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We compute the topological susceptibility χt of lattice QCD with 2 + 1 dynamical quark flavors
described by the Möbius domain-wall fermion. Violation of chiral symmetry as measured by the
residual mass is kept at ∼1 MeV or smaller. We measure the fluctuation of the topological charge
density in a “slab” sub-volume of the simulated lattice using the method proposed by W. Bieten-
holz, P. de Forcrand, and U. Gerber, J. High Energy Phys. 12, 070 (2015) and W. Bietenholz,
K. Cichy, P. de Forcrand, A. Dromard, and U. Gerber, PoS LATTICE 2016, 321 (2016). The
quark mass dependence of χt is consistent with the prediction of chiral perturbation theory, from
which the chiral condensate is extracted as �MS(2 GeV) = [274(13)(29) MeV]3, where the first
error is statistical and the second one is systematic. Combining the results for the pion mass Mπ

and decay constant Fπ , we obtain χt = 0.229(03)(13)M 2
πF2

π at the physical point.
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1. Introduction

The topological susceptibility χt is an interesting quantity that characterizes how many topological
excitations are created in the QCD vacuum. Witten [1] and Veneziano [2] estimated χt in the large-Nc

(number of colors) limit and showed that it is proportional to the square of the η′ meson mass. In
real QCD with Nc = 3 and light dynamical quarks, however, the argument of Witten and Veneziano
is no longer valid. It is not the η′ meson but the (zero-momentum mode of the) pion that controls the
topological susceptibility.

According to the prediction of SU (2) chiral perturbation theory (ChPT) at leading order (LO),
χt is expected to be proportional to the quark mass mud , when the up and down quark masses are
degenerate. At one-loop, the quark mass dependence is predicted as [3–5]

χt = mud�

2

{
1 − 3mud�

16π2F4
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ln

(
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where � denotes the chiral condensate, l = lr
3 − lr

7 + hr
1 − hr

3 is a combination of the low-energy
constants at next-to-leading order (NLO) [6], and Mphys(= 135 MeV) and Fphys(= 92 MeV) are the
physical values of the pion mass and decay constant, respectively. Here lr

i are renormalized at Mphys.
In the formula, we have assumed that the strange quark is decoupled from the theory and SU (2)
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chiral perturbation theory works. In other words, the strange quark mass dependence is assumed to
be absorbed in the low-energy constants.

By taking a ratio with the ChPT predictions for the pion mass and decay constant (let us denote
them by Mπ and Fπ ), one can eliminate the chiral logarithm in Eq. (1):

χt

M 2
πF2

π

= 1

4

[
1 + 2M 2

π l′

F2
π

]
, (2)

where l′ = −lr
4 − lr

7 + hr
1 − hr

3 is again a combination of the NLO low-energy constants, which is
independent of the renormalization scheme and scale at this order. This ratio also cancels possible
finite volume effects at NLO. Moreover, the chiral limit of the ratio, 1/4, is protected from the strange
sea quark effects (see Appendix A for details), as they always enter as a function of the ratio mud/ms,
which can be absorbed into the (finite) renormalization of l′. We can therefore precisely estimate
the topological susceptibility at the physical point by measuring χt , Mπ , and Fπ at each simulation
point.

It has been a challenging task for lattice QCD to compute χt , since it is sensitive to the discretization
effects and the violation of chiral symmetry [7–9] in particular. This is partly because the quark mass
dependence of χt is due to sea quarks, or a small quantum mechanical effect suppressed by O(�),
to which the discretization error is relatively large. Even if we could simulate QCD on a sufficiently
fine lattice, the global topological charge would become frozen along the Monte Carlo history [10].
Due to these difficulties, the study of the quark mass dependence and its comparison with the ChPT
formula of χt has been very limited, and only some pilot works with dynamical chiral fermions on
rather small or coarse lattices [11–19] are available.

In this work, we improve the computation of χt in two ways. One is to employ the domain-wall
fermion [20,21] with an improvement by Refs. [22,23], known as the Möbius domain-wall fermion,
for the dynamical quarks, which enables us to precisely preserve chiral symmetry. Even on our
coarsest lattice, the residual mass, related to the violation of the chiral symmetry, is kept at the order
of 1 MeV. As will be shown below, our results show only a mild dependence of χt on the lattice
spacing, up to a ∼ 0.08 fm. The use of the domain-wall fermion allows us to sample configurations
in different topological sectors, which is also an advantage over the simulation with the overlap
fermion where we fixed the global topological charge in Ref. [12].

