to the statistical
accuracy.

T T T
1.00 — ml=0.050, ms=0.060, 0=0.00, 6=0.96 | o Ax,=8 |
| o Ax,=10]
N5 095- -
3 R R B
-, 1.00 ——
4 F m=0050, m =0.060, 6=040, 6'=1.60 [0 Ax,=8 |1
LS r 0o Ax, =101
= r A Ax,=12|]
095} % % % i N— % —_
r % % £ e i
| n
0 5 10
Ax,

FIG. 6. Effective value of pion EM form factor F}, (Axy, Ax}, 1) at m; = 0.050. Left and right panels show data at m, = 0.080 and
0.060, whereas top and bottom panels are with (0,6’,60") = (0.00,0.96,0.00) and (0.40,1.60,0.00).
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FIG. 7. Effective value of pion EM form factor F7, (Axy, Ax}, ) at m; = 0.015. Left and right panels show data at m, = 0.080 and
0.060, whereas top and bottom panels are with (0,6’,60") = (0.00, 1.68,0.00) and (0.00,2.64,0.00).
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FIG. 8. Effective value of charged kaon EM form factor F&' (Axy, Ax), 1) at m; = 0.050.

The neutral kaon form factor is the difference between  which vanishes at # = 0. In the region of small |¢|, FX’ (1) is

the contributions of the light and strange quark currents close to zero as seen in Figs. 10 and 11. The use of the all-to-
all quark propagator enables us to calculate this small form
o 1 _ 1 B . > . . .
FE & == (z]ly,l|z) + > (z]57,5]7). (32) factor with an error of NI.S%. The gforementloned f}nlte
3 volume corrections are negligible at this level of uncertainty.
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FIG. 9. Effective value of charged kaon EM form factor F&' (Axy, Ax), 1) at m; = 0.015.
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FIG. 10. Effective value of neutral kaon EM form factor F §°(Ax4, Ax), 1) at m; = 0.050.
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B. Charge radii

In this article, we determine the charge radii (r?)?, of the
light mesons (P = z*, K*, K°) at the physical quark
masses from ChPT-based parametrizations of F%. In this
subsection, we assume a ¢ dependence of F \’; based on
phenomenological models, and estimate the radii at simu-
lated quark masses.

Figures 12-14 show the results for F1(¢) as a function
of the momentum transfer . We observe that their ¢

: : : : T : : : : T
m;=0.015, m_=0.060, 6=0.00, 6"=1.68

=1
(=1
=
L B B B B B

%%%

BIRIES]
HF}

|

‘

b BN

U i i)
R

BB
H

%1;94

!

Effective value of neutral kaon EM form factor F ’§O(Ax4, Ax), t) at m; = 0.015.

dependence is reasonably well described by the vector
meson dominance (VMD) hypothesis (in the plots shown
by dot-dashed curves)

TABLE 1II. Fit results for EM form factors at (m;,mg) =
(0.050, 0.080).

0 o 0 Fr' (1) FK' (1) FK'(1)
0.00 040 0.00 0.9936(13) 0.9944(13) 0.00029(27)
0.00 096 0.00 0.9632(22) 0.9659(21) 0.00157(47)
0.00 1.60 0.00 0.9082(29) 0.9114(32) 0.004 26(58)
040 096 0.00 0.9875(33) 0.9900(29) 0.000 44(64)
040 1.60 0.00 0.9476(44) 0.9508(36) 0.00267(73)
096 1.60 0.00 0.9837(66) 0.9870(54) 0.0009(10)

1
F7' (t , 33
V=1 =02 (33)
2 1 1 1
FE' (1) =2 - , 34
v () 31—t/M3  31—1/M; (34)
TABLE M. Fit results for EM form factors at (m;,m,) =
(0.050, 0.060).
0 o 0 F5 (1) FK™ (1) FE'(1)
0.00 0.40 0.00 0.9936(24) 0.9939(28) —0.00006(12)
0.00 0.96 0.00 0.9634(30) 0.9645(36) 0.000 31(22)
0.00 1.60 0.00 0.9071(46) 0.9089(39) 0.001 30(31)
0.40 096 0.00 0.9878(42) 0.9888(52) —0.00016(34)
040 1.60 0.00 0.9472(46) 0.9477(50) 0.000 67(42)
0.96 1.60 0.00 0.9823(61) 0.9830(78) —0.00004(61)

034504-9



S. AOKI et al.

TABLE IV. Fit results for EM form factors at (m;, mg) =
(0.035,0.080).

PHYSICAL REVIEW D 93, 034504 (2016)

TABLE VIL
(0.025, 0.060).

Fit results for EM form factors at (my;, m,) =

0 A F7' (1) FK (1) FK'(1) 0 0 0 F' (1) FK' (1) FK'(1)
0.00 0.60 0.00 0.9793(25) 0.9821(20) 0.00020(60)  0.00 1.68 0.00 0.9398(95) 0.9400(75) 0.004 26(42)
0.00 128 0.00 0.9244(54) 0.9302(41) 0.00288(80) 0.00 2.64 0.00 0.874(13)  0.8715(85) 0.008 28(53)
0.00 1.76 0.00 0.8735(65) 0.8791(57) 0.0061791) 168 2.64 0.00 0.992(20)  0.983(15)  0.00178(66)
0.60 128 0.00 0.9666(76) 0.9712(61) —0.0017(22)
0.60 1.76  0.00 0.9318(85) 0.9375(74)  0.0007(15) TABLE VIII. Fit results for EM form factors at (m;, m,) =
128 176 0.00 0.9627(19) 0.971(11) —0.0032(31) (0.015,0.080).
0 g 0 F5 (1) F§ (1) F§ (1)
0.00 1.68 0.00 0.9407(35) 0.9400(22)  0.0062(10)
o 11 11 0.00 2.64 0.00 0.8784(60) 0.8684(33) 0.0149(13)
Fy (1) ==37-, e T3Toy w2 (35) 168 264 000 0995(12)  0.9790(62)  0.0020(24)
P
Here and in the following, M, and M represent light and
strange vector meson masses calculated at the simulated
quark masses. The small deviation may be attributed to the 1 1 1 1

effects of higher poles and cuts, and is approximated by a
polynomial correction in the following analysis. Because
quadratic and higher-order corrections turn out to be
insignificant in the region of small 7, we employ the
following fitting forms:

F5 (1) = + agt, (36)

1—1/M;
2 1 1 1

FE' (1) =2 - o,
v (1) 31—t/M[2,+31—t/M§5+aK

(37)

TABLE V. Fit results for EM form factors at (m;,mg) =
(0.035,0.060).

0o 0 o P F FE (1)
0.00 0.60 0.00 0.9805(34) 0.9794(42) —0.00032(44)
0.00 1.28 0.00 0.9235(68) 0.9232(55) 0.001 28(49)
0.00 1.76 0.00 0.8717(87) 0.8711(70) 0.002 66(71)
0.60 1.28 0.00 0.9661(90) 0.9695(81) —0.0016(18)
0.60 1.76 0.00 0.929(11) 0.9287(92) —0.0002(15)
1.28 1.76 0.00 0.957(21) 0.965(12) —0.0022(16)

0
Fy(n) =

—= = t (38
31—t/M%+31—t/M};,+aKO (38)

to estimate the charge radii defined in Eq. (3). We also carry
out linear and quadratic fits

FU(t) = b + b 1(+b5¢%) (39)

with 7" = bK" =1 and b’ = 0. The systematic uncer-
tainty due to the choice of the parametrization form (36)—
(38) is estimated by the difference in (r?)f, from these
polynomial fits.