Another improvement comes from the use of sub-volumes of the simulated lattices. Since the
correlation length of QCD is limited, at most by 1/Mπ , there is essentially no need to use the global
topological charge to compute χt . The use of sub-volume was tested in our previous simulations with
overlap quarks [12,16] (see also Refs. [24,25]), where the signal was extracted from finite volume
effects, which have some sensitivity to χt [26,27]. In this work, we utilize a different method, which
was originally proposed by Bietenholz et al. [28,29] (similar methods were proposed in Refs. [30]
and [31]). The method is based on a correlator, which gives a positive finite value even in the
thermodynamical limit, and thus is less noisy than our recent attempt in Ref. [32]1. We confirm
that 30%–50% sub-volumes of the whole lattice, whose size is ∼ 2 fm, are sufficient to extract χt .
Moreover, the new definition shows more frequent fluctuation than that of the global topological
charge on our finest lattice.

We also employ a modern technique, theYang–Mills (YM) gradient flow [34–36], in order to make
the global topological charge close to integers, to remove the UV divergences, and to reduce the

1 See also Ref. [33], where a similar method to ours was attempted.
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statistical noise. With these improvements, we achieve good enough statistical precision to investigate
the dependence of χt on the sea quark mass. In fact, our data of the topological susceptibility are
consistent with the ChPT prediction (1), from which the values of chiral condensate and l′ are
extracted.

The same set of data was also used to calculate the η′ meson mass [37], which was extracted
from the shorter distance region of the correlator of the topological charge density. These two results
show a nontrivial double-scale structure of topological fluctuation of the gauge field: it creates the η′
meson at short distances, while describing the vacuum mode of the pion (or the lowest mode, which
is constant over space-time) at long distances.

The rest of this paper is organized as follows. First, we describe our lattice setup in Sect. 2. We
then explain the method to extract the topological susceptibility from the slab sub-volume in Sect. 3.
Our results at lower β are presented in Sect. 4. Comparing the data with those obtained from global
topology, we examine the validity of our sub-volume method. The results at higher β are shown in
Sect. 5, and how we estimate the statistical errors is explained in Sect. 6. Finally, we estimate the
chiral and continuum limits in Sect. 7 and give a summary in Sect. 8.

2. Lattice setup

In the numerical simulation2 of QCD, we use the Symanzik gauge action and the Möbius domain-
wall fermion action for gauge ensemble generations [38–41]. We apply three steps of stout smearing
of the gauge links [42] for the computation of the Dirac operator. Our main runs of 2+1-flavor lattice
QCD simulations are performed with two different lattice sizes L3 × T = 323 × 64 and 483 × 96,
for which we set β = 4.17 and 4.35, respectively. The inverse lattice spacing 1/a is estimated to be
2.453(4) GeV (for β = 4.17) and 3.610(9) GeV (for β = 4.35), using the input

√
t0 = 0.1465 fm

[43] where we use the referenceYM gradient flow–time t0, defined by t2〈E〉|t=t0 = 0.3 [34] with the
energy density E of the gluon field. The two lattices share a similar physical size L ∼ 2.6 fm. For the
quark masses, we choose two values of the strange quark mass ms around its physical point, and 3–4
values of the up and down quark masses mud for each ms. Since our data at the lightest pion mass
around 230 MeV (amud = 0.0035 at β = 4.17) may contain significant finite size effects, we simulate
a larger lattice 483 × 96 with the same set of parameters to check if the finite volume systematics is
small enough. We also perform a simulation on a finer lattice 643 × 128 (at β = 4.47 [1/a ∼ 4.5
GeV] and Mπ ∼ 285 MeV). For each ensemble, 500–1000 gauge configurations are sampled from
5000 molecular dynamics (MD) time. The ensembles used in this work are listed in Table 1.

In this setup, we confirm that the violation of the chiral symmetry in the Möbius domain-wall
fermion formalism is well under control. The residual mass is ∼ 1 MeV [44] by choosing the lattice
size in the fifth direction L5 = 12 at β = 4.17 and less than 0.2 MeV with L5 = 8 at β = 4.35
(and 4.47).

On generated configurations, we perform 500–1640 steps of the YM gradient flow (using the
conventionalWilson gauge action) with a step-size�t/a2 = 0.01.At every 200–400 steps (depending
on the parameters) we store the configuration of the topological charge density. The two-point
correlator is measured using the fast Fourier transform (FFT) technique to average source and sink
points over whole lattice sites.

In the following analysis, we measure the integrated auto-correlation time of every quantity, follow-
ing the method proposed in Refs. [10,45]. The statistical error is estimated by the jackknife method

2 Numerical works are done with the QCD software package IroIro++ [40,41].
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Table 1. Parameters of the JLQCD gauge ensembles used in this work. Pion masses are rounded to the nearest
10 MeV.