In Figs. 12-14, we also plot fit curves with these
parametrizations. Numerical results for (r?)f are summa-
rized in Table X. The radii have the larger systematic error
on the larger lattice, namely at m; < 0.025, simply because
we simulate only three values of ¢ in order to reduce the
computational cost. At each simulation point, our data
favor a smaller radius for the heavier charged meson K+
than for the lighter one z™, though the difference is not
large. The radius of the neutral meson K° is much smaller
than those for the charged mesons. (Notice the scale of the
vertical axis in Fig. 14.) These are qualitatively in accor-
dance with ChPT and experiments. We give quantitative
comparisons in the next sections.

TABLE VI. Fit results for EM form factors at (m;, m,) = TABLE IX. Fit results for EM form factors at (m;,m,) =
(0.025,0.080). (0.015,0.060).

0 o ¢ Fr' (1) FK' (1) FK'(1) 0 ¢ 0" F7' (1) FK' (1) FK'(1)
0.00 1.68 0.00 0.9432(20) 0.9435(14) 0.005 74(50) 0.00 1.68 0.00 0.941(11) 0.9396(60) 0.00467(81)
0.00 2.64 000 0.8777(34) 0.8748(23) 0.01219(94) 0.00 2.64 0.00 0.877(10) 0.8664(56) 0.0115(11)
1.68 2.64 0.00 0.9934(77) 0.979937) 0.00197(82) 1.68 264 0.00 0.997(22) 0.985(11) 0.0001(20)
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FIG. 12. Pion EM form factor F' ’{f(t) as a function of momentum transfer z. The left and right panels show data at (m;, m,) =
(0.050,0.080) and (0.015,0.080), respectively. Thick dotted and dashed lines show linear and quadratic fits, whereas the fit based on
VMD is plotted by the thick solid line. The errors of the fits are plotted by thin lines. The thick dot-dashed line shows the ¢ dependence
expected from VMD.
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FIG. 14. Neutral kaon EM form factor F {fo(t) as a function of momentum transfer 7.
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TABLE X. Charge radii (r?)!) at simulated quark masses.

m mg (P (fm?) ()K" (fm?) (r2)K" (fm?)

0.050 0.080 0.268(12)(*%) 0.251(12)(*%) —0.0129(23)(*1)

0.050 0.060 0.270(16) +126 0.263(15 ( ) —0.0036(12) +g)

0.035 0.080 0.339(23)(*3) 0.305(18)(*0) —0.0157(28)(*3!
(1)

3
2
~0.0345 23)
—0.0256(15
5 -o. 045<3><+_101>

-0.0349(28)(19)

(

(

(
~0.0072(

(
0.332(28)(*2) (

0.343(9)
0.354(17)(20)

0.015 0.080 0.366(19)(,

)

(
0.035 0.060 0.344(31)(~

(—32

(Z

(%

( 0

(

(

( 20
0.025 0.080 0.334(10)(*2

( +0

(

(

)
)
)(53)
)(55) 0.333(23
)(3)
0.025 0.060 0.346(43)(*9)
)(Z5)
)(Cag)

)

)

)
0.317(6) ()

)

(5

)

0.015 0.060 0.368(36)( 4

IV. CHIRAL EXTRAPOLATION BASED
ON SU(2) CHPT

In this section, we fit our data of the pion EM form
factor F7, () to the NNLO formula in SU(2) ChPT as a
function of M, and r. We observe in Ref. [49] that the
chiral expansion of the pion mass and decay constant
shows better convergence by using the expansion param-
eter &, = M2/(4rnF,)* rather than x = 2Bm;/(4nF)>,
where B and F are LECs in the LO chiral
Lagrangian; F is the decay constant in the SU(2) chiral
limit, and B appears in the LO relation M, = 2Bm;. We
employ this “£-expansion” throughout this paper to
describe the quark mass dependence of the form factors.
A typical functional form of the chiral logarithms at

PHYSICAL REVIEW D 93, 034504 (2016)

S

(@) (b) ()

(d) (€) (f)

FIG. 15. Example of (a) LO, (b)-(c) NLO, and (d)—(f) NNLO
diagrams. Straight and wavy lines represent the Nambu-
Goldstone (NG) boson and photon, respectively. The solid
circle (square) represents a vertex from O(p*) [O(p®)] chiral
Lagrangian £, (Lg).

The LO contribution F ”+0 arises from the diagram shown in
Fig. 15(a), and F},, = F%, (0) = 1 from the vector current
conservation. Examples of the NLO (NNLO) diagrams
leading to F7' Vo (F74) are shown in Figs. 15(b) and 15(c)
[Figs. 15(d), 15(e) and 15(f)]. These are expressed as [13]

Fr (1) = { < NI - 118>s —%SL + % (s - 4)J(s>}fﬂ,

n-loops is & In™ [M2/u?] (m < n). We set the renorm- (41)
alization scale u =M ,,.
We denote the NNLO chiral expansion as
. F7,(t) = N*{P +U 2 42
F;‘z/ () FVO_l_F 2([)—|—F () (40) V,4<) { V,4(s) V,4<S)}§ ( )
|
1 1 23 5 37
P =q—zkis k ke—=14| 21 + L v
vals) { 27271 4+2 6~ < 9N> 36N +576N+864N2+rv’1}
1 1 1 1 47
r - - r 2 4
* {12k1 2+ gk oy (l” * 2l6 1277384 192N> * r”}s ’ (43)
1 1/ 7 97 3\ ) -
Uya(s) = —=1 (s —4ds) + = 15(s —4) =~ I5(s —éls)—%(s2 +8s —48)L +N (lﬁ.gs2 ~T08° +Z> }J(s)
1 1/1 1 1 5
+§K1 (S) +§ <§S2 -8 +4> KQ(S) +6 <S —§> K3(S) —§K4(S), (44)
where ; M2
N = (4rx)?, 5= W L= Nln [#—2’[}, k; = (417 —y,L)L, (45)

with yy = 1/3, v, =2/3, y12 =1
Lagrangian [,4 In the following, we refer to //’s and L, as
Note that M7, and 7 are O(p

—72/2=0,7,=2, and }’6 =
O(p*) couplings and the O(p
%) quantities in the chiral order counting. We define [/ =10 -

—1/3. Here II denotes the LECs in the NLO chiral
4) chiral Lagrangian, respectively.
15/2, because [{ and /4 appear

in F {’, only through this linear combination. The loop integral functions are defined as
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TABLE XI. Input values for O(p*) couplings in SU(2) ChPT.
71.2 74
—2.55(60) 4.3(0.3)
- 2
J(s) = h(s)z(s) + N (46)
K (s) = z(s)h(s)*, (47)
Ka(s) = 2(s)h(s) = 1. (43)
K= 1 {70 K0 3Kt + 2,
(50)
using
_ . 4 ) = 1 N Va(s) =1
z(s) = o h(s) le l\/m (51)

Therefore, Py 4(s) in Eq. (42) represents the NNLO
contribution polynomial in s « #, whereas Uy 4(s) is the
remaining one involving nonanalytic loop functions in
terms of s.