Lattice spacing L3 × T L5 amud ams mπ [MeV] mπL

β = 4.17, 323 × 64 (L = 2.6 fm) 12 0.0035 0.040 230 3.0
a−1 = 2.453(4) GeV 0.0070 0.030 310 4.0

0.0070 0.040 310 4.0
0.0120 0.030 400 5.2
0.0120 0.040 400 5.2
0.0190 0.030 500 6.5
0.0190 0.040 500 6.5

483 × 96 (L = 3.9 fm) 12 0.0035 0.040 230 4.4

β = 4.35, 483 × 96 (L = 2.6 fm) 8 0.0042 0.018 300 3.9
a−1 = 3.610(9) GeV 0.0042 0.025 300 3.9

0.0080 0.018 410 5.4
0.0080 0.025 410 5.4
0.0120 0.018 500 6.6
0.0120 0.025 500 6.6

β = 4.47, 643 × 128 (L = 2.7 fm) 8 0.0030 0.015 280 4.0
a−1 = 4.496(9) GeV

(without binning) multiplied by the square root of auto-correlation time normalized by the MD time
interval of the configuration samples. We will discuss more details about the auto-correlation time
of topological fluctuations in Sect. 6.

The pion mass and decay constant are computed combining the pseudoscalar correlators with local
and smeared source operators. Details of the computation are presented in a separate article [46].

3. Topological susceptibility in a “slab”

We use the conventional gluonic definition of the topological charge density qlat(x), the so-called
clover construction [9]. Since theYM gradient flow smooths the gauge field in the range of

√
8t ∼ 0.5

fm of the lattice, a simple summation Qlat = ∑
x qlat(x) over the whole sites gives values close to

integers, as shown in Fig. 1.
As is well known, the global topological charge Qlat suffers from long auto-correlation time in

lattice simulations, especially when the lattice spacing is small. This is also true in our simulations,
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Fig. 1. The distribution of
∑

x qlat(x) at β = 4.17, mud = 0.007, and ms = 0.04.
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Fig. 2. MD history of 〈Q2
slab(Tcut = T/2)〉 (solid lines) and that of global topological charge Q2 (dashed). Data

at β = 4.17, mud = 0.007, ms = 0.040 (top panel) and those at β = 4.35, mud = 0.0042, ms = 0.0250
(middle) and at β = 4.47, mud = 0.0030, ms = 0.0150 (bottom) are shown. These three simulations share a
similar value of the pion mass ∼ 300 MeV and physical volume.

as shown in Fig. 2. At the highest β = 4.47, Qlat drifts very slowly with an auto-correlation time of
possibly O(1000). It is, therefore, not feasible to estimate χt without performing much longer runs.
The details of the auto-correlation time of the topological charge and its density operator will be
discussed in Sect. 6.

Instead of using the global topological charge Qlat, we attempt to extract the topological suscepti-
bility from a sub-volume Vsub of the whole lattice V . Since the correlation length of QCD is limited
by at most 1/Mπ , the sub-volume Vsub should contain sufficient information to extract χt , provided
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that its size is larger than 1/Mπ . One can then effectively increase the statistics by V/Vsub, since
each piece of V/Vsub sub-lattices may be considered as an uncorrelated sample. Moreover, there is
no potential barrier among topological sectors: the instantons and anti-instantons freely come in and
go out of the sub-volume, which should make the auto-correlation time of the observable shorter
than that of the global topological charge.

There are various ways of cutting the whole lattice into sub-volumes and computing the correlation
functions in them. After some trial and error, we find that the so-called “slab” method, proposed
by Bietenholz et al. [28], is efficient for the purpose of computing χt . The idea is to sum up the
two-point correlators of the topological charge density, over x and y in the same sub-volume:

〈Q2
slab(Tcut)〉 ≡

∫ Tcut+Tref

Tref

dx0

∫ Tcut+Tref

Tref

dy0

∫
d3x

∫
d3y

〈
qlat(x)qlat(y)

〉
. (3)

Here the integration over x and y in the spatial directions runs in the whole spatial volume (since the
YM gradient flow is already performed, there is no divergence from the points of x = y), while the
temporal sum is restricted to the region [Tref , Tcut + Tref ], which is called a “slab”. Here Tref is an
arbitrary reference time. Due to the translational invariance, slabs sharing the same thickness Tcut are
physically equivalent, and one can average over Tref . This method is statistically more stable than
the other sub-volume method that we applied in Refs. [12,16] because 〈Q2

slab(Tcut)〉 is guaranteed to
be always positive.