The chiral expansion (40) involves five unknown param-
eters: three O(p*) couplings g, I} ,, I}, and two couplings
riy, and rf, , from the O(p®) (NNLO) Lagrangian L. In
order to obtain a stable chiral fit, we treat only [, v and
ry, as fitting parameters, because (i) [y is the only free
parameter appearing in the possibly large NLO correction,

r T . . . . T
+ NLO SU(2) ChPT, m_ =0.080

m, =0.050, m_=0.080
m,=0.035, m_ = 0.080
=0.025, m_=0.080

=0.015, m =0.080

vV 4 A »

ml
m

0.90

f L L L | L L L L
-0.10 -0.05 0.00
¢ [GeV))
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and (ii) ry ; and ry, , from Lg are poorly known and should
be determined on the lattice.

The O(p*) couplings, I{ , and [}, appear only at NNLO.
We fix them to a phenomenological estimate summarized
in Table XI, where we quote a scale-invariant combination

- 2N

1

(52)

The input value for /7, is obtained from a phenomeno-
logical analysis of the zz scattering [50]. The value of [}
suggested in Ref. [51] covers a phenomenological estimate
as well as lattice averages for 2 < Ny < 4 obtained by the
Flavor Lattice Averaging Group [52]. The uncertainty due
to this choice of inputs is estimated by repeating our
analysis with /7 , and [} shifted by their uncertainty quoted
in Table XI.

Figure 16 shows the chiral extrapolation using the NLO
expression at each my. The lattice data at the largest and
smallest m; tend to deviate from the fit curve and lead to
large values of y%/d.o.f ~ 1.9-2.9. Note that /% is the only
free parameter appearing at NLO and may be too few to
describe both the m; and ¢ dependences. The NNLO fit
shown in Fig. 17 describes our data better and y?/d.o.f is
significantly reduced to 0.9-1.2.

The convergence of this NNLO expansion seems rea-
sonable around the physical strange quark mass mg ~
Mg onys as plotted in Fig. 18. We observe that the NLO
contribution F ’\T/fz is at most 20% of the total value F%' in
our simulated region of ¢ and m;. The slightly worse
convergence at lighter m; is because F '\[/fz is proportional to
F7;? in the &-expansion. The magnitude of the NNLO
contribution relative to NLO is about 0.5 at our largest m;
however, it decreases to <0.1-0.2 around our lightest m;
and down to m; ppys.

—
| NLO SU(2) ChPT, m_= 0.060 ﬂ

m; = 0.050, m = 0.060
m = 0.035, m = 0.060
=0.025, m_=0.060
=0.015, m = 0.060

vV 4 A »

m[
m

0.90

L i L L 1 L L L L
-0.10 0.05 0.00
2 2.
q [GeV']

FIG. 16. Chiral extrapolation of F’ ’(f using NLO SU(2) ChPT formula at m, = 0.080 (left panel) and 0.060 (right panel). The data at
four different m,’s are plotted as a function of 7. Solid and dotted lines show the NLO fit curve and its statistical error. The lines
correspond to m; = 0.050, 0.035, 0.025, and 0.015 from top to bottom, respectively.
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FIG. 17. Chiral extrapolation of F ’(f using NNLO SU(2) ChPT formula. We plot the fit curve (thin solid line) and its error (dotted line)
only for the largest and smallest m,’s for clarity. Those at the physical light quark mass m, ,, are also plotted in the left panel by thick

solid and dotted lines. Note that m,; = 0.080 is close to m .

For a more detailed look, we decompose the NLO and
NNLO contributions into LEC-dependent and independent
parts and rewrite the chiral expansion (40) as

Fy (1) = 7{;0 + F’\T/fz,l(f) + F’(/fz.b(t) + F’(/th,z(t)

+ Fj\l;.r4,r(t) + F’\Z,b(f)- (53)
Here F Q’fz , (F ’{fz ») represents the [/-dependent (indepen-
dent) NLO term, which arises from the diagrams shown in
Fig. 15(b) [Fig. 15(c)]. The ry, ;- and I;-dependent NNLO
terms, F° ’(,TM and F \ﬂ/;t,l’ mainly come from the tree
diagrams involving an L¢ vertex and the one-loop diagrams

with an £, vertex, respectively. An example of these
diagrams is shown in Figs. 15(d) and 15(e). The LEC-

independent NNLO term F’ ’(,;_ » 1s from two-loop diagrams

7 — o
NNLO SU(2) ChPT, m_= 0.080
020k ~m=0.050 |
5 o m=0015 |
. = — M= s
LS Fase 1
~ L Ny |
w0001 |
o e S
1y L S 4
! ! B
0007510 20.05 0.00
1 [GeV’]

+

+

such as Fig. 15(f). Figure 19 compares these terms at
m; = 0.050, 0.015, and m;, .. We observe that the NLO
contribution F' ’{;2 is largely dominated by the //-dependent
analytic term F "72 ;- The NNLO contribution F ’(,g is
dominated by the //-dependent term F’{,;U at our largest
m;, whereas the ry, ;-dependent term F 7\1/f4,r tends to domi-
nate F’ ’{,f4 at smaller m;. Therefore the uncertainty due to the
use of the phenomenological input for /7, and [} may not
be large for our results at physical m;, such as the charge
radius (r2)%" [see Eq. (60)]. Compared to these LEC-
dependent contributions, F]\T/fz.b and F’{,;Lb coming from
genuine loop diagrams (namely without L4 6y vertices) are
rather small.

Numerical results of the NNLO fits at the simulated
strange quark masses are summarized in Table XII. We

05 — ‘
F NNLO SU(2) ChPT, m = 0.080 4
[ - m,=0.050 7]
- F - m,=0.015 4
= — =M s ]
S o
g 00:7 =
=\;‘ [ T n;—\“’“»—\\\n_n:
K L ]
<3
|

|
2005
1 [GeV7]

-0.10 0.00

FIG. 18. Convergence of chiral expansion at m; = 0.080. Left panel: ratio of the NLO contribution to the total |F’ 7\72‘ /F% . The dot-
dashed, dashed, and solid lines show data at m; = 0.050, 0.015, and m, p,,, respectively. Right panel: ratio of the NLO and NNLO

contributions F%,,/|F7,|.
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FIG. 19. LEC-(in)dependent contributions to F"’,+ in our chiral fit at m; = 0.080 based on NNLO SU(2) ChPT. Top left
and right panels show data at our simulation points m; = 0.050 and 0.015. The bottom panel is at the physical light quark

mass m; phys-

estimate the charge radius (r?)%" by using these results in
the NNLO ChPT expression [13]

" 1 1
M)y = N<_6lg —-L _N>§7z + Nz{—3k1.2 —§k4

1 31
3ke — 120515 +—| =2l +—L
+ 6 46 +N ( 4 + 6

13 181
o o 6r" 2'
+192+48N> + rv’l}f”

(54)
As plotted in Fig. 20, the NNLO fit reproduces the values in
Table X, which are evaluated at simulation points assuming ¢
dependence of Egs. (36)—(38), reasonably well. This figure
also shows that the NNLO contribution is significant in our
simulation region M, > 300 MeV (M2 = 0.09 GeV? in the
horizontal axis of the figure). This is consistent with our
previous finding in two-flavor QCD [23].

Similar to the decomposition of F ’{f in Eq. (53), we
express the chiral expansion of (r?)7, as

- —_———
r NNLO SU(2) ChPT, m = 0.080 -
0.5+

I o m =0080 ]
I ¥ m m =0.060 il
. ’\ * at (ml,phys‘ ms,phys) b
g 04ry % experiment T
£ [ - NLO ]
Y N L i
N i
Vo3 ]
02+ —
£ ! ! ! -

0 0.1 0.2 0.3

M7 [GeV’]

FIG. 20. Pion charge radius (r2)% as a function of M2. The
solid line represents (r2)Z" at m; = 0.080 reproduced from the
NNLO SU(@2) ChPT fit. The dashed line shows the NLO
contribution. We plot the values in Table X by solid circles
(my; = 0.080) and squares (0.060). The diamond is the value
extrapolated to the physical point, which should be compared
with the experimental value [53] shown by the star.
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TABLE XII. Numerical results of chiral fit based on NNLO SU(2) ChPT at m; = 0.080 and 0.060. For the LECs,
we quote the values at the renormalization scale u = M ,. The first error is statistical; the second is systematic due to
the choice of the input /7, and ;. We also quote results extrapolated to m, ypys-
m Irx 103 riy x 10° ri, x 10° (r)% (fm?)
0.080 —10.65(94)(15) 5.9(5.9)3.5) 19.9(9.3)(0.1) 0.395(26)(3)
0.060 ~10.9(2.4)(0.2) 7(14)(4) 31(19)(0) 0.403(67)(*9)
Mg ohys —10.64(94)(15) 5.9(5.9)(3.5) 19.4(9.4)(0.1) 0.395(26)(3)
<;»2>7‘f/+ = <r2>’{,+2 4 <r2>’(,+4, (55) small, <10%, only near the physical point. The two-loop
term (r?)%, , is rather small. The analytic term (r?)%,
nat gt gt vanishes towards the chiral limit, whereas the similar term
(r)Yoo = ()2 + ()Y am + . . b 5
- , ’ - - F7, 4, is not a small correction to F7 . This is because O(#*)
P/ " b n T
(PP = 0 (P + 040 (56)  term of F7" with r},, does not contribute to (r2)% ", and

Namely, <”2>"T/T2.z’ <r2>’(,f4’l and (rz)’{,;’r depend on [/ and
ry;» whereas ()%, and ()7, are independent of the
LECs. These contributions are plotted as a function of M2
in Fig. 21. The NLO contribution is largely dominated by
the analytic term (r?)%, ,, as F%,, dominates F%,. The
charge radius has been considered as a good quantity to

observe the one-loop chiral logarithm 7L—In[MZ/p?],
)

which is not suppressed by a multiplicative factor M2
and hence diverges toward the chiral limit. In our notation,
this is included in the NLO loop correction (r2)%, , but

becomes significant only at M, < 300 MeV, namely below
our simulation points. In addition, the enhancement of

<r2>’{,leb is partly compensated by the decrease of the
NNLO contribution, particularly of (r?)%, ,. Therefore, we
may be able to clearly observe the logarithmic singularity
only near the chiral limit. Our work in the so-called e-
regime [54] is an interesting step in this direction.

The NNLO contribution (r?)7, turns out to be a 30%-
50% correction at the simulated values of M2 and becomes

i NNLO SU(2) ChPT, m_=0.080 |
— — NLO(1=2)

04\ —--— NLO,X=1

-------- NLO, X =b

. NNLO (n=4)

------ NNLO, X=1 ]

------ NNLO. X=r |

0 0.1 02 03

M, [GeV]
FIG. 21. LEC-(in)dependent contributions at NLO and NNLO
to (r2)7'.

(r)e.,, = 6Nr}, £,/ F2 is suppressed by M2 in the chiral
limit. Hence the //-dependent term (r?)7, , gives the largest
contribution at NNLO. Note that this term has nontrivial
M?2 dependence: it is roughly constant down to M, =
400 MeV and nonlinearly decreases towards the chiral
limit. It is therefore important to correctly take account of
the NNLO contributions for a reliable chiral extrapolation
of ().

In SU(2) ChPT, the m, dependence of physical quantities
is encoded in that of LECs. We need to extrapolate our
results to the physical strange quark mass m . in order to
obtain information about the real world. As far as the pion
observables F7, and (r?)%" are concerned, the m, depend-
ence turns out to be mild as suggested by the good stability
of (r?)%" between m; = 0.080 and 0.060 as shown in
Fig. 20. This is confirmed also in Fig. 22, which shows that

T ]
o N,=3. m =0080 ]

0.5+ !
b n N/:B, m =0.060 4
L A Nf=2

0.4 -

[fm’]

<r >v

S, t

02 -

L+ 0 0 S S O R I
0 0.1 0.2 0.3

2 2
M, [GeV’]

FIG. 22. Comparison of (r?)7 between three-flavor QCD
(solid circles and squares) and two-flavor QCD (open triangles)
[23]. The latter was obtained on 16% x 32 at a = 0.118(2) fm
with four times higher statistics, but |¢| > (500 MeV)? without
the twisted boundary conditions. For a fair comparison, we use
the lattice spacing determined from ry = 0.49 fm [55] to convert
all data to physical units.
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lg x 10

FIG. 23. Extrapolation of /; (top panel) and <r2>’(,+ (bottom

panel) to m ppy.

the difference in (r2)7 between three- and two-flavor QCD
is not large.
For the extrapolation of ; and (r?)%’, we parametrize

their m, dependence by a linear function including the
NLO chiral logarithm [2],

1
lg =ap+ MIH[M%] +a;ymy, (57)

(P =aeo— WIH[M%] +ap mg. (58)
Figure 23 shows that the logarithmic term In[M%]
becomes significant only near the m; =0 limit, and
that the simulated value m; = 0.080 is close toO m phys.
Moreover, the m, dependence is rather mild as discussed
above. The extrapolation therefore does not deteriorate the
statistical accuracy, and is stable against the choice of the
parametrization form, for instance, removing the logarith-
mic term and/or including an O(m?) correction. These
observations lead us to employ a simple linear form

r(/,i =4dr0 + Ay, 1M (59)

for ry,;, which has a large statistical error.
The extrapolated values are summarized in Table XII.
We obtain

(P)5" =0.395(26)(3)(32) fm?, (60)

where the first error is statistical, and the second is the
systematic error due to the choice of the input values of /}.
The third is the discretization error at our finite lattice
spacing, which is conservatively estimated by an order
counting  O((aAqgcp)?) ~8% with Agep = 500 MeV.
Note that the systematic error due to the choice of the
inputs /7, and [} is rather small for this quantity, because

only the NNLO //-dependent terms, F7,, and (r2)7, .

PHYSICAL REVIEW D 93, 034504 (2016)
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FIG. 24. Comparison of (r?)7 with recent lattice studies
[22-26]. Top, middle, and bottom panels show results for
Ny =4, 3, and 2 QCD, respectively. Our results are plotted
by the filled circles. The shaded region represents +1¢ range of
the experimental value.

contain these inputs and decrease towards the physical
point. As shown in Fig. 24, our result is consistent with the
experimental value (r2)%" = 0.452(11) fm? [53] as well as
recent lattice results obtained by chiral extrapolations based
on NNLO SU(2) ChPT [22-25] and by a direct calculation
at the physical point [26].