If we sample large statistics on a large enough lattice volume, 〈Q2
slab(Tcut)〉 should be just Tcut/T

of χtV . Namely, 〈Q2
slab(Tcut)〉 should be a linear function in Tcut. Its leading finite volume correction

can be estimated using the formula in Ref. [27]:

〈Q2
slab(Tcut)〉 = (χtV ) × Tcut

T
+ C(1 − e−m0Tcut)(1 − e−m0(T−Tcut)), (4)

where C is an unknown constant, and m0 is the mass of the first excited state, the η′ meson3. Note
that for 1/m0 	 Tcut 	 T −1/m0, the formula gives a simple linear function in Tcut plus a constant.
Also, note that in the limit of Tcut = T , 〈Q2

slab(Tcut = T )〉 = 〈Q2〉 = χtV .
Assuming the linearity in Tcut, one can extract the topological susceptibility through

χ slab
t = T

V

[
〈Q2

slab(t1)〉 − 〈Q2
slab(t2)〉

t1 − t2

]
, (5)

with two reference thicknesses t1 and t2. In our numerical analysis, Tref is averaged over the temporal
direction. Since the data at ti and T − ti are not independent, we choose t1 and t2 in a range 1.6
fm < t1, t2 < T/2. In the numerical analysis, we replace qlat(x) by qlat(x) − 〈Qlat/V 〉 to cancel a
possible bias due to the long auto-correlation of the global topology.

The original proposal in Ref. [28] mainly used the correlator in a fixed topological sector. The
formula corresponding to Eq. (4) then contains a subtraction of the contribution from the global
topology. We find that the statistical noise is larger with this choice while the results from different
topological sectors are consistent. In the following analysis, we use Eq. (4) after summing over the
topological sectors.

3 The finite volume effects are due to propagation of the mesons in the flavor singlet channel. As the ground
state or the η′ meson is heavy, we neglect the higher-order effects. Even if we include them, the structure of
linear + constant in Eq. 4 is unchanged since their effect is just an additional constant.
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Fig. 3. 〈Q2
slab(Tcut)〉 as a function of Tcut/T . Data at the lightest mass mud = 0.0035, β = 4.17 with two different

lattice sizes L = 32 and L = 48 are shown. T = 2L for both lattices. The solid and dotted lines show the
slope obtained from the global topological charge measured on the L = 32 and L = 48 lattices, respectively.
Two end-points of the thick line segments show the reference points t1 and t2 taken for determination of the
topological susceptibility. Note that the value of t1 = 20 is the same for the two data.

We find that the signal using this slab method is less noisy than the previous attempts in Refs.
[12,16]. Moreover, as shown in Fig. 2 and discussed in detail later, the new definition shows more
frequent fluctuation than that of the global topological charge on our finest lattice.

4. Results at low β

At β = 4.17, which corresponds to the lattice spacing a ∼ 0.08 fm, both the global topological
charge Qlat and Q2

slab(Tcut) fluctuate well, as shown in the top panel of Fig. 2. The data on this lattice,
therefore, provide a good testing ground to examine the validity of the slab sub-volume method,
compared with the naive definition of the topological susceptibility with 〈Q2

lat〉/V .
In Fig. 3, 〈Q2

slab(tcut)〉 observed at the lightest sea quark mass mud = 0.0035, β = 4.17 on two
different volumes L = 32 and L = 48 is plotted as a function of Tcut/T . The data converge to a linear
plus constant function given in Eq. (4) at Tcut = 20, which corresponds to ∼ 1.6 fm. The slope, or
χ slab

t , is consistent with that from global topology, shown by solid and dotted lines for the L = 32
and L = 48 lattices, respectively. We also observe the consistency between the L = 32 and L = 48
data, which suggests that the systematics due to the finite volume is well under control.

The “linear + constant” behavior is also seen in ensembles with heavier quark masses, as presented
in Fig. 4.

The extracted values of the topological susceptibility from the slope show a good agreement with
the ChPT prediction, as shown in Fig. 5 by open and filled squares. The leading-order ChPT formula,
χt = mud�/2, with � = [270 MeV]3 (solid line) is shown to guide the eye. In the same plot, we
also plot the estimate for χt obtained from the global topological charge by circles, which again
agrees with the results, validating the slab method. The values of χ slab

t are listed in Table 2. How we
estimate their error bars is explained in the following two sections.

5. Results at high beta

At higher β values, we still find a reasonable slope at the lightest quark mass for each β and ms, as
shown in Fig. 6. For heavier masses, however, some curvature is seen. We consider this curvature to be
an effect from the bias of the global topological charge. This observation is consistent with previous
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Fig. 4. Same as Fig. 3 but at different up and down quark masses. Data at β = 4.17 and ms = 0.04 (top panel)
and those at ms = 0.03 (bottom) are shown.
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Fig. 5. mud dependence of topological susceptibility at β = 4.17 obtained from 〈Q2
slab(Tcut)〉 (solid symbols)

and those from the global topological charge (dashed, slightly shifted to avoid overlapping with the former
data). The LO prediction from SU (2) ChPT, where the chiral condensate �1/3 = 270 MeV, is also shown to
guide the eye.

works (see, e.g., Ref. [10]), which reported that heavier pion mass ensembles show the longer auto-
correlation of the topological charge, and the larger deviation of 〈Qlat〉 from zero. We determine the
reference t1 ∼ 1.6 fm using data at the lightest quark mass and always choose t2 = T/2 ∼ 2.6
fm. In order to estimate the systematic errors due to nonlinear behavior, we compare the results
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Table 2. Results for the pion mass Mπ , decay constant
√

2Fπ , τexp, τimp, and χ slab
t . τexp for β = 4.47 is

estimated from the first zero-crossing point of Qlat. All the data are shown in lattice units. For χ slab
t , the first

error denotes the statistical error, while the second shows the systematic error due to the effect of freezing
the global topological charge.