For the O(p*) coupling, we obtain

I = 13.49(89)(14)(81)
(Ir = —10.64(94)(15)(86) x 1073). (61)

This is consistent with our estimate /; = 11.9(1.2) in two-
flavor QCD [23] as well as with phenomenological
estimates 16.0(0.9) [13] from the experimental data of
F ’(f, and 15.2(4) obtained together with the 7 — evy decay
and the V — A spectral function [51,56]. Our results for the
O(p®) couplings at u = M, are

1 =5.9(5.9)(3.5)(0.5) x 1075, (62)

5 = 19.4(9.4)(0.1)(1.6) x 1075 (63)

V. CHIRAL EXTRAPOLATION BASED
ON SU@3) CHPT

In this section, we extend our analysis to SU(3) ChPT,
which is applicable also to the kaon EM form factors F {f
and F ’\50. According to Ref. [15], and similar to Eq. (53), we
write the chiral expansion of the EM form factors of the
light mesons (P = z+, K™, K?) as

FU(t) = Fy o+ FU, (1) + F (1) + F (), (64)
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Fyo(t) = Fi o, (1) + Fyo (1),
Fy () = Fy o (6) + Fyye(t) + Fyyp(n).  (65)

Here F{,, F},, and F},, are LEC-independent LO,
NLO, and NNLO contributions, whereas FY, , ;. F, , ; , and
FY , - depend on the LECs. Because m, > m;, the chiral
expansion in SU(3) ChPT may have poorer convergence
than in SU(2) ChPT. Hence we include a possible higher-
order correction F} ¢, the explicit form of which is not
known in ChPT. The vector current conservation states that
the LO contribution for the charged mesons is

Fio=Ffo=1. (66)

The NLO analytic term

PHYSICAL REVIEW D 93, 034504 (2016)

+ " 2 .
Fy,. (1) = FI\;Z,L(I) = ﬁL9t (67)

v

arises from the diagram Fig. 15(b) with a vertex from L,
which involves the O(p*) coupling Lj. In contrast, these
contributions vanish,

F§y = FE, (1) =0, (68)

for the neutral kaon EM form factor, which is the difference
of the light and strange quark currents as written
in Eq. (32).

The term F}, ; represents the LEC-independent NLO
contribution coming from one-loop diagrams, such as
Fig. 15(c), and is given by

. _ . ] ]
F2Fy, 5(1) = A(M3) +§A(M%<) — 2By (M3, M3, t) — By (M3, M%. 1), (69)
+ 1- - - -
1- 1- _ _
FJZIFI\;)Z,BO) = —EA(M%) +§A(M%<) + By (M3, M2, 1) — By (M%, M. 1), (71)

where A (B,,) represents a t-independent (dependent) one-
loop integral function. Their definition and expression are
summarized in Appendix A.

The LEC-independent NNLO term F}, . involves
two-loop integrals, and hence its expression is rather
complicated. We refer the reader to Refs. [15,57] for details
on the two-loop integrals and expressions of F{, ;. We
|

I

note, however, that this term in the &-expansion does not
contain any free parameters, and is not an obstacle to
obtaining a stable chiral extrapolation.

The L-dependent NNLO term F},, mainly comes
from one-loop diagrams with one vertex from L4, such as
Fig. 15(e). This term can be expressed with L} and the
one-loop integral functions as

FiFy, (1) = 8M2(2L} + LY)A(M2) + 4M2LIA(MY) + tLi{6A(M3) + 3A(M%)}
+{=16(2L} + LL)M?% + 4(4L; — 215 + 2L% — L)t} By (M2, M2, 1)
+ (=8LLIM?% +4L5t — 2L5t) By (M%, M%, 1), (72)

FRFY, (1) = (16L; M7 + 8LIM)A(ME) + 4LMZA(MY) + Lit{SA(M7) +4A (M%)}
+ {=32L5M2% — 16LEM? + 4(4L} — 2L + 2L% — L)t} Byy (M%, M3 1)
+ (=8LIM2 + 4Lt — 2L51)Byy (M2, M2, 1) 4+ 16LLLE (M2 — M3)1, (73)

FaFS4 (1) = (ALEME + Lin){=A(M7) + A(MR)} + {8LEM; = 2(2L% — Ly)1}{Bor (M7, M7. 1) = Byy (M. M. 1)}

(74)
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TABLE XIII.
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Input values for O(p*) couplings in SU(3) ChPT taken from Ref. [51]. The central value and first

error are from the authors’ preferred fit BE14, whereas we assign the difference from the other fit (see text) as the

second error.

LI x 103 L x 103 L x 103 L: x 103 LL x 103
0.53(6)(+11) 0.81(4)(-22) —3.07(20)(+27) 0.3(0)(+0.46) 1.01(6)(-51)
Together with Eq. (67), we have the single O(p*) ¢y =20k, — CLs. (83)

coupling Ly at NLO, and an additional five Ly _sy at
NNLO. Similar to our analysis in SU(2) ChPT, we treat L
as a fitting parameter, and fix others to a phenomenological
estimate. In Ref. [51], the authors present two types of the
NNLO ChPT fit of experimental data, such as the meson
masses and decay constants. A fit called “BE14” fixes L} to
a fiducial value 0.3 x 1073, since this is difficult to
determine due to the strong (anti)correlation with Fj.
(We note that the renormalization scale is set to u = M,
also in this section.) The other fit without the constraint on
L} obtains L = 0.76(18) x 1073, which is slightly higher
than that for BE14. In our analysis, we employ the authors’
preferred fit BE14 and consider the difference between
BE14 and the free fit as an additional uncertainty of L.
These input values are summarized in Table XIII

The most important issue in obtaining a stable chiral
extrapolation is how to deal with O(p®) couplings C’ [58]
in the NNLO analytic term F}, , ., since these couplings are
in general poorly known in phenomenology. The three
NNLO analytic terms have six independent parameter
dependences,

FiFT, o(1) = —4c. M2t —8cl. Myt —4chi?,  (75)

FaF (1) = —4Cki o

Mt —4ch, Myt —4chr?,  (76)

8
FiF[\gf;,C(t) = —gc;(o(M%( - M3)1, (77)

and seven Cj’s enter into these six coefficients through the
Lg vertex in Fig. 15(d),

Cr g = 4C1, +4C1; + 2C5 + Cgy + Cgs +2C5. (78)

atmt

Cre ke = 4CT3 + Ciy. (79)
cp = Cgg — Cy, (80)

r r 2 r r 1 r
Chr o = 4C5 + §C63 + Coy — §C65’ (81)

4
3

4

o = 4Ch + 8] + .

Co3 +2Cq + 5 Cs + 2Cs,

(82)

Hence our chiral fit cannot determine all these O(p®)
couplings separately, but it can determine the six coeffi-
cients. We note that these are not totally independent,

r _r o
CK*,m‘ - Cﬂ*,Kt + 3 CKO’ (84)

C;ﬁ,Kt = Czrﬁ,m + C;*,Kt - gc;(o' (85)
We carry out simultaneous fit to F7', FK', and FX', in
which four coefficients, ¢, c c:z, and c;@, are
treated as fitting parameters.

Our chiral fit based on NLO SU(3) ChPT is plotted in
Fig. 25. Similar to the analysis in SU(2) ChPT, the NLO
formula is poorly fitted to our data resulting in a rather large
value of y?/d.o.f ~8.3. Note that SU(3) chiral symmetry
constrains the dependence of the form factors on m;, m,
and ¢, and allows only single tunable parameter at NLO,
namely L} to describe the ¢ dependence of F7, and F§ .
Consequently, the NLO formula fails to reproduce the m;
dependence, particularly of F {50.

The value of y?/d.o.f is largely decreased to 2.3 by
taking account of the NNLO contribution. We observe that
simulation data of F {50 tend to deviate from the NNLO fit
curve and give rise to a large part of y*. Since F 1‘50 has only
single free parameter ¢}, even at NNLO, we also test a
fitting form with a N*LO analytic correction,

r
ot ot Kt

Frio=FK =0, FKq="E£M2(M} - M2)r.  (86)

Note that the factor (M} — M2)t in FX', is needed to satisfy

FK’(0) = 0 (vector current conservation) and F&' (1) = 0
in the SU(3) symmetric limit [see Eq. (32)]. This fit is
plotted in Fig. 26 and leads to a slightly smaller
2 /d.o.f = 1.8. Including more terms at N°LO and even
higher orders reduces y?> only slightly, and the fitting
parameters in these corrections are poorly determined.
We therefore employ the NNLO ChPT fit including the
N3LO correction (86) in the following discussion.
Numerical results of the fit are summarized in Table XIV.
We estimate the systematic error due to the choice of the
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FIG. 25.

Chiral extrapolations of F' ’{; (top left panel), F Iy (top right panel) and F "50 (bottom panel) based on NLO SU(3) ChPT.

Triangles and thin lines show our data and their fit curves at m; = 0.080. We also plot the fit curve at the physical point (m 1,phys ms.’phys)

by the thick lines. Note that there is no tunable parameter for F {fo at NLO.

input Ly sy by shifting each of Ly, s, by its uncertainty
quoted in Table XIII. In our analysis, the choice of L3 and
L5 tends to lead to the largest deviation in the fitting results.
This systematic uncertainty from Ly, sy is generally well
below the statistical error, because the L/-dependent
{z+.K*}

term Fy,7

(see below).
In Fig. 27 and 28, we examine the convergence of the

.....

,,,,,

is not a dominant contribution at NNLO

chiral expansion of F7% , which now explicitly depends on
my in SU(3) ChPT. Figure 27 shows a decomposition to the
LEC-dependent and -independent terms in Egs. (64)—(65).

Similar to our SU(2) ChPT fit, the NLO contribution F ’{;2 is
largely dominated by the analytic term F* ’(;27 ; with L. The
loop term F "’;2 5 1s a small correction compared to F’ ’(fz s
but increases towards the physical point, possibly due to the

enhancement of the chiral logarithms o In[M2/p].
This can also be seen in Fig. 28, where we plot ratios

|F%,|/F% (NLO/total), |F%,|/F% (NNLO/total), and
F%',/|F%,| (NNLO/NLO). We observe larger |F7,|/F
at smaller m; not only due to the enhancement of F' (’,fz. 5 but

also because F ’(;2. , is enhanced by F;? in the &-expansion.

It turns out, however, that F ’{;2 is a reasonably small
correction—at  most  ~15% at  m; = m 5,  and
t ~—(300 MeV)?. It decreases towards smaller ¢ because
of the vector current conservation F% (0) = Ff = 1.

We observe in Fig. 28 that the NNLO contribution is
even smaller in the whole region of M2, M%, and t.
Figure 27 shows that the analytic term F ’\5?47(; is the largest
NNLO contribution at the largest m,. The first two terms in
Egs. (75)—(76) largely contribute to F é,’i’éﬁ}, because we
simulate |¢| < M2, M%, and the coefficients Chi s Coi ko
and ct’2 are of the same order. Towards the chiral limit, these
terms are suppressed by the NG boson masses, M2 and M%,
and hence F’ ’{;4 decreases, whereas F’{fz increases in this
limit. This is why the magnitude of F’{/f4 |F’{,+2| rapidly
decreases at smaller m; as shown in the bottom panels of
Fig. 28. Namely, the convergence between NNLO and
NLO is largely improved towards the chiral limit.

While F%,/|F%,| 2 0.5 at the largest m;, we do not
expect large N3LO or even higher order corrections. We
note that around our largest |¢| ~ (300 MeV)?, the NNLO
correction F’ ’(,T4 is statistically insignificant: namely, it has
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0 (bottom panels) based on NNLO SU(3) ChPT. The

left and right panels show our data at m; = 0.080 and 0.060. In the left panel for m; = 0.080 ~ m ..., we also plot the fit curve at the

physical point (772, phys. 7 phys) by the thick lines.

>50% statistical error. Towards ¢ = 0, the error decreases
but its central value also decreases due to the vector current
conservation: at |¢| < (150 MeV)?, for instance, F%,, is a
subpercent correction with the statistical accuraéy of
>30%. We therefore expect that even smaller NLO
correction is insignificant within our accuracy, and con-

clude that our data of F° ’{; are reasonably well described by
NNLO SU(3) ChPT.

A comparison with Figs. 18 and 19 suggests that the
convergence of the chiral expansion of F ’(f is not quite
different between SU(2) and SU(3) ChPT.

The right panels of Figs. 27 and 28 suggest similar
convergence properties for X, which involves the strange
quarks as the valence degree of freedom in contrast to F7, .
This is mainly because the NLO contribution F¥, is

dominated by the analytic term F%L, which mildly
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TABLE XIV. Numerical results of chiral fit based on NNLO
SU(3) ChPT. LECs are the values at the renormalization scale
u = M,. The first error is statistical, and the second is systematic

due to the choice of the input L 5 We also quote ¢}, and
+ g, calculated using Egs. (84) (85)

Lj x 10° e X100 er %10 ch x 10°
4.6(1. 1)(+0 1) —1. 95(84)(“8) —1.4(1. 2)(*01) —6.4(1.1)(0.1)
;((, x 107 dgo X 107 C;ﬁ.m x 10° Cer Kt X 103
0. 15(62)(“2) =37(12)(2) —1.3(1.2)(:()):;) —3.4(1. 9)(JrO ')

depends on m; and m; only through the factor F;2. At
NNLO, in addition, a large part of F/ {52 is composed of the
analytic term FK V. 4 ¢ and the coefficients in Eqs. (75)—(76)

for F7 and FK' are of the same magnitude, namely,
r ~ AT
Cotou ¥ Ckt and cffr Kt ™ K*,Kt'

Interestingly, we observe that the charged meson vector
form factors, F% and FX', are dominated by the NLO
analytic term. A comparison between the analytic and loop
terms in ChPT formulas leads to a naive order estimate
LI =0((4r)™2) =0(6x1073) and CI = 0((4r)™) =
O(4 x 107%) [51]. Our fit results are roughly consistent
with this order estimate, suggesting that the magnitude of

. {zt K} {zt Kt} .
the analytic terms Fy,,; * and Fy 4~ ' is not unexpect-
edly large, but loop terms are small. We in fact observe a
large cancellation among the two-loop diagrams, possibly
to satisfy F é,’j_’éﬁ}
conservation.