β L mud ms Mπ

√
2Fπ τexp τimp χ slab

t

4.17 32 0.0035 0.04 0.093 69(32) 0.053 20(19) 17(04) 25(9) 0.217(64)(14)×10−5

0.007 0.04 0.126 04(26) 0.057 74(15) 14(03) 30(9) 0.400(78)(21)×10−5

0.012 0.04 0.162 67(22) 0.062 54(14) 65(40) 62(24) 1.01(32)(46)×10−5

0.019 0.04 0.203 29(19) 0.067 88(14) 65(40) 56(22) 1.59(38)(09)×10−5

0.007 0.03 0.126 29(26) 0.057 61(15) 29(07) 54(22) 0.56(15)(53)×10−5

0.012 0.03 0.161 79(21) 0.061 90(14) 74(50) 71(32) 0.56(19)(22)×10−5

0.019 0.03 0.203 02(20) 0.067 30(13) 56(35) 42(16) 1.20(24)(23)×10−5

48 0.0035 0.04 0.092 03(09) 0.054 40(09) 38(30) 21(06) 0.282(34)(42)×10−5

4.35 48 0.0042 0.025 0.082 99(18) 0.039 26(11) 243(153) 208(114) 0.91(40)(12)×10−6

0.0080 0.025 0.113 12(14) 0.042 91(09) 318(200) 362(234) 2.18(98)(48)×10−6

0.0120 0.025 0.138 75(14) 0.046 30(08) 173(142) 105(52) 1.21(32)(07)×10−6

0.0042 0.018 0.082 19(19) 0.039 01(11) 111(49) 158(72) 0.59(37)(12)×10−6

0.0080 0.018 0.112 84(15) 0.042 75(08) 236(148) 220(126) 0.55(53)(19)×10−6

0.0120 0.018 0.137 99(13) 0.046 03(09) 97(43) 170(82) 1.70(53)(21)×10−6

4.47 64 0.0030 0.015 0.063 16(15) 0.031 41(09) [1700] 492(836) 0.20(27)(09)×10−6

with 1) those obtained from different reference times (t′1, t′2) = (t1, t1+t2
2 ), and ( t1+t2

2 , t2), and 2)
those obtained without the subtraction of 〈Q〉/V in the definition of the topological charge density.
The larger deviation is treated as a systematic error. More details are presented in Appendix B.

Our results are summarized in Fig. 7 (see also Fig. 8 for a comparison with Refs. [8] and [9]).
Although the data at higher β are rather scattered compared to those at β = 4.17, they can be used
to estimate the chiral condensate �, assuming the linear suppression around the chiral limit. Before
going to the details, we discuss the auto-correlation of χ slab

t and show how we estimate the statistical
errors in the next section.

6. Auto-correlation and error estimates

Gauge configurations generated by a Markov chain are generally not independent but have auto-
correlations. How much they are correlated depends on the observables. We therefore need to
carefully measure the auto-correlation of the target observable O:

	O(�τ) = 〈O(τ )O(τ + �τ)〉τ , (6)

where τ denotes the Monte Carlo time, and the average 〈· · · 〉τ is taken over τ .
When the Monte Carlo trajectory is long enough, compared to the auto-correlation time of any

observables, one can estimate the so-called integrated auto-correlation time by

τint = 1

2
+

W∑
�τ=0

ρ(�τ), ρ(�τ) = 	O(�τ)

	O(0)
, (7)

where the upper end of the summation window W is chosen to where ρ(�τ) becomes consistent
with zero within the error. The above formula assumes that 	O(�τ) converges to a single exponential
function well below W .
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Fig. 6. 〈Q2
slab(Tcut)〉 at different up and down quark masses. Data at β = 4.35 and ms = 0.0180 (top) and

ms = 0.0250 (middle) and those at β = 4.47 and ms = 0.0150 (bottom) are shown.

If the observables suffer from long auto-correlation, and the Monte Carlo trajectory is not long
enough, on the other hand, the above procedure may underestimate the auto-correlation time, since
some very slow decay modes can be hidden in the error of ρ(�τ). This problem is similar to that of
hadron spectroscopy with a short temporal extension, where one does not have a long enough fitting
range to disentangle the ground state from excited states, which leads to over-estimation of the mass.

The ALPHA Collaboration [10] carefully studied the effect of slow modes, and proposed an
improved estimate of the auto-correlation time,

τimp = τ ′
int + τexpρ(W ′), (8)

where τ ′
int is the same summation as Eq. (7) but with a smaller upper bound W ′ where ρ(W ′) becomes

lower than 3/2 standard deviations. τexp is the auto-correlation of the slowest mode. The proposal is
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Fig. 7. mud dependence of topological susceptibility obtained from the slab sub-volume method. The heaviest
four points are not included in the fit.
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Fig. 8. The same figure as Fig. 7 but a comparison with Ref. [8] (ETM2014, Nf = 2 + 1 + 1 results
converted using the input r0 = 0.46 fm) and Ref. [9] (ALPHA2014, Nf = 2 results converted assuming
mud = M 2

πF2
π/(2�) using the inputs t1 = 0.061 fm2, Fπ = 92 MeV, and � = (270 MeV)3) is shown.

equivalent to considering a continuation of 	O(�τ) at �τ = W ′ to the slowest possible exponential
function 	O(W ′) exp(−(�τ − W ′)/τexp).

In lattice QCD simulations, it is natural to assume that τexp is equal to the auto-correlation of the
global topological charge. In our simulations, τexp is estimated by τint(W ) of Q2

lat, except for β = 4.47
where we choose τexp = 1700 MD time by hand (and assuming 100% error for it), which is a rough
order estimate from the first zero-crossing point of Qlat. Then we compute the auto-correlation of
our target observable χ slab

t by τimp to estimate the error. The results for τimp, τexp, and χ slab
t are

summarized in Table 2 and the auto-correlation function ρ(�τ) at three different β with a similar
pion mass Mπ ∼ 300 MeV is shown in Fig. 9. At the highest β = 4.47, it is clear that χ slab

t has a
shorter auto-correlation time than that of the global topological charge.

With the measured improved auto-correlation time τimp, we estimate the statistical errors of χ slab
t

by multiplying
√

2(τimp + �τimp)/τinterval to the naive error estimates, where �τimp is the standard
deviation of τimp and τinterval denotes the interval trajectory between samples. The results, as well as
the systematic error from the choice of reference points, are listed in the last column of Table 2.

11/18

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article-abstract/2018/4/043B07/4980961 by Kyoto U

niversity user on 15 April 2020



PTEP 2018, 043B07 S. Aoki et al.

-1

-0.5

 0

 0.5

 1

 1.5

 0  50  100  150  200  250  300  350  400  450  500

ρ(
Δ 

τ)

Δ τ (MD time)

β=4.17 L=32 mud=0.007 ms=0.040

slab
globalQ

exp(-Δτ/τint)
exp(-Δτ/τimp)

-1

-0.5

 0

 0.5

 1

 1.5

 0  200  400  600  800  1000  1200  1400  1600

ρ(
Δ 

τ)

Δ τ (MD time)

β=4.35 L=48 mud=0.0042 ms=0.0250

slab
globalQ

exp(-Δτ/τint)
exp(-Δτ/τimp)

-1

-0.5

 0

 0.5

 1

 1.5

 0  500  1000  1500  2000  2500  3000

ρ(
Δ 

τ)

Δ τ (MD time)

β=4.47 L=64 mud=0.0030 ms=0.0150

slab
globalQ

exp(-Δτ/τint)
exp(-Δτ/τimp)

Fig. 9. Auto-correlation function ρ(�τ) of χ slab
t (pluses) and Q2

lat (crosses) at three different β with a similar
pion mass Mπ ∼ 300 MeV.

7. Chiral and continuum limit

Figure 7 presents our data for χ slab
t from all ensembles plotted in physical units. The horizontal axis,

the quark mass defined in the MS scheme at 2 GeV, is

mMS
ud = (mud + mres)/ZS , (9)

where the renormalization factor ZS is nonperturbatively computed in Ref. [48]: ZS = 1.037, 0.934,
and 0.893 for β = 4.17, 4.35, and 4.47, respectively. In contrast to the results by other groups with
non-chiral fermions, we find no strong dependence on β.

First, we compare our results directly to the ChPT formula (1). We perform a two-parameter
(� and l) fit to the data at β = 4.17 (solid curve in Fig. 7) and β ≥ 4.35 (dashed curve) separately4.
The results for � and l are listed in Table 3. Here we also perform the same fit but omitting the
heaviest two points, and take the difference as an estimate for the systematic error in the chiral
extrapolation. Since the heaviest points have several problems—1) a strong bias is seen in the global
topology, 2) ChPT is less reliable, and 3) there is mismatch between different β—we take the result
without them as our central values. Note, however, that this inclusion/elimination affects l but � is
stable against the change in the fit-range. Namely, the chiral condensate � is determined by the low
quark mass data. We then estimate the continuum limit by a constant fit, as shown in the top two

4 Since β = 4.47 is simulated at only one choice of the quark masses, we simply add the data as one of the
β = 4.35 ensembles. In fact, the χt values at β = 4.35 and 4.47 at the pion mass ∼ 300 MeV are consistent
with each other.
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Table 3. Our results for �, l, l′, and χ slab
t /(MπFπ )2 at the physical point. The first error denotes the the statistic

fluctuation at each simulation point, including the effect of long auto-correlation of global topology. The second
is the systematic error in chiral extrapolation, and the third error denotes that in the continuum limit estimates.
See the main text for details.