(0) = 0 required from the vector current

The neutral kaon form factor FX' is the difference
between the light and strange quark current contributions
as seen in Eq. (32). While the LO and NLO analytic terms
dominate FI™ X} those for FX°, namely FX’, and FX°

v , Vo Y fyvo V2L
vanish even at ¢t # 0. As a result, F’ 1‘50 shows much poorer
convergence than F{7 "
There is only the parameter-free term F' ’\50 2.3 Within NLO.
At the largest m,, this term is rather small compared to our

as examined in Figs. 29 and 30.

simulation results, and hence the large part of F{fo is
Fy+ Fie.
However, F ’\50 ».p increases as we approach to m . with
m, held fixed. This is in accordance with the VMD
hypothesis (35): larger F’éo with larger M, —M,. As a
result, the convergence is rapidly improved towards the
physical point, where both NNLO and N3LO corrections
become small compared to the leading term F "502

composed of higher-order corrections

We also note that the large N*LO contributions F "5?6 may
be partly attributed to the fact that the analytic NNLO and
N3LO contributions, F 1\5?4,C and F ’\5?6, are difficult to
distinguish with our simulation setup, and hence Clo 1N
Table XIV is poorly determined. A better determination of

PHYSICAL REVIEW D 93, 034504 (2016)

o and dgo may need simulations with a wider region and
better resolution of M,. We leave this for future work.

We also decompose the charge radii into the LEC-
dependent and -independent terms as

(P = (M, + (D0 + (P)e (87)
b= (P + (Y5
Va= (P War + (PWac+ (P)Wap  (88)

where P =z, K, or K°. The NLO terms are given
by [14]

Ly (P)§h =0, (89)

. M3 M3
<r2>v,273 = - 2NF]21 (2 In |:/,L2:| + In |:ﬂ2:| + 3> s (90)
M? M?
(m {—2"] +21In [—f] + 3), (91)
U 7

Lo [M’z’]. (92)

~2NF: (M2

The higher-order analytic terms are obtained straight-
forwardly from Eqs. (75)-(77) and (86) through the
definition (3)

Fir) T, c = —24(cr, M7+ 2. M), (93)
F4< >V4C = 24(6;(+,mM721 + C%-,K;M%()7 (94)
F4< >V4C:_16C[(0(M2 Mzzr) (95)
and

(P = (), =0,

FS(r2)K' = 6dypoM2(My — M2). (96)

The NNLO nonanalytic terms FY, ,, + F}, , ; have rather
complicated expression, and are not large as discussed
above. We therefore do not derive an explicit formula for
the corresponding terms for the radii ()} ,, + ()7, 5.
but estimate them by taking numerical derivative of
FY ., + Fy, 5 with respect to z.

The chiral extrapolation of the pion charge radius (r2)7’
is shown in the left panel of Fig. 31. In Sec. III B, we
estimate (r2)7 at the simulation points by assuming the
phenomenological 7 dependence Eq. (36). These values are
reproduced by our simultaneous chiral fit of F gﬁ"ﬁ'l{o}
reasonably well. This does not necessarily hold true: the
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L NNLO SU(3) ChPT + N’LO analytic, m,= 0.050, m = 0.08
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FIG. 27. LEC-(in)dependent NLO and NNLO contributions in our chiral fit based on NNLO SU(3) ChPT. The left and right panels
show data for F%' and FK', whereas top, middle, and bottom panels are for (mn;, m;) = (0.050,0.080), (0.015,0.080), and the physical

point (17, phys.

nonanalytic

The reasonable consistency is partly because F' ’{f is largely
dominated by the analytic terms F* Q’fz .+ F 7\?4.0 In fact, the
right panel of the same figure shows that (r?)
dominated by the analytic terms (r2)%, , + (r*)%, . This
supports our strategy of the chiral fit: namely, we determine

Mg phys ), respectively.

chiral behavior of F7'

zt
Vv

may not be well
described by our simple assumption (36), which is essen-
tially a low-order polynomial in 7 in our region [¢| < M.

is also
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L§ and O( p®) couplings appearing in these large analytic
terms from our simulations, whereas other L!’s in the small
loop corrections are fixed to the phenomenological
estimate.

More importantly, the value extrapolated to the physical

point is in excellent agreement with the experimental value.
The enhancement of the NLO chiral logarithm is important
for this agreement. It is however partly compensated by the
decrease of the NNLO contribution, similar to the analysis
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FIG. 28. Convergence of chiral expansion of F%  (left panels) and F&' (right panels) near mj . Top panels: ratio of the NLO
contribution to the total |F{7 %™

i K/ F 5 ) The dot-dashed (dashed) line shows data at m; = 0.050 (0.015) and m, = 0.080, whereas
the solid line is at (112 pnys, 1, phys)- Middle panels: ratio of the NNLO contribution to the total |F i,”; K |/F {,’ﬁ’m}. Bottom panels: ratio
of the NNLO and NLO contributions F{7, " /|Fir K|,

in SU(2) ChPT. The logarithmic singularity is therefore = panel of Fig. 32. A comparison of the right panels of

difficult to directly observe at our simulation region  Figs. 31 and 32 suggests that the difference between <r2>"‘§+
of M, = 300 MeV. and (r2)%

¥ is mainly due to the suppression of the NLO
We also observe good agreement for the charged kaon  chiral logarithms in Egs. (90)—(91), and because the NNLO
radius between simulation results and the experimental

term F {74 ; becomes negative near the physical point with
value (r2)K" = 0.314(35) fm? [53] as plotted in the left  our choice of the input LY, 5
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FIG. 29. Same as Fig. 27, but for F{f0

Our chiral extrapolation also reproduces the experi-
mental value of the neutral kaon radius (r2)K' =
—0.077(10) fm? as shown in Fig. 33. Similar to FX', the
parameter-free leading term (r?)K’, becomes the largest
contribution only at small pion masses M, <300 MeV. As
already mentioned, the pion radius (r2)%" is considered as a
good quantity to observe the one-loop chiral logarithm.
We note that (r2)K” has no analytic term at this order
((r)&,;, =0) and could be another good candidate
provided that one simulates M, below 300 MeV with
my held fixed at a rather heavier value.