β �1/3(MeV) l l′ χslab
t

M2
π F2

π
at physical point

4.17 275(13)(13) 0.003(06)(10) −0.018(03)(03) 0.232(04)(03)
≥ 4.35 261(50)(19) −0.005(09)(06) −0.025(05)(04) 0.223(05)(04)

continuum limit 274(13)(25)(15) −0.001(05)(06)(19) −0.019(03)(01)(13) 0.229(03)(01)(13)
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Fig. 10. Continuum limit of � (we also plot our recent result [49] obtained from the Dirac eigenvalue density),
l, l′, and χ slab

t /(MπFπ )2 estimated by a constant fit at the physical point.

panels in Fig. 10. Comparing our result from the constant fit with linear extrapolation of the central
values, we take the difference as an estimate for the systematic error in the continuum limit. In the
plots in Fig. 10, all these errors are added in quadrature.

Next, using our data for the pion mass Mπ and decay constant Fπ together with χ slab
t , obtained

from each ensemble, we take the ratio given in Eq. (2). By a linear one-parameter fit, we determine
l′ and the ratio χ slab

t /(MπFπ)2 at the physical point. In the same way as the determination of � and
l, we take the chiral and continuum limits of both quantities. Note that the fixed chiral limit at 1/4
of the ratio helps us to determine these quantities.

Finally let us discuss other possible systematic effects. In our analysis, the ensembles satisfying
MπL > 3.9 are used and we do not expect any sizable finite volume effects. In particular, our
lightest mass point has MπL = 4.4. We have used configurations at the YM gradient flow–time
around

√
8t ∼ 0.5 fm. We confirm that the flow–time dependence is negligible in the range 0.25 fm
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<
√

8t < 0.5 fm. We conclude that all these systematic effects are negligibly small compared to the
statistical and systematic errors given above.

8. Summary

With dynamical Möbius domain-wall fermions and the new method using a sub-volume of the sim-
ulated lattice, we have computed the topological susceptibility of QCD. Its quark mass dependence
is consistent with the ChPT prediction, from which we have obtained

χt = 0.229(03)(01)(13)M 2
πF2

π (at physical point), (10)

�MS(2 GeV) = [274(13)(25)(15) MeV]3, (11)

where the first error comes from the statistical uncertainty at each simulation point, including the
effect of freezing topology. The second and third errors represent the systematics in the chiral and
continuum limits, respectively. The value of � is consistent with our recent determination through
the Dirac spectrum [49]. We have also estimated the NLO coefficient

l = (lr
3 − lr

7 + hr
1 − hr

3) = −0.001(05)(06)(19), (12)

l′ = (−lr
4 − lr

7 + hr
1 − hr

3) = −0.019(03)(01)(13), (13)

where l is renormalized at the physical pion mass, while l′ is renormalization invariant. It is interesting
to note that l and l′ include a combination of the coefficients hr

1 − hr
3, which are supposed to be

unphysical in ChPT unless θ dependence is considered. These are important for possible couplings
of QCD to axions [50].
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Appendix A. Effect of the strange sea quark

In this work, we have assumed that effect of the strange quark is negligible and used SU (2) ChPT in
our main analysis to obtain the chiral extrapolation of the topological susceptibility. In this appendix,
we consider SU (3) ChPT and compute a possible correction from the strange quark loop. We will
show that the chiral limit of the ratio (2) is unchanged even in SU (3) ChPT, which is also protected
from finite volume corrections.

The one-loop computation of the topological susceptibility in general Nf -flavor ChPT was given
in Refs. [3,4] and the formula for Nf = 3 is

χt = m̄�

[
1 + 1

F2
π

{
−3

m̄

mud
�(M 2

π) − 2
(

m̄

mud
+ m̄

ms

)
�(M 2

K ) − 1

3

(
m̄

mud
+ 2m̄

ms

)
�(M 2

η )

+ 16Lr
6(2M 2

π + M 2
ss) + 48(3L7 + Lr

8)M̄
2}], (A.1)

where m̄ = mudms/(2ms + mud), Mπ ,MK , and Mη are the (simulated) pion, kaon, and η meson
masses, respectively. We have also used notations for M 2

ss = 2ms�/F2
π and M̄ 2 = 2m̄�/F2

π . The
chiral logarithm is expressed by

�(M 2) = M 2

16π2 ln
M 2

μ2
sub

+ g1(M
2), (A.2)

where μsub denotes the renormalization scale, and g1 is the finite volume correction (see Ref. [4] for
details). In the above formula, we can see three NLO low-energy constants [47]: Lr