Since we simulate at a single lattice spacing, we assign
the discretization error to our numerical results by an order
counting O((aAqcp)?) ~ 8%. At the renormalization scale
u = M,, we obtain

L = 4.6(1.1) (“_Lg;) (0.4) x 1072, (97)
¢, = =6.4(1.1)(0.1)(0.5) x 1075, (98)

These are in good agreement with L = 5.9(0.4) x 1073
and ¢l, = Cgg — Cy = =5.5(0.5) x 10° obtained from a

phenomenological analysis of the experimental data of F ’{f
in NNLO SU(3) ChPT [15]. Other O(p®) couplings,

= 195(84)( 3?)(16))(10‘5, (99)
ey =~ ( ) 1075, (100)
Che = (+8;) 0.1) x 105, (101)
= =34019) (1 0;) 0.3) x 1075, (102)

+12

Cho = 015(62)(

)(1) x 1075, (103)

are poorly known phenomenologically, and we obtain
dgo = =37(12)(2)(3) x 1077 (104)

for the coefficient of the higher-order correction to F {50.
Our numerical results for the light meson charge radii,
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FIG. 30. Convergence of chiral expansion of F§ . Top left, top right, and bottom panels show |F& 5|/ FE', |[FK',|/FX’ and |FE'|/FE’,

respectively. The dot-dashed (dashed) line shows data at m; = 0.050 (0.015) and m, = 0.080, whereas the solid line is at
(1 phys» Mg phys)- Note that F K% =0 and the chiral expansion starts from FX',.
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FIG.31. Left panel: pion charge radius (r2)7 as a function of M2. The solid line represents (r?)%" at m, = 0.080 reproduced from our
chiral fit based on NNLO SU(3) ChPT. We plot the value extrapolated to the physical point by the diamond. The circles and squares are
our estimate at simulation points listed in Table X. The experimental value is plotted by the star. Right panel: NLO and NNLO LEC-(in)

dependent contributions to (r?)%’.
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FIG. 33. Same as Fig. 31, but for F"ﬁo.
2\ 7t +9 2 of the charged meson EM form factors Fi¥ ). This is
(r)} =0.458(15) (37) fm*, (105) g % :
-1 . .. . {n". Kt} .
mainly because the nontrivial correction F, ™ ' —1is
+7 largely dominated by the NLO analytic term, which
+ . .
(r)K" = 0.380(12)< 1)(31) fm?, (106)  mildly depends on the quark masses. This term, how-
ever, vanishes in the neutral kaon form factor F 50.
() ]‘50 — _0.055(10)(1)(4) fm?, (107) Although the corresponding chiral expansion shows

are in reasonable agreement with experiment.

VI. CONCLUSIONS

In this article, we have presented our detailed study
of the chiral behavior of the light meson EM form
factors. Chiral symmetry is exactly preserved in our
simulations for a direct comparison with continuum
ChPT at NNLO. Another salient feature is that we
precisely calculate the EM form factors by using the
all-to-all quark propagator.

Our analyses in SU(2) and SU(3) ChPT suggest
reasonable convergence of the NNLO chiral expansion

poorer convergence at our simulated pion masses
M, = 300 MeV, it is rapidly improved towards the
physical pion mass.

The NNLO tree diagrams with the O(p®) couplings
also tend to give rise to a large part of the NNLO
contribution. We observe small but non-negligible loop
corrections, which have nonanalytic dependence on the
quark masses and momentum transfer. These confirm
the importance of the first-principle determination of the
relevant LECs based on the NNLO ChPT.

Our results for the LECs %, L} and cp = Cgg — Cy are
consistent with phenomenological estimates, and we also
observe a reasonable agreement of the charge radii with
experiment.
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Our results for the phenomenologically poorly known
O(p®) couplings would be useful for studying different
observables based on ChPT. An interesting application is
the form factor of the K — z/v semileptonic decays,
since its vector form factor fX7(¢) shares many O(p®)
couplings with the EM form factors [30]. These decays
provide a precise determination of the Cabibbo-
Kobayashi-Maskawa matrix element |V,| through a
precision lattice calculation of the normalization

K7(0). A comparison of the form factor shape with
experiment can demonstrate the reliability of such a
precise calculation. Our results of the LECs may enable
us to study the normalization and shape simultaneously
based on NNLO SU(3) ChPT.

Our analysis suggests that the charge radii show the
one-loop chiral logarithm below M, ~ 300 MeV. Pushing
simulations towards such small pion masses is interesting
for unambiguous observation of the logarithmic singu-
larity in QCD. Extension towards finer lattices is also
important, because the largest uncertainty in our numeri-
cal results is the discretization error. Simulations in these
directions are underway [59] by using a computationally
cheaper fermion formulation with good chiral sym-
metry [60].
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APPENDIX: ONE-LOOP INTEGRALS
IN SU@3) CHPT

We summarize the expression of the one-loop integral
functions in SU(3) ChPT in this section. The reader is
|

B;wa(M%’ M%’ t) = qﬂquan3l (M%’ M%’ [) + (q/lgl/(l + ng(ly + Qag;w)BT)Z(M%’ M%’ t)‘

PHYSICAL REVIEW D 93, 034504 (2016)

(a) (b)

FIG. 34. Example of one-loop diagrams involving momentum-
transfer independent (a) and dependent loop integrals (b).

referred to the original paper [15] for more detailed
discussions.
The one-loop integral functions are defined as

d
a0R) =5 [ et A
1 dk 1
B = [ G
(A2)
1 [ d% k,
B30 = | e sy
(A3)
1 [ d% k.k,
Bul0 ) = | e T AT
(A4)
1 [ d% kuk ke
Bual308.0) = [ G M {(k=q7 —MZ}
(A5)

where ¢> =t and d = 4 — 2¢. The scalar function A is
needed to evaluate diagrams such as shown in Fig. 34(a),
and hence does not depend on ¢. The 7-dependent “B”
functions are needed for Fig. 34(b).

The Lorentz decomposition of the vector and tensor
functions is given as

B, (M3}, M3.1) = q,B(M7, M3, 1), (A6)
Bﬂy(M%, M%# t) - qﬂqDBZI (M%’M%7 t)

+ gﬂIJBZZ(M%’ M%a t)’ (A7)

(A8)

The B functions in the right-hand side are expressed in terms of the scalar functions A and B,
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1
By(M3, M3, 1) = 5 {=AM3) + A(M3) + (Aps + DBV M3 1),

1
Boy (M}, M3, 1) = —{A(M3) + MIB(M7, M3, 1) = dBy (M}, M3, 1)},

By (M3, M3, 1) = {A(M3) + 2MIB(MT, M3, 1)— (A, + 1)B, (M7, M3, 1)},

1
2(d—1)

1
By (M3, M3, 1) = Z{A(M%> + (Ayp + 1)By (M7, M3, 1) — 4B3, (M7, M3, 1)},

1
B3, (M3, M3, 1) = Z_dt{_M%A(M%) + M3A(M3) + d(Ay, + t)By (M3, M3, 1)}

034504 (2016)

(A9)

(A10)

(Al1)

(A12)

(A13)

with A}, = M? — M3. The pole, finite, and O(e) parts of the one-loop integrals relevant to the EM form factors can be

expressed in terms of those of A and B functions,

A(Ml)2 = Apole(M%) +A(M%) + 0<€)’ (A14)
B(M7, M3, 1) = Byoe(M3, M3, 1) + B(M3, M3, 1) + O(e) (A15)
with
M2
Apole(M%) = Wll()v (A16)
- M?* [M?
AM?) =-""1In [—;} (A17)
N |pu
2 a2 1
Bpole(MpMz?[) :Nﬂo, (AIS)
M2 e
o I MR+ MII[E] g A Zp\ . M2 vt [(t+ (1) — A2
B(Ml,Mz,t)——— +—<24+|-——4+——= ln—z— In 5 5 ,
N A]z 2N t AIZ M2 t (t - Ulz(t)) - AIZ
(A19)
where
212 :M%‘i‘Mz, (A20)
V3, =12 =255t + A}, (A21)
1 1
d=-+Infdz] +1-y==4C. (A22)
€ €

The one-loop contributions in Egs. (69)—(71) are expressed in terms of the finite parts A and B,,.
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