6 and Lr
8 are those

renormalized at μsub, while L7 is a renormalization scheme independent constant.
One-loop corrections to the pion mass and decay constant were computed in Ref. [47]:

M 2
π = M 2

[
1 − 1

F2
π

{
−1

2
�(M 2

π) + 1

6
�(M 2

η ) + 8(Lr
4 − 2Lr

6)(2M 2
π + M 2

ss) + 8(Lr
5 − 2Lr

8)M
2
π

}]
,

(A.3)

and

F2
π = F2

[
1 − 1

F2
π

{
2�(M 2

π) + �(M 2
K ) − 8Lr

4(2M 2
π + M 2

ss) − 8Lr
5M 2

π

}]
, (A.4)

where M and F are the tree-level mass and decay constant, respectively.
Now let us take the ratio of χt and M 2

πF2
π . Noting

m̄ ∼ m

2

(
1 − mud

2ms

)
∼ m

2

(
1 − M 2

π

2M 2
ss

)
, (A.5)

we obtain

χt

M 2
πF2

π

= 1

4

[
1 + 2M 2

π l′
(eff )

F2
π

+ O(M 4
π)

]
, (A.6)
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where both the strange quark effect as well as finite volume effects from one-loop diagrams are
absorbed in the (re)definition of

l′(eff ) = − 1

4M 2
ss

(
F2

π + �(M 2
K ) + 1

2
�(M 2

η )

)
+ 36L7 + 4Lr

8. (A.7)

We, therefore, conclude that the one-loop formula (2) is valid even when the strange quark gives a
nontrivial effect, and is also stable against possible finite volume corrections. This observation helps
us in determining χt at the physical point.

Appendix B. Bias from global topology

In this appendix, we discuss systematics due to freezing of the global topological charge. Combining
the formulas in Refs. [28] and [27], the slab topological charge squared at fixed topology of Q
becomes

〈Q2
slab(Tcut)〉Q = (χtV ) × Tcut

T
+ T 2

cut

T 2

(
Q2 − χtV

)+ C, (B.1)

for 0 	 Tcut 	 T . Therefore, if the global topological charge Q were badly sampled and its average
of Q2 in the ensemble deviated from χtV , we should have a quadratic term in Tcut as

〈Q2
slab(Tcut)〉biased = (χtV )

Tcut

T

[
1 + Tcut

χtVT

(〈Q2〉biased − 〈Q〉2
biased − χtV

)]+ C, (B.2)

where 〈· · · 〉biased denotes the estimate obtained from a biased sampling of configurations. Here
we have included the term 〈Q〉2

biased, which comes from the use of the subtracted operator
qlat − 〈Q/V 〉biased in our numerical analysis.

If the correction Tcut
(χtV )T

(〈Q2〉biased − 〈Q〉2
biased − χtV

)
is small, our original linear + constant

formula is still valid. As the correction is proportional to Tcut
T , if we have a window Tcut 	 T , or the

freezing 〈Q2〉biased − 〈Q〉2
biased happens to be near the true value of χtV , we can still extract χt from

the linear slope (this seems to happen on the data at β = 4.47).
In order to estimate the systematics due to the correction term, we compare the results with 1) those

obtained from different reference times (t′1, t′2) = (t1, t1+t2
2 ), and ( t1+t2

2 , t2),5 and 2) those obtained
without the subtraction of 〈Q〉/V in the definition of the topological charge density. Then we take the
larger deviation as the systematic error. Since part of 〈Q〉2

biased is expected to be canceled by 〈Q2〉biased,
this analysis is rather conservative. As presented in Table 2, the deviations are comparable to the
statistical errors.

Let us look into our “worst” case, the data at β = 4.35 and (mud , ms) = (0.012, 0.018) in our
ensembles, which shows the strongest curvature.As expected, the global topological charge sampling
is biased: the estimate for 〈Q2〉 = 12(4) in the former half (0–2500 MD time) of the simulation
time is quite different from 〈Q2〉 = 40(17) in the latter half (2500–5000 MD time). But the obtained
values of χ slab

t show a milder deviation, 1.30(53) × 10−6 for the former half and 1.89(64) × 10−6

for the latter, which are consistent within errors. This analysis6 shows that the systematics due to
freezing topology is under control, at least, at the level of the statistical errors. Our ChPT fit with
reasonable χ2/d.o.f . ∼ 1.4 also supports our conclusion.

5 This also tests if the effect from the excited state m0 is small or not.
6 We thank W. Bietenholz and P. de Forcrand for suggesting this analysis of freezing topology effects.
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